Number of Repetitious States in One Dimensional Hubbard Model: a Density Matrix Renormalization Group Perspective

Автори M. Solaimani
Афіліація

Department of Physics, Qom University of technology, Qom, Iran

Е-mail solaimani.mehdi@gmail.com
Випуск Том 7, Рік 2015, Номер 4
Дати Одержано 20.03.2015, у відредагованій формі - 10.06.2015, опубліковано online - 24.12.2015
Цитування M. Solaimani, J. Nano- Electron. Phys. 7 No 4, 04101 (2015)
DOI
PACS Number(s) 78.20.Bh, 71.10.Fd, 71.10. – w, 71.10.Pm
Ключові слова Density matrix renormalization group, Repetitious states, Reduction of the Hilbert space dimension.
Анотація In this work we investigate some aspects of density matrix renormalization group (DMRG) method. We intuitively show why DMRG works better for open boundary conditions and why the number of sweeps in a periodic system is greater than an open one. We also describe reduction of the Hilbert space dimension using symmetries. Finally, we show that eliminating the repetitious states may help as much as symmetries to reduce the Hilbert space and thus increase the DMRG speed.

Перелік цитувань