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The application of artificial intelligence (AI) techniques in predicting electronic structures of nanoparticles is
a complex task traditionally reliant on quantum mechanical calculations. The unique properties of nanoparticles,
driven by quantum confinement effects at the nanoscale, are crucial in fields such as catalysis, electronics, and
medicine. The study utilize advanced computational models, specifically Adaptive Tunicate Swarm Optimized
Graph Neural Networks (ATSO-GNN), to accurately predict electronic density, energy states, and other
properties of nanoparticles. The approach comprises data preprocessing with z-score normalization and feature
extraction utilizing Linear Discriminant Analysis (LDA), which improves model sensitivity to minor electrical
fluctuations. The ATSO-GNN model, trained on structural data from a nanoparticle dataset, demonstrates
significant improvements in accuracy and computational efficiency over traditional methods like Density
Functional Theory (DFT). Results indicate that the approach effectively captures complex atomic interactions,
making it valuable for materials science and nanotechnology applications where rapid and precise electronic
structure predictions are essential. Compared to standard methods, the ATSO-GNN model offers higher R2 (0.95)
lower mean absolute error (MAE) (0.2) and lower computation times (1.5) enhanced prediction. This study
demonstrates how Al-based methods significantly improve the speed and accuracy of electronic structure
predictions.
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1. INTRODUCTION

Electronic structures are the arrangement and
behavior of electrons in atoms, molecules, or materials and
become important in determining the chemistry and
physics of nanoparticle properties [1]. The effects due to
quantum confinement, relevant to the size reaching
nanoscale, make its electronic structures highly different
compared with bulk materials. Such effects lead to discrete
energy levels rather than continuous bands, thereby
influencing the optical, electrical, and magnetic properties
of nanoparticles [2]. Such wunique properties make
nanoparticles essential in various applications, including
catalysis, where they enhance reaction rates; electronics,
where they enable faster and more efficient devices, and
medicine, where they aid in targeted drug delivery and
imaging. Understanding and controlling the electronic
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structures of nanoparticles thus leads to the development
of advanced materials with tailored properties suited for
specific applications [3]. Prediction of electronic structures
is a highly challenging problem and largely stems from the
quantum mechanical computation involved. This would
require a solution to many interacting electrons in solving
Schrodinger's equation with increasing system size [4].
The difficulty related to electron-electron correlations and
high levels of accuracy required to determine the wave
functions and their density are the difficulties related to
increasing complexity [5]. There are only approximations,
and usually fail in systems with important electron
correlations or excited states. With advanced
computational methods, large molecules or materials, and
much computing time, electronic structure predictions can
be made very accurate; this remains an exciting but
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difficult challenge area in materials science and quantum
chemistry [6]. Al significantly improves and simplifies the
electronic structure prediction through wusing more
complex algorithms that can analyze large datasets and
optimize computations. Deep learning (DL) and neural
network (NN) are among the best ML models in pattern
recognition in large data sets, which facilitates better and
more efficient prediction of electronic structures [7]. This
accelerates traditionally resource-intensive methods, such
as density functional theory (DFT), by predicting
properties, such as electronic density and energy states
with similar precision but at a significantly lower
computational cost [8]. Al models also have the ability to
generalize from vast libraries of known structures, making
them proficient at predicting properties for new or complex
materials where experimental data can be scarce [9]. This
efficiency supports the fast discovery in fields, such as
material science and quantum computing allows faster
innovation with fewer time and resources [10]. The
purpose of this study is to develop and apply Al techniques
for predicting an accurate electronic structure of
nanoparticles. The task is accomplished with the help of
Al algorithms by streamlining traditionally very complex,
computationally intensive processes traditionally required
for electronic structure calculations.

2. RELATED WORKS

An early technique for identifying the form of
nanoparticles' metal cores four alternative supervised
artificial neural network (ANNs) [11] were trained,
evaluated, and applied to a difficult dataset. The use two
structural descriptors: Radial Distribution Functions
(RDF) and Coulomb Matrices (CM). Nano architectonics is
a new type of nanomaterial with self-assembled atoms and
distinctive characteristics. Nano architectonics has
potential uses in catalysis, solar energy storage, water and
wastewater treatment, sensing, fuel cells, medicines, and
medication delivery, among other fields [12]. An ANN [13]
is a wide approach for forecasting a rather generic
characteristic, and in a few configurations presented, the
total energy of any gold nanoparticles is rectified using an
embedded atom potential and the self-consistent charge
density functional bounding method. As AI technology
progresses, it plays a growing role in material science and
engineering (MSE) [14]. High-performance computing
allows for testing deep learning (DL) models with large
parameters, overcoming the limitations of previous
approaches like DFT in property prediction. Nanoparticles
have unique features that make them indispensable in
optoelectronic sensing, medicinal treatment, material
science, and chemical applications. Nanoparticles can be
created using many synthetic methods, each with unique
features [15]. Al technology can handle complex tasks with
human-like skill. Al breakthroughs have a significant
impact on ML, which is used to solve a variety of
challenges, including nanotechnology.
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3. METHODS AND MATERIALS

