Authors | F. Marcillo1,2, L. Villamagua1,3, A. Stashans1 |
Affiliations | 1 Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja, Ecuador 2 Titulación de Ingeniería Química, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja, Ecuador 3 Departamento de Química y Ciencias Exactas, Sección Fisicoquímica y Matemáticas, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja, Ecuador |
Е-mail | fpmarcillo@utpl.edu.ec, lmvillamagua@utpl.edu.ec |
Issue | Volume 9, Year 2017, Number 1 |
Dates | Received 11 October 2016; revised manuscript received 19 October 2016; published online 20 February 2017 |
Citation | F. Marcillo, L. Villamagua, A. Stashans, J. Nano- Electron. Phys. 9 No 1, 01024 (2017) |
DOI | 10.21272/jnep.9(1).01024 |
PACS Number(s) | 72.S –, 61.72.U –, 71.15.Mb |
Keywords | Density functional theory (5) , Electrical conductivity (10) , n-type (4) , p-type (3) , ZnO material, Nitrogen doping (2) , Zinc vacancy. |
Annotation | Density functional theory and generalized gradient approximation including a Hubbard-like term was used in the present work to analyse p-type electrical conductivity as well as the switch of n-type p-type conductivity in the ZnO materials. Results on atomic shifts indicate significance of Coulomb electrostatic interaction in finding the equilibrium state of the system. It is shown that the p-type electrical conductivity could be obtained by the N impurity doping into the n-type ZnO samples and also by considering zinc vacancy defect in otherwise pure ZnO crystal. Computed concentrations of free-carriers for different samples are compared to the available experimental data. |
List of References |