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This study investigates the synthesis and application of manganese-associated graphene oxide (Mn-GO)
nanosheets for efficient water contamination removal. Mn-GO nanosheets were prepared by integrating
manganese ions onto graphene oxide (GO) via a modified chemical reduction method, enhancing the mate-
rial’s adsorptive and catalytic properties. The objective was to evaluate Mn-GO’s ability to remove heavy
metals (e.g., lead, cadmium), organic dyes (e.g., methylene blue), and other contaminants from aqueous so-
lutions by batch adsorption method. Characterization using X-ray diffraction (XRD), scanning electron mi-
croscopy (SEM), and BET analysis confirmed Mn-GO’s high surface area, porosity, and structural integrity,
key factors contributing to its superior adsorption capacity. Adsorption experiments demonstrated that Mn-
GO exhibited a high removal efficiency, achieving up to 95 % adsorption for certain contaminants under
optimized conditions. Kinetic and isotherm models indicated favorable adsorption processes, with Mn ions
providing additional catalytic effects, enhancing contaminant breakdown and binding. Mn-GO nanosheets
also showed excellent stability and reusability over multiple adsorption-desorption cycles, making them a
sustainable option for water purification. This study concludes that Mn-GO nanosheets offer a promising,
scalable solution for efficient water decontamination, with potential applications in environmental manage-
ment and industrial wastewater treatment. Further research will focus on optimizing synthesis and exam-
ining Mn-GO performance with real wastewater samples for broader practical applications.
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1. INTRODUCTION

Water pollution is a persistent global issue, with sig-
nificant environmental and public health implications [1].
Industrial waste, a primary source of pollution, often con-
tains high concentrations of hazardous contaminants like
heavy metals (e.g., lead, cadmium) and organic dyes (e.g.,
methylene blue) [2]. Heavy metals, due to their toxicity
and non-biodegradable nature, accumulate in ecosys-
tems, causing detrimental effects on aquatic life and en-
tering the food chain, which poses severe health risks to
humans, including neurological and organ damage [3].
Similarly, organic dyes contribute to environmental deg-
radation by reducing sunlight penetration in water bod-
ies, disrupting aquatic ecosystems, and exhibiting toxic,
mutagenic, and carcinogenic properties [4]. The increas-
ing discharge of these contaminants from industrial
sources such as textile, mining, and chemical manufac-
turing plants calls for effective and sustainable treatment
methods [5]. Various traditional water treatment meth-
ods — such as precipitation, ion exchange, coagulation,
and membrane filtration — have been employed for con-
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taminant removal [6]. However, these methods often suf-
fer from limitations, including high operational costs,
complex handling, and limited selectivity towards specific
contaminants [7]. For example, precipitation methods
may generate a large amount of sludge, while membrane
processes can be costly and prone to fouling [8].

Additionally, many conventional techniques have re-
stricted efficiency in removing low-concentration pollu-
tants, which further underscores the need for alterna-
tive, efficient, and environmentally friendly approaches.
Nanomaterials have emerged as promising solutions in
this context due to their high surface area, tunable sur-
face chemistry, and functional versatility [9]. Among
them, graphene oxide (GO) has garnered significant at-
tention owing to its exceptional adsorption properties
[10]. GO’s abundant oxygen-containing functional
groups (e.g., hydroxyl, carboxyl) enable strong interac-
tions with a wide range of contaminants, enhancing its
capability for water purification [11]. Meanwhile, man-
ganese (Mn), a transition metal with catalytic activity,
has shown potential in oxidative degradation and re-
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moval of pollutants. Integrating Mn with GO is hypoth-
esized to synergistically enhance the adsorption and cat-
alytic degradation capabilities, making manganese-as-
sociated graphene oxide (Mn-GO) a highly effective ma-
terial for water treatment [12]. The objective of this
study is to evaluate the performance of Mn-GO
nanosheets in removing heavy metals and organic dyes
from water, employing the batch adsorption method.
The study specifically aims to assess the removal effi-
ciency, adsorption kinetics, and interaction mechanisms
underlying the removal process. By investigating how
Mn-GO interacts with contaminants at the molecular
level, this study seeks to elucidate the dual role of GO in
adsorption and Mn in catalysis, potentially providing in-
sights into the development of efficient, cost-effective,
and sustainable water purification technologies. This re-
search could pave the way for novel applications of Mn-
GO composites in environmental remediation, offering a
viable alternative to conventional treatment methods.

2. METHODOLOGY
2.1 Synthesis of Mn-GO Nanosheets

The Mn-GO nanosheets were synthesized by first
preparing graphene oxide (GO) through the Hummers'
method, which involves oxidizing graphite with potas-
sium permanganate (KMnQy4) in a sulfuric acid medium.
This oxidation process introduces oxygen-containing
functional groups like hydroxyl, carboxyl, and epoxy
onto the surface of GO, providing reactive sites for fur-
ther functionalization. Next, GO was dispersed in water
and mixed with a manganese salt solution (manganese
chloride) under continuous stirring to allow manganese
ions to interact with the GO. To facilitate the binding of
manganese ions onto the functional groups of GO, a mild
reducing agent, sodium borohydride, was added. The re-
duction helps to stabilize the manganese ions on the GO
surface, forming Mn-GO nanosheets. Key parameters
such as the manganese loading and pH during synthesis
were optimized to improve adsorption sites and catalytic
activity, enhancing the material's performance for pollu-
tant removal through a combined adsorption-catalysis
mechanism.

2.2 Characterization

Characterization of Mn-GO nanosheets involves tech-
niques like X-ray diffraction (XRD) to analyze the crystal-
line structure and confirm both GO and manganese pres-
ence. Scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM) reveal the layered mor-
phology of GO and the uniform dispersion of manganese
particles on its surface. Fourier-transform infrared spec-
troscopy (FTIR) confirms the bonding of manganese ions
with GO’s oxygen-containing groups. Surface area and po-
rosity are assessed using Brunauer-Emmett-Teller (BET)
analysis, where a high surface area and porosity indicate
more active adsorption sites, enhancing Mn-GO’s pollutant
removal efficiency in water.

2.3 Adsorption Experiments

Adsorption experiments begin with the preparation of
solutions containing known concentrations of heavy metals
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(e.g., lead (Pb2*), cadmium (Cd2*")) and organic dyes (e.g.,
methylene blue) to serve as adsorbates. The experimental
procedure is conducted under controlled conditions, typi-
cally at a pH range of 5-7, which is optimal for contaminant
removal, and at a constant temperature (e.g., 25 °C). The
contact time between Mn-GO nanosheets and the adsorb-
ates is varied (e.g., 30 to 180 minutes) to assess the adsorp-
tion kinetics. The batch adsorption process is employed,
where a fixed amount of Mn-GO is mixed with the adsorb-
ate solutions, allowing the evaluation of adsorption capac-
ity and efficiency through analysis of residual concentra-
tions post-experiment.

3. RESULTS AND DISCUSSION
3.1 Characterization Results

The characterization of Mn-GO nanosheets reveals
significant insights into their structure and composition.
The X-ray diffraction (XRD) analysis shows distinct
peaks corresponding to the (002) plane of graphene ox-
ide, indicating successful oxidation of graphite. Addi-
tionally, the presence of peaks associated with manga-
nese oxides confirms the successful incorporation of
manganese ions into the GO structure. Scanning elec-
tron microscopy (SEM) images illustrate the layered
structure of GO, with the manganese particles uni-
formly distributed on the nanosheet surface, enhancing
its functional properties. Transmission electron micros-
copy (TEM) further corroborates these findings, demon-
strating the thin, transparent morphology of the Mn-GO
nanosheets and providing clear evidence of manganese's
presence through contrast differences. Brunauer-Em-
mett-Teller (BET) analysis reveals a high specific sur-
face area of Mn-GO, exceeding 300 m?/g, indicating a
substantial increase in porosity compared to pure gra-
phene oxide. This enhanced surface area contributes to
a higher adsorption capacity, allowing for greater inter-
action between the nanosheets and contaminants, which
is crucial for effective pollutant removal. This enhanced
surface area contributes to a higher adsorption capacity,
allowing for greater interaction between the nanosheets
and contaminants, which is crucial for effective pollu-
tant removal.
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Fig. 1 — XRD image of graphene oxide (GO)
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Fig. 2 — EDX elemental analysis of manganese-associated gra-
phene oxide

3.2 Adsorption Efficiency

The Mn-GO nanosheets exhibit exceptional adsorp-
tion efficiency, achieving over 80 % removal of Pb2* and
62 % of Cd%* ions within 120 minutes and over 90 % re-
moval of methylene blue under optimal pH 6.1 condi-
tions (Fig. 5). Compared to pristine graphene oxide and
activated carbon, Mn-GO demonstrates superior perfor-
mance due to the incorporation of manganese, which en-
hances the availability of active sites and facilitates pol-
lutant oxidation, thereby improving removal efficiency.
Batch adsorption studies using synthetic wastewater
containing individual heavy metals (Pb2*, Cu?*, Cd?*,
Ni2*, and Cr6*) at 10 mg/L, as well as a combined solu-
tion of the same concentration, were conducted with
10 mg of adsorbent in 50 mL solution at pH 6 and 293 K
for 120 minutes. Equilibrium adsorption isotherm ex-
periments were performed for Cu?* and Cd?* at pH 6.1
with adsorbent dosages of 10 mg, and initial adsorbate
concentrations ranging from 5 to 75 mg/L. Adsorption
capacity (qe) was calculated using the formula

(CO - Ce) x

14
w

qe =

Fig. 3 — TEM image of Mn-GO nanosheets
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where Co and C. are the initial and equilibrium concen-
trations of the metal ions, V is the solution volume, and
W is the adsorbent weight. The results, presented in Ta-
ble 1 and Figure 1, highlight the Mn-GO composite's sig-
nificant capacity for metal ion adsorption. This demon-
strates its potential for practical applications in treating
synthetic wastewater and removing heavy metal con-
taminants efficiently.

Fig. 4 - SEM image of Mn-GO nanosheets
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Fig. 5 — Study of “maximum adsorption capacity” estimation

Table 1 — Summarizes the surface adsorption study for heavy
metal contaminants and dye removal rates using Mn-GO
nanosheets

Contam- [Mn-GO |Co (mg [Ce(mg |ge(mg |[% Re- Ce (mg ge(mg L-1)
inant dose L-)1In-|L-1) g-1) Ad- [moval [L-1)Syn- |Synthetic
(mg) itial Equilib- [sorption thetic in-  [industrial
Concen- |rium capacity dustrial wastewater
tration |Concen- wastewater
tration
Lead
(Pb2) 10 10 2.0 40.0 80 2.4 37.6
Cad-
mium 10 10 3.8 31.0 62 5.1 24.5
(Cd2)
Copper
(Cuz) 10 10 2.6 37.0 74 4.8 26
Nickel
(Ni2') 10 10 7.6 12.0 24 8.3 8.5
Chro-
mium 10 10 9.2 4.0 8 9.5 2.5
(Cr6)
Meth-
ylene 10 10 1.0 45.0 90 1.5 42.5
Blue
Com- 10 10 5.5 22.5 55 6.0 20.0
bined
Solution
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3.3 Mechanism of Adsorption and Catalysis

Manganese plays a crucial role in both adsorption
and catalytic oxidation processes [14]. Its affinity for
binding with contaminants enhances the adsorption ca-
pacity of Mn-GO, enabling efficient interaction with
heavy metals and organic dyes [15]. The oxidation state
of manganese facilitates catalytic reactions, promoting
the degradation of organic pollutants [16]. The interac-
tion between Mn-GO and contaminants occurs through
both chemical and physical mechanisms. The oxygen-
containing functional groups on the GO surface facili-
tate electrostatic interactions with cationic heavy met-
als and dye molecules. Furthermore, 7-7 stacking inter-
actions between the aromatic rings of organic dyes and
the graphene structure contribute to enhanced adsorp-
tion. These synergistic interactions lead to effective pol-
lutant capture and degradation.

3.4 Reusability and Stability

Reusability experiments demonstrate the stability of
Mn-GO nanosheets over multiple adsorption cycles. Af-
ter five consecutive cycles, the adsorption efficiency re-
mains above 85 % for both heavy metals and organic
dyes, indicating minimal loss of effectiveness. The sta-
bility of Mn-GO can be attributed to the strong bonding
of manganese ions and the robust structure of graphene
oxide [17]. Additionally, degradation studies reveal that
Mn-GO maintains its structural integrity and adsorp-
tion capacity even after prolonged exposure to contami-
nants. These findings underscore the potential of Mn-
GO as a sustainable and effective adsorbent for
wastewater treatment applications, with long-term usa-
bility in real-world scenarios [18].

4. ENVIRONMENTAL AND ECONOMIC
IMPLICATIONS

Manganese-associated graphene oxide (Mn-GO)
nanosheets significantly advance sustainable water pu-
rification technologies [19]. Their high adsorption effi-
ciency for heavy metals and organic dyes mitigates the
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Ie mocomimpxeHHs TOCTIIIKYE CHHTE3 Ta 3aCTOCYBAHHSA HAHOJIUCTIB okcuy rpadeny (Mn-GO), mos'sa3amoro
3 Maprasriiem, JJist e)eKTUBHOTO BUAAJIEHHS 3a0pyauens 3 Boau. Hauomueru Mn-GO Oysu oTpuMani miisxom
iHTerparnii ioHiB Maprasifo B okcuz rpadeny (GO) 3a mormomorowo Movdik0oBaHOIO METOLY XIMIYHOTO BIJTHO-
BJIGHHS, 1110 TIOKPAIILY€E aacoOPOIiiHi Ta KaTaJITHYHI BJIaCTHBOCTI MaTepiany. MeTo 6yJjio OIiHUTHA 3TaTHICTD
Mn-GO BupanaTu BasKKi MeTa u (HAIIPUKIAJI, CBUHEIlb, KaIMil), OpraHiudi 0apBHUKY (HATIPUKJIAJ, METHJIE-
HOBUI CHHIN) Ta 1HIM 3a0pyJHIOBAYl 3 BOJHHUX PO3UYMHIB METOOM IIaKeTHOI ajcopbiiii. Xapakrepucruka 3a
JI0IIOMOT010 perTreHiBebkol mudparirii (XRD), ckanyouoi esexrporHoi Mikpockormrii (SEM) ta BET -anasmiay
MATBEpAUIIa BUCOKY ILIOILY HMOBEPXHI, IIOPUCTICTH T CTPYKTYpHY IitickicTs Mn-GO, kiouosi dakropw, 1mo
CIIPUSAIOTH WOTO Yy 0B aacopOIiitHii smaTHocTi. ExciepumenTn 3 afgcop6irii mokasasu, mo Mn-GO gemomnc-
Tpy€e BUCOKY e()eKTUBHICTh BUIAICHHS, JOCATAIOUH 10 95% amcopOIril 1J1s MeBHUX 3a0pyIHIOBAYIB 38 OIITUMI-
3oBaHux ymoB. Kimernuni Ta i3oTepMmiuHi MoJeJl BKa3yBaJyd Ha CIPHUSTJIMBL IIPOIECH aJICOPOILI, IIPUIOMY
ioun Mn 3a0e3medyoTh 101aTKOBI KaTATITUYHI e(DEeKTH, TOCUIIOIYN POSIIEIJICHHS Ta 3B'I3yBaHHA 3a0pyI-
roBauiB. Hanosmmeru Mn-GO Tarosk 1IpoieMOHCTPYBAJIX Y4y I0BY CTA0LIBHICTE TA MOKJIINBICTD IIOBTOPHOI'O BU-
KOPHMCTAHHSA MPOTATOM KLIBKOX ITUKJIB a1copOIrii-TecopOiril, o poOUTh iX CTAJIUM BAPiaHTOM JJIA OUMIIEHHS
Boxu. Lle mocoimskerHs: poOUTh BUCHOBOK, 1110 HaHoaucTu Mn-GO npomnoHyo0Th IepCIeKTUBHE, MACIITA00BAHE
pillleHHS 11 e(peKTUBHOTO OYNIIEHHS BOJYU 3 MOTEHIIINHUM 3aCTOCYBAHHIM B YIIPABJIIHHI HABKOJIUIIHIM ce-
PEeIOBHUINEM Ta OYHUIIEHH] ITIPOMUCIOBUX CTIYHHUX BOJ. [logasbini qoCIiaKeHHa OyAyTh 30CepeIsKeH] Ha OITH-
Misariii cuHTedy Ta BuB4YeHHI edperkTrBHOCTI MNn-GO 3 peasbHUMU 3paskaMu CTIYHUX BOJI JJIs IIAPIIOTO IIPAK-
TUYHOTO 3aCTOCYBAHHSI.

Knouosi cnosa: Oxcun rpadeny, mos'ssanuii 3 MmapraumeM, 3a0pyaHeHHs Bomgu, Hawmommer, Axcop0iris,
Baskri metasu, BigHoBIIeHHS HABKOJIMIIHBOTO CEPEOBUIIA.
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