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The application of artificial intelligence (AI) techniques in predicting electronic structures of nanoparticles is 

a complex task traditionally reliant on quantum mechanical calculations. The unique properties of nanoparticles, 

driven by quantum confinement effects at the nanoscale, are crucial in fields such as catalysis, electronics, and 

medicine. The study utilize advanced computational models, specifically Adaptive Tunicate Swarm Optimized 

Graph Neural Networks (ATSO-GNN), to accurately predict electronic density, energy states, and other 

properties of nanoparticles. The approach comprises data preprocessing with z-score normalization and feature 

extraction utilizing Linear Discriminant Analysis (LDA), which improves model sensitivity to minor electrical 

fluctuations. The ATSO-GNN model, trained on structural data from a nanoparticle dataset, demonstrates 

significant improvements in accuracy and computational efficiency over traditional methods like Density 

Functional Theory (DFT). Results indicate that the approach effectively captures complex atomic interactions, 

making it valuable for materials science and nanotechnology applications where rapid and precise electronic 

structure predictions are essential. Compared to standard methods, the ATSO-GNN model offers higher R2 (0.95) 

lower mean absolute error (MAE) (0.2) and lower computation times (1.5) enhanced prediction. This study 

demonstrates how AI-based methods significantly improve the speed and accuracy of electronic structure 

predictions. 
 

Keywords: Nanoparticles, Electronic structure prediction, Machine learning, Density functional theory, 

Nanotechnology. 
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1. INTRODUCTION 
 

Electronic structures are the arrangement and 

behavior of electrons in atoms, molecules, or materials and 

become important in determining the chemistry and 

physics of nanoparticle properties [1]. The effects due to 

quantum confinement, relevant to the size reaching 

nanoscale, make its electronic structures highly different 

compared with bulk materials. Such effects lead to discrete 

energy levels rather than continuous bands, thereby 

influencing the optical, electrical, and magnetic properties 

of nanoparticles [2]. Such unique properties make 

nanoparticles essential in various applications, including 

catalysis, where they enhance reaction rates; electronics, 

where they enable faster and more efficient devices, and 

medicine, where they aid in targeted drug delivery and 

imaging. Understanding and controlling the electronic 
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structures of nanoparticles thus leads to the development 

of advanced materials with tailored properties suited for 

specific applications [3]. Prediction of electronic structures 

is a highly challenging problem and largely stems from the 

quantum mechanical computation involved. This would 

require a solution to many interacting electrons in solving 

Schrodinger's equation with increasing system size [4]. 

The difficulty related to electron-electron correlations and 

high levels of accuracy required to determine the wave 

functions and their density are the difficulties related to 

increasing complexity [5]. There are only approximations, 

and usually fail in systems with important electron 

correlations or excited states. With advanced 

computational methods, large molecules or materials, and 

much computing time, electronic structure predictions can 

be made very accurate; this remains an exciting but 
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difficult challenge area in materials science and quantum 

chemistry [6]. AI significantly improves and simplifies the 

electronic structure prediction through using more 

complex algorithms that can analyze large datasets and 

optimize computations. Deep learning (DL) and neural 

network (NN) are among the best ML models in pattern 

recognition in large data sets, which facilitates better and 

more efficient prediction of electronic structures [7]. This 

accelerates traditionally resource-intensive methods, such 

as density functional theory (DFT), by predicting 

properties, such as electronic density and energy states 

with similar precision but at a significantly lower 

computational cost [8]. AI models also have the ability to 

generalize from vast libraries of known structures, making 

them proficient at predicting properties for new or complex 

materials where experimental data can be scarce [9]. This 

efficiency supports the fast discovery in fields, such as 

material science and quantum computing allows faster 

innovation with fewer time and resources [10]. The 

purpose of this study is to develop and apply AI techniques 

for predicting an accurate electronic structure of 

nanoparticles. The task is accomplished with the help of 

AI algorithms by streamlining traditionally very complex, 

computationally intensive processes traditionally required 

for electronic structure calculations. 

