## REGULAR ARTICLE



## The Impact of Electromagnetic and Optical Radiation on Physical and Biological Systems

Jay Kumar Pandey<sup>\*</sup> □

Department of EEE, Shri Ramswaroop Memorial University, Lucknow, Deva Road, Barabanki, U. P., India

(Received 17 August 2025; revised manuscript received 21 October 2025; published online 30 October 2025)

Electromagnetic and optical radiation are integral to modern technology, influencing various physical and biological systems. This paper delves into the dual nature of these radiations, exploring their beneficial applications in fields such as communication, medical diagnostics, and material processing, while also addressing their potential adverse effects on cellular structures, human health, and material integrity. It analyzes the mechanisms through which these radiations interact with matter, focusing on ionization, thermal effects, and photochemical processes. Recent studies have been reviewed to assess cellular damage, DNA alterations, and oxidative stress induced by prolonged exposure. Additionally, the impact on structural materials, including degradation and thermal instability, is discussed. Regulatory guidelines and safety standards are evaluated to identify gaps and areas for improvement. Emerging technologies like 5G and laser systems are critically examined for their implications. The review underscores the pressing need for enhanced public awareness and effective safety protocols. By integrating multidisciplinary perspectives, this work emphasizes the importance of achieving a balance between leveraging technological benefits and mitigating associated risks to ensure sustainable development and public safety.

**Keywords:** Electromagnetic (EM), Double-strand DNA, Optical Radiation, Near-infrared radiation (NIR), Photodynamic therapy (PDT), Photo-electrochemical.

DOI: 10.21272/jnep.17(5).05023 PACS numbers: 87.14.gk, 87.54.Fj

#### 1. INTRODUCTION

The ubiquity of electromagnetic (EM) and optical radiations in contemporary society underscores the necessity of understanding their impacts on various systems. From communication technologies to medical diagnostics, these radiations have revolutionized human life. However, their potential to interact with physical materials and biological tissues raises concerns about safety and long-term consequences.

Electromagnetic radiation spans a vast spectrum of frequencies and wavelengths, ranging from low-frequency radio waves to high-frequency gamma rays, each interacting differently with matter. Optical radiation, a subset of the EM spectrum, includes ultraviolet (UV), visible, and infrared light, playing a vital role in natural processes and technological advancements.

The increasing reliance on EM and optical technologies in healthcare, telecommunications, and industrial applications has amplified human and environmental exposure to these radiations. For instance, the proliferation of wireless communication devices has raised concerns about potential health effects linked to prolonged exposure to radiofrequency (RF) fields. Similarly, advances in laser and ultraviolet technologies have introduced new challenges in material and biological safety.

This paper aims to provide a comprehensive analysis of the impacts of EM and optical radiations, exploring both their beneficial applications and potential

hazards. By investigating their interactions with physical and biological systems, the paper seeks to contribute to the development of informed regulatory frameworks and protective measures. The scope of this review extends to discussing recent research findings, highlighting knowledge gaps, and suggesting future directions to enhance safety while maximizing technological benefits [1].

## 2. ELECTROMAGNETIC RADIATION: PRINCI-PLES AND EFFECTS

Electromagnetic radiation encompasses a broad spectrum, including radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. The energy and penetrative capacity of EM radiation increase with frequency, influencing its interactions with matter.

#### 2.1 Interaction with Physical Objects

Physical systems, such as metals, dielectrics, and semiconductors, exhibit varying responses to EM radiation. For instance, high-frequency radiations can induce photoelectric effects, where electrons are ejected from a material's surface upon absorbing photons. Conversely, lower frequencies often result in heating effects due to molecular vibration or dielectric polarization. These phenomena have been widely utilized in practical applications, including wireless power transfer, microwave ovens, and spectroscopy [2].

 $2077\hbox{-}6772/2025/17(5)05023(4)$ 

05023 - 1

https://jnep.sumdu.edu.ua

<sup>\*</sup> er.jay11@gmail.com

Prolonged exposure to certain types of EM radiation can degrade materials, especially polymers and other organic compounds. For example, UV radiation can break chemical bonds, leading to photo degradation and loss of mechanical integrity in materials such as plastics. Similarly, X-rays and gamma rays are known to induce defects in crystalline structures, which may affect the performance of semiconductors and other electronic materials [3].

