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The study focuses on optimizing the synthesis process of Vanadium Dioxide (VO2) films through advanced 

machine learning (ML) algorithms, enabling precise control over key parameters such as temperature, pressure, 

and deposition techniques. By utilizing Artificial Intelligence AI-driven predictive modeling aim to achieve 

improved film quality, uniformity, and thermochromic (TC) performance. This study suggested a novel Tabu 

Search Optimized Adaptive Long Short-Term Memory (TSO-ALSTM) for the integration of AI to facilitate real-

time monitoring and adjustment of production conditions, reducing defects and minimizing waste. The data was 

preprocessed using Min-max normalization. The proposed method is implemented using Python software. 

Compared the suggested method with other existing methods. Experimental results demonstrate that AI-

enhanced processes lead to VO2 films with larger optical switching characteristics, broadening their potential 

applications in smart windows, advanced thermal management systems, and energy-efficient buildings. The 

outcomes demonstrate that the suggested approach outperforms the other method in terms of accuracy (90.74 %), 

recall (76 %), F1 score (81 %), and specificity (99.1 %). This work highlights the transformative impact of AI 

technologies in materials science, paving the way for the next generation of smart materials. 
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1. INTRODUCTION 
 

The new material is called VO2, and this material 

presents unique properties related to the TC 

phenomenon. The phase transition, at about 68 °C, is 

reversible from the insulating into the metallic state [1]. 

In connection with changes in electrical conductivity 

and infrared transmittance, it relates to interesting 

properties for VO2-based smart windows, optical 

switches, sensors, and energy-efficient devices [2]. 

These challenges lie in straightforward synthesis, the 

lack of precise control over the structure, and its 

sensitivity to impurities and fabrication conditions, 

making the efficient and scalable production of high-

quality VO2 rather difficult to realize [3]. The latest 

advancements in AI and ML have gifted competent 

solutions for improving VO2 production. The 

introduction of AI-based methods enables better 

optimization of synthesis parameters; prediction of 

material properties to fine-tune the production process; 

hence, minimization of experimental time and 

associated cost. The AI-aided method can also serve to 

improve the quality of VO2 by observing real-time 

production conditions adjustment [4]. The possibility of 

breaking, through the traditional manufacturing 

drawbacks using advanced data-driven approaches has 

been demonstrated for this introduction to AI-enhanced 

VO2 production and high-performance VO2-based 

applications. VO2 TC films have recently captured 

significant attention due to their phenomenal 

temperature-sensitive properties. Here, VO2 undergoes 

a reversible phase transition from an insulating to a 

metallic state at around 68 °C [5]. This could be 

optimized further by the incorporation of dopants or the 

implementation of nano structuring techniques in the 

TC properties of VO2 so that, the transition temperature 
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goes lower than toward the room temperature to bring 

more practicality towards a potential commercial 

application [6-7]. Other recent work highlights the need 

for development in VO2 film for durability, 

transmittance, and optical contrast-if large-scale 

applications require satisfying performance and 

aesthetic needs [8]. The VO2 TC films are in a leading 

position among innovating solutions for the line of 

quests toward sustainable architecture and advanced 

optical technologies [9]. The aim of AI-based 

improvement of VO2 TC film production process is on 

concerns of TC performance, property enhancement, 

and energy efficiency. 

 

2. RELATED WORKS 
 

Temperature or light can cause VO2 [10] and many 

binary vanadium compounds to transition from a 

semiconducting to a metallic state. Modifications in the 

oxide's crystalline structure instigate the metamorphosis. 

Nano films of VO2 play a crucial role in electronic 

applications like smart windows [11]. Understanding the 

optical characteristics of these films is vital for modifying 

the parameters that affect them. The ability of VO2 to 

serve as a smart material is enabled by its reversible 

phase shift in response to heat, light, electric, magnetic, 

and mechanical force [12]. To reduce radiant heat loss and 

boost overall efficiency, the experiment suggests using a 

parabolic through solar receiver with a TC coating made of 

vanadium dioxide. At 68°C, the innermost portion of the 

glassy envelope's TC layer undergoes a reversible change 

from a monoclinic (M) to a rutile (R) phase [13]. Tracking 

the optical constants of the films throughout the TC 

process allows for correlating microscopic changes in the 

material with its macroscopic behavior as an energy-

saving material [14]. The work offered a promising 

strategy to enhance the industrial use of VO2TC windows, 

supporting advancements in green building technologies, 

window design, and energy efficiency in the automotive 

sector [15]. Monoclinic VO2 is a special kind of dynamically 

created phase-transition material that shows a noticeable 

shift in infrared transmission throughout its phase change, 

which makes a great choice for possible uses in passively 

TC smart windows [16]. 

 

3. METHODS AND MATERIALS  
 

The methodology involved optimizing the VO2 thin film 

synthesis process by employing a model TSO-ALSTM. In 

the synthesis process, important synthesis parameters like 

temperature, pressure, and deposition techniques were 

determined and monitored. Data acquired during 

synthesis were preprocessed by employing min-max 

normalization to eliminate inconsistency and lack of 

reliability. Fig. 1 depicts the methodology flow. 

 

3.1 Data Collection 
 

The dataset was collected from the open-source data 

which simulates experimental data for producing high-

purity VO2TC films using magnetron sputtering, a 

common technique in materials science. The data includes 

key reaction parameters that affect the phase and purity of 

VO2 films, to optimize conditions for creating VO2 in its 

monoclinic phase (VO2 (M)), which has applications in 

smart windows and other adaptive materials. 
 

 
 

Fig. 1 – Flow of Proposed System 
 

3.2 Preprocessing Using Min-Max Normalization 
 

To apply data normalization to performance metrics for 

effective analysis of these films. Data normalization 

transforms a feature's values into a much smaller range 

with a given interval, in this case, [0-1]. Another popular 

method for normalizing in which the minmax 

normalization method excels is that it indeed preserves the 

relationships that exist with the data. Eq. 1 captures every 

value of a specific attribute in terms of the same value that 

is normalized as the comparison of the various 

measurement values of the sample towards the same TC 

characteristics becomes more evident. 
 

𝑢′ =
𝑢−𝑚𝑖𝑛𝐵

𝑚𝑎𝑥𝐵−𝑚𝑖𝑛𝐵
(𝑛𝑒𝑤_𝑚𝑎𝑥𝐵 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐵) + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐵 (1) 

 

In this equation, u' represents the new normalized 

value, u' represents the original value of the feature, maxB 

represents the maximum value, minB represents the 

minimum value, and new_maxB and new_minB represent 

the maximum and minimum values for the new range. 

This normalization process will enhance the reliability of 

the experimental results and facilitate the comparison of 

TC behaviors across different conditions and applications. 

 

3.3 Vanadium Dioxide Thermochromic Films 

Using Tabu Search Optimized Adaptive Long 

Short-Term Memory (TSO-ALSTM) 
 

Tabu Search Optimized Adaptive Long Short-Term 

Memory (TSO-ALSTM) is a hybrid model that integrates 

the powerful capabilities of networks. This approach 

enhances the learning process of ALSTMs by exploring the 

parameter space to avoid local minima and improve 
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convergence speed. By leveraging the TSO-ALSTM 

dynamically adapts its structure and parameters, 

resulting in improved performance for time-series 

prediction and sequential data tasks. This innovative 

combination aims to address challenges in traditional 

ALSTM training, leading to more accurate and robust 

predictive models. 

 

3.3.1. Adaptive Long Short Term Memory 

(ALSTM) 
 

TC films based on VO2 have excellent temperature 

responses to optical property changes. The ALSTM models 

can probably help in better prediction and control of the 

phase transition behaviors with the material, which might 

be optimized for application in energy-efficient windows or 

smart coatings. Better temporal dynamics modeling leads 

to better performance and responsiveness of the materials. 

The output es is processed by the forgetting gate layer, and 

the result is a number between 0 and 1 that is positively 

connected with the position. After completion, a candidate 

score of D ̃s is generated to transform the current state. 

The Dsgate's computation is validated into the succession 

memory unit. The symbol signifies that the ingredient has 

been multiplied. The ALSTM calculates output values 

depending on previous data and current input. Memory 

unit updates drive the ALSTM's final output value. The 

gate structure is described as Eq. (2): 
 

 

{
  
 

  
 

𝑒𝑠 = 𝜎[𝑋𝑒 . (𝑔𝑠−1,𝑤𝑠) + 𝑎𝑒]

𝑗𝑠 = 𝜎[𝑋𝑗 . (𝑔𝑠−1,𝑤𝑠) + 𝑎𝑗]

𝐷 = 𝑡𝑎𝑛ℎ[𝑋𝑑 . (𝑔𝑠−1 ,𝑤𝑠) + 𝑎𝑑]

𝐷𝑠 = 𝑒𝑠 ∘ 𝐷𝑠−1 + 𝑗𝑠 ∘ 𝐷̃𝑠
𝑝𝑠 = 𝜎[𝑋𝑝. (𝑔𝑠−1,𝑤𝑠) + 𝑎𝑝]

𝑔𝑠 = 𝑃𝑠 ∘ tanh⁡(𝐷𝑠)

 (2) 

 

The outputs of three sigmoid functions (es, js, and ps) 

are combined with weights (Xe, Xj, Xd, and Ps∘) to form the 

new input (ws). The previous cell, whereas ae, aj, ap, and 

represent the respective biases. This process can be 

likened to the mechanisms in VO2TC films, where the 

material's properties change in response to temperature, 

allowing for adaptive control similar to how LSTM cells 

adjust their outputs based on previous inputs and weights. 

Fig. 2 illustrates the cell makeup of neural networks. The 

fundamental architecture of a standard LSTM neural 

network is depicted in Fig. 2(a), and the ALSTM with 

dropout is depicted in Fig. 2(b). 

The enhanced LSTM incorporates a mechanism that 

randomly deletes neurons in the hidden layer based on a 

predetermined probability during training, which can be 

applied to the modeling of complex systems like VO2. After 

dropout, disconnected neurons are temporarily destroyed, 

followed by conventional training. After training, the 

weights and biases of the remaining neurons are adjusted, 

while the destroyed neurons are recovered. This iterative 

process is repeated until convergence is achieved. The 

ALSTM formula with dropout can effectively adapt to the 

dynamics of applications, such as TC film behavior Eq. (3). 

 
 

Fig. 2 – (a) Standard LSTM (b) Adaptive LSTM 
 

 

𝑧̃(𝑘) = 𝑞(𝑘). 𝑧(𝑘)

𝑦𝑗
(𝑘+1)

=⁡𝑎𝑗
(𝑘+1)

+ 𝑥𝑗
(𝑘+1)

𝑧̃(𝑘)

𝑦𝑗
(𝑘+1)

= 𝑒 (𝑦𝑗
(𝑘+1)

)

 (3) 

 

Where y represents the mass of every neuron, z ̃(k) is 

neuronal output via the inactivated layer, q is the chance 

given by the bias, yj
(k+1) is the neuron's output at the 

following moment. To avoid overfitting during prediction, 

the hidden layer of the ALSTM employs random neuron 

inactivation. In this design, each neuron connects to 

synapses in the dense layer after being inactivated at 

random. This method enables the model to compute the 

projected movement value using a function of activation 

that is obtained by multiplying the hidden layer's output. 

The dense layer is critical for operations requiring VO2 

films, as it carries information regarding heave motion in 

the projected value. These films' characteristics can change 

with temperature, necessitating the use of a fully linked 

layer to capture the functional relationship between 

historical data, such as temperature changes and heave 

motion, and predicted results Eq. (4). 
 

 𝑔𝑠
𝐶 = 𝑋𝑜𝑔𝑠

𝐾 + 𝑎 (4) 
 

In this context, Xo represents the ratio of the fully 

connected layer to the ALSTM layer after dropout. gs
K 

indicates the ALSTM layer's output at each time step s, 

while gsC represents the output of the LSTM layer at time 

step s+1th. 

 

3.3.2. Tabu Search Optimization (TSO) 
 

The VO2TC films, known for their ability to regulate 

infrared light based on temperature, are optimized 

using TSO to enhance their TC properties. TSO helps in 

refining parameters for improved efficiency in energy-

saving applications, such as smart windows and heat-

responsive coatings. The analytical equations based on 

the First Harmonic Approximation (FHA) and the 

diagram of the algorithm are shown in Fig. 3 and 

explained in Eqs. (5) to (12). 
 

 𝑅𝐾 =
𝑄𝐾

𝑌0
, 𝑌0 = √

𝐾𝑡1

𝐷𝑡
, 𝜔0 =

1

√𝐾𝑡1𝐷𝑡
, 𝜔𝑚 =

𝜔𝑡

𝜔0
, 𝐾𝑡 =

𝐾𝑡1

𝐾𝑡2
, 𝐾𝑚 =

𝐾𝑡1

𝐾𝑜
 (5) 
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𝑌𝑖𝑛(𝑖𝜔𝑚)

𝑌0
= (𝑖𝜔𝑚 +

1

𝑖𝜔𝑚
) +

𝑖𝜔𝑚
𝐾𝑚

(
𝑖𝜔𝑚
𝐾𝑡

+𝑅𝐾)

𝑖𝜔𝑚
𝐾𝑚

+
𝑖𝜔𝑚
𝐾𝑡

+𝑅𝐾
 (6) 

 

 |𝐽𝐾𝑡1| =
4𝑈𝑖𝑛

𝜋|𝑌𝑖𝑛(𝑖𝜔𝑚)|
, 𝜐𝐵𝐴1(𝑠) =

4𝑈𝑖𝑛

𝜋
𝑠𝑖𝑛𝜔𝑡𝑠 (7) 

 

 𝑁𝜐 = |
𝑖𝜔𝑚𝑅𝐾𝐾𝑡

𝑅𝐾𝐾𝑚𝐾𝑡+𝑖𝜔𝑚(𝐾𝑚+𝐾𝑡)
|

1

|𝑌𝑖𝑛(𝑖𝜔𝑚)|
 (8) 

 

 𝑂𝑐𝑜𝑟𝑒 = 𝑙𝑗|∆𝐴|
𝛽−𝛼𝑒𝑡|2∆𝐴|

𝛼 (
1

𝑒𝑡
)
1−𝛼

 (9) 

 

 𝑙𝑗 =
𝑙𝑑

2𝛽−1𝜋𝛼−1(1.1044+
6.8244

𝛼+1.354
)
, ∆𝐴 =

𝑈𝑆𝑞,𝑜

2𝑀𝑜𝐵𝑓𝑒𝑡
 (10) 

 

 𝑂𝑆𝑞 = 𝑂𝑐𝑜𝑟𝑒 +𝑂𝐶𝑢 , 𝑂𝐶𝑢 = 𝑄𝑜𝐽𝑜,𝑟𝑚𝑠
2 + 𝑄𝑡𝐽𝑜,𝑟𝑚𝑠

2  (11) 
 

 𝑂𝑟𝑒𝑐 = 2𝑈𝐸𝐽𝑡,𝑟𝑚𝑠 (12) 
 

The TSO is a heuristic search technique that uses 

several memory structures to direct the search toward a 

good result. After identifying a workable solution, the TSO 

continuously precedes a predetermined criterion typically, 

the maximum number of iterations is achieved. Each 

workable solution to the current issue is a vector of RK, Km, 

and Kt, where a predetermined range of changes can be 

made to each element.  

 

4.  RESULT AND DISCUSSION 
 

The performance of the proposed method demonstrated 

that the AI-enhanced synthesis process significantly 

improved the optical switching characteristics of VO2 films, 

affirming the efficacy of the proposed approach in 

materials science applications. An Intel 16 GB of DDR4 

RAM, Xeon E3-1230v5 CPU, and an NVIDIA Quadro K420 

discrete graphics card power the system. Table 1 depicts 

the metrics outcomes. 
 

Table 1 – Outcomes of metrics 
 

Methods 
Accuracy 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Specificity 

(%) 

XGBoost [23] 88.52 74 78 98 

RF [23] 86.89 69 74 97 

TSO-ALSTM 

[Proposed] 
90.74 76 81 99.1 

 

4.1 Accuracy 
 

Accuracy is the closeness of the model's predictions to 

the actual outcome. It is most commonly calculated as 

correct predictions over total predictions. Accuracy is the 

most common metric for a classification task and is used to 

measure how efficiently the model can classify or label 

dataset. High accuracy in such applications as 

performance analysis of VO2TC films can symbolize better 

performance if classes are balanced. The model properly 

distinguishes the phases or states in the materials and 

reflects precision about the transitions and thermal 

responses. Fig. 3 depicts the outcomes of accuracy. 
 

 
 

Fig. 3 – