DC, AC, and Transient Simulation Study of MEMS Cantilever

Автор(ы) S.S. Khot1, A.A. Patil1, V.N. Mokashi2, P.P. Waifalkar3 , K.V. More4, R.K. Kamat2 , T.D. Dongale1

1Computational Electronics and Nanoscience Research Laboratory,School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India

2Department of Electronics, Shivaji University, Kolhapur-416004, India

3Department of Physics, Shivaji University, Kolhapur-416004, India

4Department of Chemistry, Shivaji University, Kolhapur-416004, India

Е-mail tdd.snst@unishivaji.ac.in
Выпуск Том 11, Год 2019, Номер 2
Даты Получено 17 октября 2018; в отредактированной форме 03 апреля 2019; опубликовано online 15 апреля 2019
Ссылка S.S. Khot, A.A. Patil, V.N. Mokashi, et al., J. Nano- Electron. Phys. 11 No 2, 02015 (2019)
DOI https://doi.org/10.21272/jnep.11(2).02015
PACS Number(s) 85.85. + j, 07.05.Tp
Ключевые слова Micro-electro-mechanical system, Simulation (33) , Cantilever.

The present reports deals with the DC, AC, and transient simulation study of MEMS cantilever. The open-ended rectangular system is simulated in the present investigation. In the present case, we have varied the length of MEMS cantilever (platinum electrode) and studied its effect on the following cases: i) the effect of voltage on the capacitance and beam position (DC analysis), ii) time domain beam position, capacitance, and voltage (AC analysis), and iii) time domain beam position, capacitance, and voltage (transient analysis). The results suggested that the length of an active electrode of MEMS cantilever significantly affects the MEMS performance. In addition, the voltage of MEMS cantilever linearly increases with respect to time and it was found to be independent of the electrode length and dielectric materials, which were used in the considered system.

Список литературы