| Автори | S. Kouda1, A. Dendouga2, 3 , S. Barra2, T. Bendib1 | 
| Афіліація | 
 1University of M’SILA, Faculty of Technology, 28000 M’sila, Algeria 2Laboratoire d’Electronique Avancée-LEA, 05000 Batna, Algeria 3University of BATNA 2, Faculty of Technology, 05000 Batna, Algeria  | 
| Е-mail | |
| Випуск | Том 10, Рік 2018, Номер 6 | 
| Дати | Одержано 15.07.2018; у відредагованій формі 01.12.2018; опубліковано online 18.12.2018 | 
| Цитування | S. Kouda, A. Dendouga, S. Barra, T. Bendib, J. Nano- Electron. Phys. 10 No 6, 06011 (2018) | 
| DOI | https://doi.org/10.21272/jnep.10(6).06011 | 
| PACS Number(s) | 07.07.Df, 44.05. + e | 
| Ключові слова | Fuzzy logic, Artificial neural networks, Gas sensor (5) , Selectivity (2) , Analytical model (3) , Selective model. | 
| Анотація | 
        	
 The selectivity is one of the main challenges to develop a gas sensor, the good chemical species detection in a gaseous mixture decreasing the missed detections. The present paper proposes a new solution for gas sensor selectivity based on artificial neural networks (ANNs) and fuzzy logic (FL) algorithm. We first use ANNs to develop a gas sensor model in order to accurately express its behavior. In a second step, the FL and Matlab environment are used to create a database for a selective model, where the response of this one only depends on one chemical species. Analytical models for the gas sensor and its selective model are implemented into a Performance Simulation Program with Integrated Circuit Emphasis (PSPICE) simulator as an electrical circuit in order to prove the similarity of the analytical model output with that of the MQ-9 gas sensor where the output of the selective model only depends on one gas. Our results indicate the capability of the ANN-FL hybrid modeling for an accurate sensing analysis.  | 
| 
         Перелік посилань  |