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This study conducts a detailed CFD analysis of the thermo-hydraulic performance of a Mini Channel
Heat Sink (MCHS) cooled using a ternary hybrid nanofluid comprising Fes04, Al2Os, and ZnO nanoparti-
cles dispersed in water. The thermophysical properties of the nanofluid are derived from experimentally
developed correlations. The effects of volume fraction and Reynolds number on heat transfer and pressure
drop were investigated. Furthermore magnetic field effect on the Ternary nanofluid is also discussed. Re-
sults indicate that the ternary nanofluid significantly enhances heat dissipation but increases viscosity
and pressure drop due to nanoparticle dispersion, particularly at higher Reynolds numbers. The applica-
tion of a magnetic field further improves heat transfer with minimal additional pressure drop. The study
found that at a Reynolds number of 1900, the Nusselt number increased by 15 %, 25 %, 36 %, and 46 % for
volume fractions of 0.5 %, 0.75 %, 1 %, and 1.25 %, respectively, compared to water. Similarly, the pressure
drop was higher by 22 %, 44 %, 112 %, and 218 % for the same volume fractions. These findings highlight

the potential of ternary hybrid nanofluids in optimizing thermal performance in MCHSs.
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1. INTRODUCTION

Advances in microscale electronics have led to ul-
trahigh heat fluxes, making efficient cooling crucial for
proper device functionality. Conventional coolants like
water, ethylene glycol, and oils have low thermal con-
ductivity, limiting their heat transfer capabilities. To
address this, researchers have developed nanofluids by
dispersing nanoparticles into conventional coolants,
significantly enhancing their thermal conductivity and
heat transfer performance. MCHS are compact heat
exchangers designed to efficiently handle ultrahigh
heat fluxes in small spaces [1-2]. Monodisperse
nanofluids have certain limitations, leading to the de-
velopment of binary nanofluids, which offer improved
stability and higher thermal conductivity. Recently,
researchers have advanced to ternary nanofluids,
which outperform binary nanofluids in these aspects
[3]. Studies also highlight the potential for heat trans-
fer enhancement using magnetic fields [4-6]. Uysal et
al. [7] studied a diamond/Fe;O. hybrid nanofluid in a
minichannel heat sink, finding a 29.96 % heat transfer
improvement at Re = 1000. The hybrid nanofluid out-
performed mono nanofluids but caused a higher pres-
sure drop. Souby et al. [8] investigated a MCHS using a
ternary nanofluid. Their findings concluded that hybrid
nanofluids offer greater potential as heat transfer flu-
ids compared to conventional ones like water. Specifi-
cally, the CuO/MgO/TiOz-water ternary hybrid (TNF)
nanofluid demonstrated superior heat transfer efficien-
cy compared to the MgO/TiOz-water binary hybrid
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nanofluid. Bhattacharjee et al. [9] worked with mini-
channel cooling in Solar PV panels. They reported that
heat transfer enhancement was significantly influenced
by magnetic field intensity and placement. The study
on Fe304TiO2 nanofluid showed a 230 % increase in
the Nusselt number and a 133 % rise in the friction
factor under a 2000 G magnetic field with magnets
placed at specific intervals. These findings highlight
the importance of magnetic field optimization. Another
study revealed that, Fe304-TiO2/water nanofluids in a
MCHS showed improved heat transfer but increased
the friction factor by 25.87 % without a magnetic field
(MF) and 67.64 % with a 1000 G magnetic field at Re =
1873.33 [10].

This literature review highlights the widespread
use of MCHS for effective heat removal from electronic
devices and the enhanced heat transfer achieved with
ternary nanofluids. Additionally, applying a magnetic
field significantly boosts heat transfer. However, the
impact of a transverse magnetic field on three-
dimensional laminar flow and heat transfer in an
MCHS using a ternary nanofluid remains underex-
plored. This study aims to fill this gap, considering the
potential influence of magnetic fields generated by elec-
trical components or materials. The research utilizes a
Fe304/A1203/ZnO-water TNF with volume fractions
from 0.5 % to 1.25% and Reynolds numbers ranging
from 500 to 1900.
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2. COMPUTATIONAL MODEL
2.1 Geometry

The geometry of the heat sink is adopted from the
work of Sundar et al. [10] The heat sink was construct-
ed using a squared aluminum block with dimensions of
50 mm X 50 mm X 10 mm. It is segmented into four
circular channels, each with an interior diameter of
4 mm. A uniform magnetic field was employed perpen-
dicular to the heat sink, while a consistent heat flux of
64,000 W/m? was imposed on its bottom surface. The
heat sink is subjected to 500 and 1000G magnetic field.
Moreover, the computational domain can be reduced to
a single microchannel because of the micro channel’s
symmetry [8].
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Fig. 1 — Schematic diagram of heat sink

2.2 Governing Equation

The study makes several key assumptions about the
operating conditions of the heat sink: it is under
steady-state conditions, single phase fluid and the out-
er walls are adiabatic. The analysis focuses on three-
dimensional, incompressible, laminar flow. The govern-
ing equations are as follows [11-12].