## 2.2 Biological Implications

In biological systems, EM radiation exhibits diverse effects depending on its frequency, intensity, and exposure duration. Low-frequency radiations, such as radio waves and microwaves, primarily cause thermal effects by inducing molecular vibrations that generate heat. However, non-thermal effects, including changes in cellular signalling pathways and stress responses, have also been reported, albeit with varying degrees of scientific consensus (World Health Organization [4].

Studies have highlighted potential risks associated with chronic exposure to low-frequency EM fields, such as those emitted by mobile phones and Wi-Fi devices. These findings underscore the importance of adopting precautionary measures and adhering to safety guidelines [5].

Brown et al. 2022 study focus on Environmental impact of optical radiation using method of Field measurements and statistical analysis finding the Optical pollution affects plant growth cycles.

Gupta et al. 2021 study focus on Combined effect of EM and optical radiation using method Hybrid computational and experimental study finding the Synergistic effects observed at cellular levels.

Wang et al. 2019 study on EM wave absorption in metamaterials using methods Analytical and experimental studies and finding Developed novel metamaterials for wave attenuation.

Johnson & Lee 2020 study on Optical radiation impact on retinal cells using methods Experimental invitro study and finding the Prolonged exposure leads to photochemical damage.

# 3. OPTICAL RADIATION AND ITS BIOLOGICAL RELEVANCE

Optical radiation, comprising ultraviolet (UV), visible, and infrared light, significantly affects biological systems. While visible and infrared light are less energetic and predominantly cause thermal effects, UV radiation has ionizing capabilities [6].

### 3.1 Therapeutic Applications

Controlled exposure to optical radiation offers numerous health benefits. For instance, UV light is pivotal in Vitamin D synthesis, aiding in calcium homeostasis and bone health. Near-infrared radiation (NIR) is extensively employed in medical treatments such as photodynamic therapy (PDT), which utilizes photosensitizing agents and light to target cancerous cells selectively. Similarly, NIR has been used for improving tissue regeneration, reducing inflammation, and accelerating wound healing processes [7].

Visible light therapy, particularly blue and red light, is another emerging area in dermatology and mental health. Blue light has shown effectiveness in treating acne by targeting Propionibacterium acnes bacteria, while red light is used for skin rejuvenation and reducing wrinkles.

#### 3.2 Potential Hazards

Excessive exposure to optical radiation can result in detrimental effects on biological tissues. Ultraviolet radiation, despite its therapeutic applications, is a known risk factor for skin cancers such as melanoma and non-melanoma types. Chronic UV exposure can also lead to photoaging, characterized by skin wrinkles and pigmentation. Furthermore, UV radiation is a primary contributor to ocular diseases like cataracts and macular degeneration [4, 8, 9].

#### 3.3 Interaction Mechanisms

The biological impacts of optical radiation are mediated through mechanisms such as direct DNA damage, oxidative stress induction, and thermal effects. UV radiation, for instance, directly induces cyclobutane pyrimidine dimers (CPDs) in DNA, disrupting genetic integrity. Visible and IR radiation primarily cause thermal effects, elevating local tissue temperatures and potentially leading to protein denaturation and enzyme dysfunction.

Recent studies have also explored the role of reactive oxygen species (ROS) generated during optical radiation exposure. These highly reactive molecules can cause lipid peroxidation, protein oxidation, and DNA damage, contributing to cellular apoptosis or necrosis. The interplay between ROS generation and cellular repair mechanisms remains a critical area of investigation [10].

## 4. MECHANISMS OF RADIATION DAMAGE

Radiation damage occurs through intricate mechanisms that can be broadly categorized into direct and indirect effects. Direct effects involve the absorption of radiation energy by atoms or molecules, resulting in ionization or excitation. This process can disrupt molecular structures, leading to breakage of chemical bonds and the formation of free radicals. For instance, high-energy radiations such as X-rays and gamma rays can directly ionize DNA molecules, causing strand breaks and cross-linking that impair replication and transcription processes [11, 12].

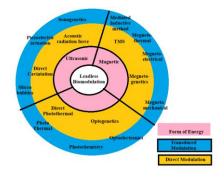
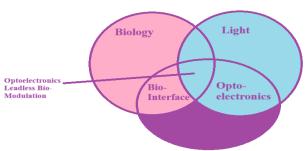



Fig. 1 - Approaches for leadless biomodulation


The extent and nature of radiation damage are influenced by various factors, including radiation type, energy, dose, and exposure duration. Understanding these mechanisms is essential for developing effective mitigation strategies and therapeutic interventions. Approaches for leadless biomodulation is given in Figure 1.