The method includes data preprocessing with z-score
normalization and feature extraction using LDA, which
increases model sensitivity to tiny electrical oscillations.
The ATSO-GNN model was trained on structural data
from Kaggle's nanoparticles dataset.
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3.1 Data Collection

The dataset was collected from an open source Kaggle
website((https://www.kaggle.com/datasets/ziya07/nanopa
rticle-electronic-structure/data) dataset features
structural and atomic properties of nanoparticles,
including atom count (19-140 atoms), structure type
(cuboctahedral, icosahedral, or cubic), atomic number
(noble metals like Pt or Au), electronegativity (2.0-3.0),
atomic radius (in A), and melting point (in Kelvin).
Additionally, it includes 50 principal components (dos_pcl
to dos_pc50) from PCA-transformed synthetic density of
states (DOS) data, condensed from 3000 levels to capture
key electronic variations.

3.2 Data Preprocessing z-score

Normalization

Using

In the electronic structures of nanoparticles, z-score
normalization is a common data preprocessing technique
applied to standardize the dataset by centering the values
on zero with unit variance. This process helps in
enhancing the model's sensitivity to subtle variations in
electronic properties by removing scale biases and
facilitating more accurate analysis of nanoscale behavior.
This is very crucial for proper comparison and analysis of
data, especially in electronic structures in nanoparticles
studies where standardization is crucial in carrying out an
accurate examination of electronic behavior across varied
sample conditions in equation (1).

P=y-~ 1)

This paper will enhance logistics distribution through
the use of a statistical method that employs standard
deviation and mean to measure performance indices, thus
contributing to better insight into the effect of electronic
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structures on the efficiency and effectiveness of
nanoparticles logistics in equation (2).

o=\E¥-Y)/0) @)

To analyze the comprehensive dataset, including
standard deviation, mean, and frequency, to assess the
impact of electronic structures in nanoparticles on the
global market for products and services. This analysis
aims to derive insights into supplier performance and
product distribution trends, contributing to a deeper
understanding of logistics efficiency and its correlation
with electronic properties in nanomaterials. This objective
aligns the data analysis aspect with the broader context of
electronic structures in nanoparticles, potentially
exploring how these materials influence market dynamics.

3.3 Feature Extraction Using Linear Discriminant
Analysis (LDA)

Exploring electronic structures in the nanoparticles
permits the feature extraction of unique quantum and
physical properties of nanoscale material. LDA applied to
these structures permits the small dissimilarities between
the nanoscale particles to be identified. It increases the
efficiency of classification in materials analysis. The
electronic feature separation is maximized by LDA. Given
a set of independent data attributes, LDA generates a
linear combination that optimizes the average variation
between the intended classes. Two key measures are
defined in LDA, with one being the within-class scatter
matrix, given by equation (3).

Sw =2k, S0 (w) — ) (W) — pp)® (3)

Where W]-i is the i*"sample of class j, y; is the denote of
classj,d is the numeral of classes, and y; is the numeral of
sample in class j. Additionally, the among-class distribute
matrix can be calculated using equation (4).

Where urepresent the denote of all classes.
Sb = %L, (u — W — )’ 4

3.4 Predicting Electronic Structures in
Nanoparticles Using Adaptive Tunicate Swarm
Optimized Graph Neural Network (ATSO-GNN)

In these nanoparticles, the electronic structures play a
crucial role in enhancing the capabilities of adaptive
algorithms. These features, in this Adaptive Tunicate
Swarm Optimized Graph Neural Network (ATSO-GNN),
enhance the ability of the model to catch intricate
interactions and patterns at the nanoscale level. This
approach holds huge promise towards the development of
nanotechnology applications, particularly in material and
biomedical fields.

3.4.1. Graph Neural Network (GNN)

GNN is very useful for the study of electronic
structures 1in nanoparticles because it captures

complicated relationships between atoms efficiently.
Letting the nanoparticle structure be graph-based, where
nodes are atoms and edges represent bonds, GNN can
predict properties like electronic density, energy states,
and distribution of charge. The second step involves a
formal aggregate operation. This simple type of GNN has
a constant message carrying function, and the aggregation
is simply adding all of the information that the neighbor
passes onto it for summarization. It is not difficult to see
that can improve GNN performance in at least three ways:
picking strategy, aggregating function, and stacking
layers. For example, if the relevance of neighbors to the
center node varies, they can apply the attention
mechanism at the first step of the aggregate function can
offer a general formulation of GNN equation (5).