 

2. RELATED WORKS 
 

An early technique for identifying the form of 

nanoparticles' metal cores four alternative supervised 

artificial neural network (ANNs) [11] were trained, 

evaluated, and applied to a difficult dataset. The use two 

structural descriptors: Radial Distribution Functions 

(RDF) and Coulomb Matrices (CM). Nano architectonics is 

a new type of nanomaterial with self-assembled atoms and 

distinctive characteristics. Nano architectonics has 

potential uses in catalysis, solar energy storage, water and 

wastewater treatment, sensing, fuel cells, medicines, and 

medication delivery, among other fields [12]. An ANN [13] 

is a wide approach for forecasting a rather generic 

characteristic, and in a few configurations presented, the 

total energy of any gold nanoparticles is rectified using an 

embedded atom potential and the self-consistent charge 

density functional bounding method. As AI technology 

progresses, it plays a growing role in material science and 

engineering (MSE) [14]. High-performance computing 

allows for testing deep learning (DL) models with large 

parameters, overcoming the limitations of previous 

approaches like DFT in property prediction. Nanoparticles 

have unique features that make them indispensable in 

optoelectronic sensing, medicinal treatment, material 

science, and chemical applications. Nanoparticles can be 

created using many synthetic methods, each with unique 

features [15]. AI technology can handle complex tasks with 

human-like skill. AI breakthroughs have a significant 

impact on ML, which is used to solve a variety of 

challenges, including nanotechnology. 

 

 

3. METHODS AND MATERIALS 
 

The method includes data preprocessing with z-score 

normalization and feature extraction using LDA, which 

increases model sensitivity to tiny electrical oscillations. 

The ATSO-GNN model was trained on structural data 

from Kaggle's nanoparticles dataset. 
 

 
 

Fig. 1 – Flow of proposed 

 

3.1 Data Collection 
 

The dataset was collected from an open source Kaggle 

website((https://www.kaggle.com/datasets/ziya07/nanopa

rticle-electronic-structure/data) dataset features 

structural and atomic properties of nanoparticles, 

including atom count (19-140 atoms), structure type 

(cuboctahedral, icosahedral, or cubic), atomic number 

(noble metals like Pt or Au), electronegativity (2.0-3.0), 

atomic radius (in Å), and melting point (in Kelvin). 

Additionally, it includes 50 principal components (dos_pc1 

to dos_pc50) from PCA-transformed synthetic density of 

states (DOS) data, condensed from 3000 levels to capture 

key electronic variations. 

 

3.2 Data Preprocessing Using z-score 

Normalization 
 

In the electronic structures of nanoparticles, z-score 

normalization is a common data preprocessing technique 

applied to standardize the dataset by centering the values 

on zero with unit variance. This process helps in 

enhancing the model's sensitivity to subtle variations in 

electronic properties by removing scale biases and 

facilitating more accurate analysis of nanoscale behavior. 

This is very crucial for proper comparison and analysis of 

data, especially in electronic structures in nanoparticles 

studies where standardization is crucial in carrying out an 

accurate examination of electronic behavior across varied 

sample conditions in equation (1). 
 

 𝑃 = 𝑌 −
𝜇

𝜎
 (1) 

 

This paper will enhance logistics distribution through 

the use of a statistical method that employs standard 

deviation and mean to measure performance indices, thus 

contributing to better insight into the effect of electronic 
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structures on the efficiency and effectiveness of 

nanoparticles logistics in equation (2). 
 

 𝜎 = √(∑ (𝑌 − 𝑌̅) 𝑜⁄ ) (2) 
 

To analyze the comprehensive dataset, including 

standard deviation, mean, and frequency, to assess the 

impact of electronic structures in nanoparticles on the 

global market for products and services. This analysis 

aims to derive insights into supplier performance and 

product distribution trends, contributing to a deeper 

understanding of logistics efficiency and its correlation 

with electronic properties in nanomaterials. This objective 

aligns the data analysis aspect with the broader context of 

electronic structures in nanoparticles, potentially 

exploring how these materials influence market dynamics. 

 

3.3 Feature Extraction Using Linear Discriminant 

Analysis (LDA) 
 

Exploring electronic structures in the nanoparticles 

permits the feature extraction of unique quantum and 

physical properties of nanoscale material. LDA applied to 

these structures permits the small dissimilarities between 

the nanoscale particles to be identified. It increases the 

efficiency of classification in materials analysis. The 

electronic feature separation is maximized by LDA. Given 

a set of independent data attributes, LDA generates a 

linear combination that optimizes the average variation 

between the intended classes. Two key measures are 

defined in LDA, with one being the within-class scatter 

matrix, given by equation (3). 
 