## 5. ADVANCES IN BIOMEDICAL AND HEALTHCARE

Significant strides have been made in mitigating the adverse effects of electromagnetic and optical radiations through technological innovations and regulatory frameworks.

Standards for laser classifications and mandatory labeling further ensure user safety in clinical and commercial applications [13].

Education and awareness campaigns have emerged as crucial tools in mitigating risks, emphasizing safe practices in radiation-intensive industries and every-day life. These initiatives include training programs for professionals handling radiation equipment, public outreach on the hazards of excessive UV exposure, and the promotion of protective measures such as sunscreen usage and protective eyewear [14]. Figure 2 shows the Implementation of these technologies in basic research as compared with clinical applications.



 ${f Fig.\,2}$  - Implementation of these technologies in basic research as compared with clinical applications

Emerging technologies are addressing the dual challenge of minimizing risks while enhancing the utility of radiation-based systems. Adaptive shielding, which dynamically adjusts its protective properties based on radiation intensity, represents a promising avenue for future development.

## 6. RESEARCH GAPS AND FUTURE DIRECTIONS

Despite significant advancements in understanding electromagnetic and optical radiations, several research gaps persist, necessitating continued investigation.

#### 6.1 Long-term Exposure Effects

One critical area requiring further study is the long-term effects of chronic, low-dose exposure to electromagnetic and optical radiations. Epidemiological studies linking prolonged exposure to non-ionizing radiations, such as those from mobile devices and Wi-Fi, with potential health outcomes remain inconclusive.

## 6.2 Synergistic Interactions and Individual Susceptibility and Advancements in Protective Technologies

The combined effects of multiple radiation types, especially in environments where individuals are simultaneously exposed to electromagnetic fields and optical radiation, remain poorly understood. For instance, integrating nanomaterials into wearable textiles or building materials requires further research to ensure scalability and safety. Similarly, advancements in real-time dosimetry technologies could enable more precise monitoring and adaptive protection.

## 6.3 Expanding Clinical Applications and Environmental Impacts

Emerging therapeutic applications of optical radiation, such as its use in opto-genetics and precision medicine, highlight the need for deeper understanding of their mechanisms and potential risks. Investigating how these technologies can be safely integrated into clinical practice without unintended side effects will be crucial. For instance, artificial lighting and increased electromagnetic pollution may disrupt circadian rhythms in animals or interfere with natural behaviors such as migration and reproduction [15].

### 6.4 Regulatory and Ethical Considerations

Rapid advancements in radiation-based technologies necessitate ongoing evaluation and updating of regulatory frameworks. Ethical considerations, particularly concerning emerging applications such as brainmachine interfaces and advanced imaging techniques, must be addressed to balance innovation with societal safety and privacy [16, 17].

#### 7. CONCLUSION

Electromagnetic (EM) and optical radiations are pivotal to the technological progress of modern society, enabling transformative advancements in communication, healthcare, and industrial domains. However, their dual-edged nature necessitates a nuanced understanding of their interactions with physical and biological systems to mitigate potential hazards effectively. This review emphasizes the critical need for a balanced approach that integrates rigorous scientific research, technological innovation, and robust regulatory oversight to optimize the benefits of these radiations while ensuring human health and environmental safety.

The best method is focus on Environmental impact of optical radiation using method of Field measurements and statistical analysis finding the Optical pollution affects plant growth cycles.

Key conclusions drawn from this study include:

Biological Impacts and Material Integrity: While EM and optical radiations play a crucial role in medical diagnostics and therapies, prolonged or high-dose exposure especially to higher-energy radiation poses risks such as DNA damage, oxidative stress, and thermal effects. The development of advanced protective materials and mitigation technologies is critical for sustaining material performance under radiative conditions.

Regulatory Measures: The refinement of safety guidelines and exposure limits is imperative, particularly with the emergence of technologies like 5G and advanced laser systems. Regulatory frameworks must evolve to address synergistic interactions between radiation types, the cumulative effects of exposure, and environmental impacts.

**Future Directions:** Continued research on individual susceptibility, chronic exposure effects, and ecological consequences is necessary to bridge knowledge gaps. Innovations in protective materials, alongside the exploration of novel therapeutic and industrial applications of optical radiation, hold significant promise for the future.

