Numerical Simulation of Tin Based Perovskite Solar Cell: Effects of Absorber Parameters and Hole Transport Materials

Authors Aditi Toshniwal1, Akshay Jariwala1, Vipul Kheraj1 , A.S. Opanasyuk2 , C.J. Panchal3
Affiliations

1 Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, India

2 Sumy State University, 2, Rymskyi-Korsakov Str., 40007 Sumy, Ukraine

3 Applied Physics Department, The M.S. University of Baroda, Vadodara-390001, India

Е-mail vipulkheraj@gmail.com
Issue Volume 9, Year 2017, Number 3
Dates Received 28 April 2017; revised manuscript received 10 May 2017; published online 30 June 2017
Citation Aditi Toshniwal, Akshay Jariwala, Vipul Kheraj, et al., J. Nano- Electron. Phys. 9 No 3, 03038 (2017)
DOI 10.21272/jnep.9(3).03038
PACS Number(s) 88.40.jm, 05.45.Pq
Keywords Tin perovskite Solar Cell, Simulation (35) , HTM, SCAPS (27) .
Annotation The organometal perovskite solar cells have shown stupendous development and have reached a power conversion efficiency (PCE) of 22.1%. However, the toxicity of lead in perovskite solar cells is a major challenge towards their incorporation into photovoltaic devices and thus needs to be addressed. Tin perovskite (CH3NH3SnI3) have attracted a lot of attention recently and could be a viable alternative material to replace lead perovskite in thin film solar cells. A detail understanding of effects of each component of a solar cell on its output performance is needed to further develop the technology. In this work, we performed a numerical simulation of a planar heterojunction tin based perovskite solar cell using SCAPS (Solar Cell Capacitance Simulator). Results revealed that thickness and defect density of the absorber material strongly influence the PCE of the device. Various types of hole transporting material (HTM) were compared and analysed to improve the performance of the solar cell. Parameters such as hole mobility and acceptor density of HTM also signified dependence on PCE of the device. These results indicate the possibility to design, fabricate and enhance the performance of tin based perovskite solar cells.

List of References