 𝑆𝑤 = ∑ ∑ (𝑤𝑗
𝑖𝑀𝑖

𝑗=1
𝑑
𝑖=1 − 𝜇𝑖)(𝑤𝑗

𝑖 − 𝜇𝑖)𝑆 (3) 
 

Where 𝑤𝑗
𝑖 is the 𝑖𝑡ℎsample of class 𝑗, 𝜇𝑖 is the denote of 

class𝑗,𝑑 is the numeral of classes, and 𝜇𝑖 is the numeral of 

sample in class 𝑗. Additionally, the among-class distribute 

matrix can be calculated using equation (4). 

Where 𝜇represent the denote of all classes. 
 

 𝑆𝑏 = ∑ (𝜇𝑖
𝑑
𝑖=1 − 𝜇)(𝜇𝑖 − 𝜇)𝑆 (4) 

 

3.4 Predicting Electronic Structures in 

Nanoparticles Using Adaptive Tunicate Swarm 

Optimized Graph Neural Network (ATSO-GNN) 
 

In these nanoparticles, the electronic structures play a 

crucial role in enhancing the capabilities of adaptive 

algorithms. These features, in this Adaptive Tunicate 

Swarm Optimized Graph Neural Network (ATSO-GNN), 

enhance the ability of the model to catch intricate 

interactions and patterns at the nanoscale level. This 

approach holds huge promise towards the development of 

nanotechnology applications, particularly in material and 

biomedical fields. 

 

3.4.1. Graph Neural Network (GNN) 
 

GNN is very useful for the study of electronic 

structures in nanoparticles because it captures 

complicated relationships between atoms efficiently. 

Letting the nanoparticle structure be graph-based, where 

nodes are atoms and edges represent bonds, GNN can 

predict properties like electronic density, energy states, 

and distribution of charge. The second step involves a 

formal aggregate operation. This simple type of GNN has 

a constant message carrying function, and the aggregation 

is simply adding all of the information that the neighbor 

passes onto it for summarization. It is not difficult to see 

that can improve GNN performance in at least three ways: 

picking strategy, aggregating function, and stacking 

layers. For example, if the relevance of neighbors to the 

center node varies, they can apply the attention 

mechanism at the first step of the aggregate function can 

offer a general formulation of GNN equation (5). 

 

 𝑔𝑜𝑢𝑡
(𝑙)

= 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑔𝑣
(𝑙−1)

, ∀𝑣 ∈

                 𝑀(𝑣)} , 𝑋𝑎𝑔𝑔
(𝑙)

) , 𝑔𝑖𝑛
(𝑙)

, 𝑋𝑈𝑝𝑑𝑎𝑡𝑒
(𝑙)

) (5) 

 

The terms 𝑔𝑖𝑛
(𝑙)

 and 𝑔𝑜𝑢𝑡
(𝑙)

 refer to the effort and 

modernized node embedding at the 𝑙𝑡ℎcoating, 

respectively. The embeddings of neighbors from the 

preceding layer are represented by 𝑔𝑣
(𝑙−1)

 and u. 𝑋𝑎𝑔𝑔
(𝑙)

 and 

𝑋𝑈𝑝𝑑𝑎𝑡𝑒
(𝑙)

represent trainable matrix in collective and inform 

functions at the 𝑙𝑡ℎ layer, respectively. 𝑋𝑈𝑝𝑑𝑎𝑡𝑒
(𝑙)

 update 

refers to the trainable parameters of the 𝑙𝑡ℎ layer in neural 

networks following the collective function. Figure 2 depicts 

the overall structure of GNN. 
 

 
 

Fig. 2 – Structure of GNN 
 

Electronic Structures in Nanoparticles: A generic and 

simple GNN structure and processing mechanism. First, 

GNN chooses neighbors using a predetermined strategy. 

Then, GNN uses an aggregated function to retrieve 

information about a central node. Finally, the aggregated 

data is passed to a neural network, which performs the 

nonlinear transformation. The final result is the modified 

central node description in equation (6). 
 

 𝑔𝜐
(𝑙)

= 𝜎([𝐵𝑙 . 𝐴𝐺𝐺 ({𝑔𝑣
(𝑙−1)

∀𝑣 ∈ 𝑀(𝑣)}) , 𝐴𝑙𝑔𝜐
(𝑙−1)

 (6) 

 

Where 𝑔𝜐
(𝑙)

 and 𝑔𝑣
(𝑙−1)

represents node 𝑣 at 

presentcoating𝑙 and preceding coating(𝑙 − 1), respectively. 

Furthermore, 𝑔𝑣
(𝑙−1)

 represents the node embeddings of 

nodes of the neighbors from the preceding layer. 𝐴𝑙and 𝐵𝑙 

represent the trainable weight matrices. 𝜎represents a 

quadratic function of activation. To create𝑔𝑣
(𝑙−1)

∀, follow 

these procedures. To begin, each node uses the aggregator 

to aggregate features from its immediate neighborhood 
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into a single vector, 𝑀(𝑣). After aggregating neighbor 

features, Graph concatenates the node's prior 

representation with its neighborhood feature vector. The 

concatenated vector is sent through a multi-layer 

perceptron (MLP) with rectified linear unit (ReLU) 

activation function, resulting in a new representation of 

the node. A graph learning job is an optimization problem, 

similar to supervised learning where input 𝑤 is supplied 

and label z is predicted in equation (7). 
 

 
min 𝐾(𝑧, 𝑒(𝑤))

Θ
 (7) 

 

To optimize a set of parameters Θ and use a loss 

function (L). The GNN function (f) can be quite 

complicated. 𝐹 generates node predictions as its output. 

The objective is to minimize the loss between predicted 

and real labels. 

 

3.4.2 Adaptive Tunicate Swarm Optimization 

(ATSO) 
 

The electronic structures in nanoparticles with ATSO 

is introduced via a new searching equation, which 

improves the exploitation ability for resolving large-scale 

problems and aversion to trap into a local optimum. The 

key steps of the ATSO are as follows.In the context of 

electronic structures in nanoparticles, the algorithm 

begins with  
 

Step 1: The algorithm parameters, such as the increasing 

number of generations 𝑇 and inhabitant’sdimension, are 

set. ATSO then randomly positioned within the 

investigate space. 
 

Step 2: Then, every tunicate is evaluated using the fitness 

function. 
 

Step 3: In the development phase, the focus is on 

enhancing the ATSO's search process. A dynamic 

perturbation is introduced to sharpen the exploitation 

pattern and to explore nearby solutions with the search 

area. The search equation is modified so that each position 

experiences a dynamic step change, retaining its place if it 

produces an improved result. This method allows for 

continuous updating of the search space boundaries, with 

the new ATSO position specified in equation (8). 
 

 𝑂𝑝𝑜𝑝(𝑠 = 1) = 𝑂𝑝𝑜𝑝(𝑠) ± 𝑟𝑎𝑛𝑑𝑠 ×
𝛼

2
 (8) 

 

For electronic structures in nanoparticles, the 

optimization process involves a dynamic step reduction to 

enhance the focus on neighborhood searching, thereby 

improving exploitation capabilities. This can be 

represented in equation (9): 
 

 𝛼 = 𝜃 × 𝛼1 + (1 − 𝜃) × 𝛼2 (9) 
 

The study of electronic structures in nanoparticles, 

𝑂̅𝑝𝑜𝑝 represents a random variable (RV) following a 

uniform distribution between 0 and 1, with𝛼1 and 𝛼2 

defining the dynamic bounds, calculated as shown in 

equation (10). 
 

 𝛼1 = min(𝑂̅𝑝𝑜𝑝) , 𝛼2 = max (𝑂̅𝑝𝑜𝑝) (10) 
 

Step 4: Updating phase: In this phase, the tunicate swarm 

is refined to the standard ATSO method using equation 

(10). This process enables the tunicates to explore different 

areas with the search space, boosting their exploratory 

potential. Subsequently, the fitness of each tunicate is 

evaluated to determine and update the current optimal 

solution. 
 

Step 5: Steps two to four could be repeated if the 

termination criterion is met. Equation (9) enhances 

exploration by allowing examination of additional areas 

with the search region, especially in the study of electronic 

structures in nanoparticles. Equation (10), is valuable for 

concentrating on promising regions, thus supporting 

exploitation. This approach establishes a balance between 

exploration and exploitation, helping to prevent 

entrapment in local optima. 

 

4. RESULT AND DISCUSSION 
 

Utilizing AI in predicting electronic structures in 

nanoparticles improves the efficiency and accuracy of 

computations in the rapid discovery and optimization of 

new materials. The approach used the electronic 

properties of materials in fields like nanotechnology, 

electronics, and catalysis. An Intel 16 GB of DDR4 RAM, 

Xeon E3-1230v5 CPU, and an NVIDIA Quadro K420 

discrete graphics card power the system. It also has a 1TB 

SSD, guaranteeing express and successful storage. 

Comparison of our proposed method with the standard 

approaches, such as metrics of 𝑅2, MAE, and computation 

time.  

 

4.1 R-Square 
 

In the context of predicting electronic structures in 

nanoparticles using statistical modeling, an R-squared 

(R2) value indicates the amount of the variation in the 

dependent variable can be explained by its separate 

factors. A good proportion of the variance in the electronic  
 

 
 

Fig. 3 – Analysis of R2 
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Fig. 4 – Analysis of MAE 

 

structures can be accounted for the model if the R2 value 

is close to 1, thus, a good fit. On the contrary, if the R2 

value approaches 0, then it means that the model cannot 

explain the variation and the modeling techniques require 

improvement or more relevant features are required to be 

added. Fig. 3 displays the result of R2. 

 

4.2 MAE 
 

The Mean Absolute Error (MAE), a statistical metric 

that evaluates the accuracy of forecasts or predictions is 

the average absolute difference between the expected and 

actual values. Analyzing these electronic structures will 

lead to designing nanomaterials that would be applied in 

catalysis, energy storage, or electronic devices and such 

materials could enhance the engineering applications. Fig. 

4 represents the results of MAE. 

 

5. CONCLUSION 
 

The traditional quantum mechanical methods, 

although accurate, are computationally intensive and 

restricted by the complexity of electron-electron 

interactions. ATSO techniques incorporated in GNN 

models help model atomic and molecular interactions at 

the nanoscale with precision. Techniques such as adaptive 

tunicate swarm optimization help optimize performance 

metrics with much higher precision. AI-driven innovation 

has enabled faster, resource-efficient innovation in 

material science and quantum computing and continues to 

advance nanoparticle material development with high 

precision and applicability. When compared to standard 

methods, the proposed higher 𝑅2(0.95), lower MAE (0.2), 

lower computation time (1.5) method ATSO-GNN had 

effectively. 
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Застосування методів штучного інтелекту для прогнозування електронних структур наночастинок є 

складним завданням, яке традиційно залежить від квантово-механічних розрахунків. Унікальні 

властивості наночастинок, зумовлені ефектами квантового обмеження на нанорівні, мають вирішальне 

значення в таких галузях, як каталіз, електроніка та медицина. У дослідженні використовуються передові 

обчислювальні моделі, зокрема адаптивні нейронні мережі з оптимізованим графічним методом 

адаптивного рою тунікатів (ATSO-GNN), для точного прогнозування електронної густини, енергетичних 

станів та інших властивостей наночастинок. Підхід включає попередню обробку даних з нормалізацією  

z-оцінки та вилучення ознак з використанням лінійного дискримінантного аналізу (LDA), який покращує 

чутливість моделі до незначних електричних коливань. Модель ATSO-GNN, навчена на структурних даних 

з набору даних про наночастинки, демонструє значні покращення точності та обчислювальної ефективності 

порівняно з традиційними методами, такими як теорія функціоналу густини (DFT). Результати показують, 

що цей підхід ефективно фіксує складні атомні взаємодії, що робить його цінним для застосування в 

матеріалознавстві та нанотехнологіях, де швидкі та точні прогнози електронної структури є важливими. 

Порівняно зі стандартними методами, модель ATSO-GNN пропонує вищий R2 (0,95), нижчу середню 

абсолютну похибку (MAE) (0,2) та коротший час обчислення (1,5), що покращує прогнозування. Це 

дослідження демонструє, як методи на основі штучного інтелекту значно покращують швидкість і точність 

прогнозування електронної структури. 
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