### REFERENCES

- Mariana F.P. Graça, André F. Moreira, Ilídio J. Correia, J. Drug Deliv. Sci. Technol. 93, 105409 (2024).
- Shang-Ru Tsai, Michael R. Hamblin, J. Photochem. Photobiol. B: Biology 170, 197 (2017).
- Abdulnaser Alkhalil, et.al., Radiation Research 193 No 6, 543 (2020).
- Lingyu Liu, Bing Huang, Yingxian Lu, Yanyu Zhao, Xiaping Tang, Yigong Shi, iScience 27 No 3, 109201 (2024).
- Aekjira Kuyyakanont, Minoru Iwata, Nucl. Instrum. Meth. Phys. Res. B 549, 165267 (2024).
- Saju Daniel, Sabu Thomas, Shielding Efficiency Measuring Methods and Systems, Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications, 61 (2018).
- Wang Yan-Zhao, Xu He-Xiu, Wang Chao-Hui, Wang Ming-Zhao, Wang Shao-Jie, *Acta Phys. Sin.* 69 No 13, 134101 (2020).
- Rashi Gupta, R.P. Chauhan, Rajesh Kumar, *Opt. Mater.* 99, 109538 (2020).
- Jay Kumar Pandey, Vikas Kumar Aharwal, J. Nano- Electron. Phys. 14 No 3, 03003 (2022).

- Xiaokai Zhang, Damià Barceló, Robert J. Clougherty, Bin Gao, Hauke Harms, Boris Tefsen, Meththika Vithanage, Hailong Wang, Zhenyu Wang, Mona Wells, *Environ. Sci. Technol.* 56 No 17, 11922 (2022).
- L.H. Vassie, J.R. Tyrer, B. Soufi, A.A. Clarke, *Opt. Laser. Eng.* 20 No 1, 53 (1994).
- Meike Mevissen, Jerrold M. Ward, Annette Kopp-Schneider et al., Environ. Int. 161, 107106 (2022).
- Mohammad Shak Sadi, Eglė Kumpikaitė, Nanomaterials
  No 12, 2039 (2022).
- Virginia Tsapaki, Richard Bayford, Eur. J. Med. Phys. 31 No 7, 738 (2015).
- Dehai Xian, Xiaoqing Gao, Xia Xiong, Jixiang Xu et al., J. Photochem. Photobiol. B: Biology 175, 73 (2017).
- Haiying Wang, Weijin Zou, Yi Cao, Radiation Medicine and Protection 6 No 2, 112 (2025).
- 17. Jay Kumar Pandey, Anil Kumar Yadav, Malleboina Purushotham, Nikita Indrapalsingh Gour, Gaurav Gulab Gurnule, Karm Raj Yadav, Key Eng. Mater. 928, 45 (2022).

## Вплив електромагнітного та оптичного випромінювання на фізичні та біологічні системи

Jay Kumar Pandey

Department of EEE, Shri Ramswaroop Memorial University, Lucknow, Deva Road, Barabanki, U. P., India

Електромагнітне та оптичне випромінювання є невід'ємною частиною сучасних технологій, впливаючи на різні фізичні та біологічні системи. У цій статті заглиблюється в подвійну природу цих випромінювань, досліджуючи їхнє корисне застосування в таких галузях, як зв'язок, медична діагностика та обробка матеріалів, а також розглядається їхній потенційний негативний вплив на клітинні структури, здоров'я людини та цілісність матеріалів. У ній аналізуються механізми, за допомогою яких ці випромінювання взаємодіють з речовиною, зосереджуючись на іонізації, теплових ефектах та фотохімічних процесах. Були проведені огляди нещодавніх досліджень для оцінки пошкодження клітин, змін ДНК та оксидативного стресу, викликаних тривалим впливом. Крім того, обговорюється вплив на конструкційні матеріали, включаючи деградацію та термічну нестабільність. Оцінюються нормативні рекомендації та стандарти безпеки для виявлення прогалин та напрямків для вдосконалення. Критично досліджуються наслідки нових технологій, таких як 5G та лазерні системи. В огляді підкреслюється нагальна потреба в підвищенні обізнаності громадськості та ефективних протоколах безпеки. Інтегруючи міждисциплінарні перспективи, ця робота підкреслює важливість досягнення балансу між використанням технологічних переваг та зменшенням пов'язаних з ними ризиків для забезпечення сталого розвитку та громадської безпеки.

**Ключові слова:** Електромагнетик, Дволанцюгова ДНК, Оптичне випромінювання, Ближнє інфрачервоне випромінювання, Фотодинамічна терапія, Фотоелектрохімічне випромінювання.