Vov=0aqw
(ﬁoV)\7=le+VV2\7+l(ij) 2
P P

(VoV)T =aAT 3)

The continuity, momentum, and energy equations
are outlined, with J and B defined as the current densi-
ty and magnetic flux, respectively. To solve the above
mentioned equation finite volume method is used along
with SIMPLE algorithm. The convergence criteria for
all the field equations have been set at ~ 10-¢. Velocity
is fixed by the Reynolds Number. Pressure Outlet
Boundary condition is used.

3. TERNARY NANOFLUID THERMOPHYSICAL
PROPERTIES

Adun et al. [13-14] synthesis this Fes04/Al203/Zn0O-
water ternary nanofluid. In this study, the amount of
nanoparticles remains consistent throughout. Density
and electrical conductivity [15] are calculated using
equations (7) and (8), while viscosity, thermal conductiv-
ity, and specific heat capacity are determined based on
the correlations proposed by Adun et al.[13-14]
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In Eq (5) Mg is the ratio of the Fe3O4 in the TNF, ¢
is the volume concentration, and the 7 is the tempera-
ture and g .... a; are regression constants.
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4. DATA PROCESSING
Nusselt number is measured by Eq (9)
Nu=t2 ©)

Where A is heat transfer coefficient D is hydraulic di-
ameter and k& is thermal conductivity. Heat transfer
coefficient can be calculated as

he—9 (10)
A(Tq - fFb)

Q@ is heat transfer rate of the fluid, and Ts and T} is

base temperature of heat sink and bulk mean tempera-

ture.

5. RESULTS AND DISCUSSION
5.1 Heat Transfer

To ensure the accuracy of the numerical code, its re-
sults were validated against Sundar et al. [10] using
the same geometry and boundary conditions with water
and binary nanofluids as heat transfer media. The
comparison showed maximum deviations of 3.6 % for
the Nusselt number and 4 % for friction factor, confirm-
ing the model's validity. The model was also validated
against Narrein et al. [11] with water under a magnetic
field, showing maximum deviations of 4-5% in the
Nusselt number and pressure difference, further prov-
ing the model's accuracy.

Figure 2 to 4 illustrates the Nusselt number for wa-
ter and ternary nanofluids flowing inside a heat sink
across various volume fractions and Reynolds numbers.
The results reveal that the Nusselt number increases
linearly with rising Reynolds numbers [10]. The supe-
rior thermophysical properties of the ternary nanofluid
compared to distilled water primarily account for its
enhanced convective performance. Increasing the na-
noparticle volume fraction in the base fluid improves &
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and promotes Brownian motion, which significantly
contributes to the nanofluid's superior thermal perfor-
mance over water. Furthermore, a higher Re enhances
the convective heat transfer capacity of the coolant,
effectively lowering the 7T». Specifically, the Nusselt
number of the ternary nanofluid is 15 %, 25 %, 36 %,
and 46 % higher for volume fractions of 0.5 %, 0.75 %,
1 %, and 1.25 %, respectively, compared to water at a
Reynolds number of 1900. For Al20Os/water maximum
heat transfer enhancement is 27.6 % at 2.5 vol % [16].
While, for Fes04/TiO2 — water nanofluid, it is 38.16 % at
2 % vol %. [10]. Figure 3 and 4 illustrates the Nusselt
number (Nu) for a 1.0 % and 1.25 % volume nanofluid
under the influence of magnetic fields. The Nu increases
as the intensity of the MF. For a 1.0 % volume nanofluid
with magnetic field strengths of 500 G and 1000 G, the
Nusselt number (Nu) increased by 7.9 % and 12.7 %,
respectively, compared to the 1.0 % nanofluid without a
MF at a Reynolds number (Re) of 600. For Re Number
1900 this value is increased by 11.3 % and 18.5 %. The
enhancement in heat transfer is attributed to the inter-
action between charged particles and the magnetic field,
which induces localized turbulence and leads to an im-
proved heat transfer coefficient.
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v 1%
——1.25%

Nu
T

7
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Fig. 2 — Nusselt number of ternary nanofluids at different
Reynolds number
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Fig. 3 — Nusselt number analysis of ternary nanofluids under
the influence of a magnetic field at a 1 % volume fraction with
varying Reynolds numbers

Similarly, for a 1.25% volume nanofluid under
magnetic fields of 500 G and 1000 G, the Nu rose by
8.01% and 13.03 % respectively, compared to the
1.25 % nanofluid without a MF at a Re of 600. For Re

J. NANO- ELECTRON. PHYS. 17, 05027 (2025)
Number 1900 this value is 16 % and 22.73 %.

5.2 Pressure Drop
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Fig. 4 — Nusselt number analysis of ternary nanofluids under
the influence of a magnetic field at a 1.25 % volume fraction
with varying Reynolds numbers
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Fig. 5 — Pressure difference of ternary nanofluids at different
Reynolds number
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Fig. 6 — Pressure difference of ternary nanofluids under the
influence of magnetic field at 1 % vol fraction with varying
Reynolds number

As the volume percentage of the TNF increases, the
pressure drop also increases. Similarly, as the Reynolds
number rises, the pressure drop grows exponentially.
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Fig. 7 — Pressure difference of ternary nanofluids under the
influence of magnetic field at 1.25 % vol fraction with varying
Reynolds number

This behavior has been observed and reported by
several researchers for various types of nanofluids. [8,
17]. An increase in pressure drop indicates that more
pumping power is required to maintain the flow. At a
Reynolds number of 600, the pressure drop increases by
25 %, 50 %, 91.67 %, and 158 % for volume fractions of
0.5 %, 0.75 %, 1 %, and 1.25 %, respectively, compared
to the base fluid (water). Likewise, at a Reynolds num-
ber of 1900, the pressure drop increases by 22 %, 44 %,
112 %, and 218 % for the same respective volume frac-
tions compared to the base fluid. When a MF is applied,
the pressure drop increases for a 1 % volume fraction of
the ternary nanofluid. At a Reynolds number of 1900,
the pressure drop rises by 14.3 % and 17.71 % as the
magnetic field strength increases from 500 G to 1000 G.
For a 1.25 % volume fraction at the same Reynolds
number, the pressure drop increases by 15.4 % and
18 % with the magnetic field increasing from 500 G to
1000 G. This is due to the applied magnetic field inter-
acts with charged or magnetic particles nanofluid, gen-
erating Lorentz forces. These forces resist fluid motion,
increasing flow resistance and leading to a higher pres-
sure drop.

From Fig. 5, it is evident that at a 1.25 % volume
fraction, there is a significant rise in pressure, result-
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OxomomxyBasibHA 3MATHICTh MOTPIMHUX HAHOPIAUH IIiJ BILIMBOM MATHITHOTO IMOJIA
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VY mpomy mocmimskenHi poBoauThea metasbuuit CFD-amasmia TepMorinpaBiIivHnX XapaKTePUCTUK MIHI-
rauaspHOro pamiatopa (MCHS), oxosmopryBaHOT0 3a TOTIOMOrOI0 IIOTPIMHHOI MOPHUIHOI HAHOPIWHY, 0 Mic-
TuTh HaHouacTuHkH Fes0s, Al:O3 ta ZnO, gucmeprosani y Bomi. Terurodiswdri BJIACTHBOCTI HAHOPIIWHNA
OTPHMAHI 3 eKCIIePUMEHTAJBHO PO3PO0JIeHUX Kopeslii. ByJio mocigxeHo BIUIUB 06'€éMHOI YACTKU TA IHUC-
sa Petinosiprica Ha Termonepeady Ta mepeman TUCKY. KpiM Toro, 06roBOpOEThCS BIUIUB MATrHITHOTO TOJIST
HA TOTPIHY HaHOpPiMWHY. Pedynbratu mokasyioTh, M0 HOTPIMHA HAHOPIIWHA 3HAYHO ITOKPAIILyE TEIUIOBII-
avy, ajie 30LJIBIINyE B'A3KICTH TA IEperaj THCKY Yepea JUCIIePCII0 HAHOYACTUHOK, OCOOJIMBO IIPH BUIIUX YH-
ciax PeitHosbaca. 3acTocyBaHHs MATHITHOTO IOJIST JOJATKOBO IIOKPAILYE TEILIONepeaady 3 MiHIMaJIbHUM
JIOJIATKOBUM TIepernagoM THCKY. JlocmimxeHHs mokasaJo, mo npu aucyl Peitrossaca 1900 unciio Hyccempra
30ibInuiocs Ha 15%, 25%, 36% ta 46% nus o6'emuux vactok 0,5%, 0,75%, 1% Ta 1,25% BIAIIOBIAHO MOPIB-
HSAHO 3 BOJOI0. AHAJIOTIYHO, HaIIHHA TUCKY OyJso Bummm Ha 22%, 44%, 112% ta 218% nisa tux camux 06'eM-
HUX 4JacTokK. I[i pe3ayabTaTé migKpec/io0Th IOTEeHIa TOTPIMHUX TIOPUIHUX HAHOPIIUH B ONITUMI3Alliil Telm-
soBux xapakrepucrtuk y MCHS.

Kirouori cioa: [orpiitai manopinuan, Yucsio Hyccesmra, [Tepeman ticky, Oxomomskenss, MaruiTHe moJte.
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