952: = Update (Aggregate (gf,l_l),‘v’v €

O] ® @
M(v)}'xagg)’gin’XUpdate) (5)

The terms 91'(1? and gggt refer to the effort and
modernized node embedding at the ["coating,
respectively. The embeddings of neighbors from the
preceding layer are represented by gl(,l_l) and u. XY and

agg
1 . .. . .
X 1(113 datele€PrEsent trainable matrix in collective and inform

functions at the " layer, respectively. Xz(zl;);aate update

refers to the trainable parameters of the [*" layer in neural
networks following the collective function. Figure 2 depicts
the overall structure of GNN.

Graph neural network

Neural
networks

Activation Updated

1 A o
. ’I'} N

Fig. 2 — Structure of GNN

Electronic Structures in Nanoparticles: A generic and
simple GNN structure and processing mechanism. First,
GNN chooses neighbors using a predetermined strategy.
Then, GNN uses an aggregated function to retrieve
information about a central node. Finally, the aggregated
data is passed to a neural network, which performs the
nonlinear transformation. The final result is the modified
central node description in equation (6).

9y = o([B.AGG ({g! Pvv e M®)}), 408V (©)

Where gl(,l) and g,(f_l)represents node v at
presentcoatingl and preceding coating(l — 1), respectively.
Furthermore, g,gl_l) represents the node embeddings of
nodes of the neighbors from the preceding layer. 4;and B;
represent the trainable weight matrices. orepresents a
quadratic function of activation. To createg,(,l_l)v, follow
these procedures. To begin, each node uses the aggregator
to aggregate features from its immediate neighborhood
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into a single vector, M(v). After aggregating neighbor
features, Graph concatenates the node's prior
representation with its neighborhood feature vector. The
concatenated vector is sent through a multi-layer
perceptron (MLP) with rectified linear unit (ReLU)
activation function, resulting in a new representation of
the node. A graph learning job is an optimization problem,
similar to supervised learning where input w is supplied
and label z is predicted in equation (7).

minK(z, e(w))
z )

To optimize a set of parameters © and use a loss
function (L). The GNN function (f) can be quite
complicated. F generates node predictions as its output.
The objective is to minimize the loss between predicted
and real labels.

3.4.2 Adaptive Tunicate
(ATSO)

Swarm Optimization

The electronic structures in nanoparticles with ATSO
is introduced via a new searching equation, which
improves the exploitation ability for resolving large-scale
problems and aversion to trap into a local optimum. The
key steps of the ATSO are as follows.In the context of
electronic structures in nanoparticles, the algorithm
begins with

Step 1: The algorithm parameters, such as the increasing
number of generations T and inhabitant’sdimension, are
set. ATSO then randomly positioned within the
investigate space.

Step 2: Then, every tunicate is evaluated using the fitness
function.

Step 3: In the development phase, the focus is on
enhancing the ATSO's search process. A dynamic
perturbation is introduced to sharpen the exploitation
pattern and to explore nearby solutions with the search
area. The search equation is modified so that each position
experiences a dynamic step change, retaining its place if it
produces an improved result. This method allows for
continuous updating of the search space boundaries, with
the new ATSO position specified in equation (8).

Opop(s = 1) = 0,0, (s) + rand* xg (8)

For electronic structures in nanoparticles, the
optimization process involves a dynamic step reduction to
enhance the focus on neighborhood searching, thereby

improving exploitation capabilities. This can be
represented in equation (9):
a=0xa;+(1-0)Xa, 9

_ The study of electronic structures in nanoparticles,
Opop represents a random variable (RV) following a
uniform distribution between 0 and 1, witha; and a,
defining the dynamic bounds, calculated as shown in
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equation (10).
a; = min(apop), a, = max (Opp) (10)

Step 4: Updating phase: In this phase, the tunicate swarm
is refined to the standard ATSO method using equation
(10). This process enables the tunicates to explore different
areas with the search space, boosting their exploratory
potential. Subsequently, the fitness of each tunicate is
evaluated to determine and update the current optimal
solution.

Step 5: Steps two to four could be repeated if the
termination criterion is met. Equation (9) enhances
exploration by allowing examination of additional areas
with the search region, especially in the study of electronic
structures in nanoparticles. Equation (10), is valuable for
concentrating on promising regions, thus supporting
exploitation. This approach establishes a balance between
exploration and exploitation, helping to prevent
entrapment in local optima.

4. RESULT AND DISCUSSION

Utilizing Al in predicting electronic structures in
nanoparticles improves the efficiency and accuracy of
computations in the rapid discovery and optimization of
new materials. The approach used the electronic
properties of materials in fields like nanotechnology,
electronics, and catalysis. An Intel 16 GB of DDR4 RAM,
Xeon E3-1230v5 CPU, and an NVIDIA Quadro K420
discrete graphics card power the system. It also has a 1'TB
SSD, guaranteeing express and successful storage.
Comparison of our proposed method with the standard
approaches, such as metrics of R?, MAE, and computation
time.

4.1 R-Square

In the context of predicting electronic structures in
nanoparticles using statistical modeling, an R-squared
(R?) value indicates the amount of the variation in the
dependent variable can be explained by its separate
factors. A good proportion of the variance in the electronic

[[7] ATSO-GNN [Proposed]
[ standard Method

Number of Atoms

Fig. 3 — Analysis of R2
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Fig. 4 — Analysis of MAE

structures can be accounted for the model if the R? value
is close to 1, thus, a good fit. On the contrary, if the R?
value approaches 0, then it means that the model cannot
explain the variation and the modeling techniques require
improvement or more relevant features are required to be
added. Fig. 3 displays the result of R2.

4.2 MAE
The Mean Absolute Error (MAE), a statistical metric
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3acTocyBaHHSI METOIB IIITYYHOTO 1HTEJIEKTY JJIsI IMPOTHO3YBAHHS €JEKTPOHHUX CTPYKTYD HAHOYACTHHOK €
CKJIQJIHUM 3aBIAHHAM, sSKe TPAIWUI[IAHO 3aJIeKUTh BIJ KBAHTOBO-MEXAHIYHUX PO3PAXYHKIB. YHIKAJIBHIL
BJIACTHBOCTI HAHOYACTHHOK, 3yMOBJIEHI edeKTaMy KBAHTOBOTO OOMEIKEeHHS Ha HAHOPIBHI, MAIOTh BUPINIAJIbHE
3HAYEHHS B TAKUX Tajy3sx, SIK KaTaJl3, eJIEKTPOHIKA Ta MeIUITNHA. Y JOCIIPKeHH] BUKOPUCTOBYIOThCS TIePeoBl
00UMCITIOBAIBHI  MOJIENIl, 30KpeMa aJalTHUBHI HEeWPOHHI Mepeski 3 ONTHMI30BAHUM Trpad)iuyHUM MEeTOI0OM
amanruBHOro powo TyHikariB (ATSO-GNN), m1a TOYHOTO MPOrHO3YBAHHSA €JIEKTPOHHOI T'YCTUHU, €HEePreTUYHUX
CTaHIB Ta IHITUX BJIACTABOCTEN HAHOYACTHHOK. [liIXim BKJIIOYAE IOMEepeHi0 00pOOKYy MaHWX 3 HOPMAJII3allielo
Z-OIlIHKY Ta BUJIYYEHHS 03HAK 3 BUKOPUCTAHHIM JIIHIAHOTO nucKkpuMinanTHoro anaimidy (LDA), askuit mokparye
YYTIIMBICTH MOJEJIL IO He3HAUYHUX eJIeKTpuuHuX KosmBaub. Mogens ATSO-GNN, HaBuyeHa Ha CTPYKTYPHUX JTAHUX
3 HAbOPY JTaHUX IIPO HAHOYACTUHKM, JeMOHCTPY€E SHAYHI MOKPAIITEHHS TOYHOCTI Ta 00UMCITI0OBATIBHOI e(DeKTHBHOCTI
TOPIBHSHO 3 TPAJUINIHHUMU METOJaMU, TAKUME AK Teopid dyukriionany rycruau (DFT). PeaymsraTu mokasyors,
mo me# maxin edgeKTUBHO (QIiKCye CKIIAIHI aTOMHI B3a€MOIIl, 10 POOHUTH HOTO I[IHHUM JJIsI 3aCTOCYBAHHS B
MaTepiaJIO3HABCTBI Ta HAHOTEXHOJIOTIAX, Jie IBUIKI Ta TOYHI MPOTHO3U €JIEKTPOHHOI CTPYKTYPH € BAYKJIUBUMHU.
IopiBusamo 3i cramgaprauvu meromamu, moaedb ATSO-GNN mpomonye Bummit R2 (0,95), Huxuy cepemHio
abcomorny moxubky (MAE) (0,2) ta ropormmit uac obuwmcienus (1,5), 1mo mokparnye mporHodyBauus. lle
JTOCJTIIPKEHHS IEMOHCTPYE, SIK METOIU Ha OCHOBI IITYYHOTO 1HTEJIEKTY 3HAYHO ITOKPATIIYIOTh MIBUIKICTD 1 TOUHICTH
IIPOTHO3YBAHHS €JIEKTPOHHOI CTPYKTYPH.

KimrouoBi cnoma: Hamouacruuru, [IpormHosyBanHst eslekTpoHHOI cTpykTypy, Mamwmubae HaB4yanHs, Teopis
dyurmionany rycrunn, Hanorexsosorii.
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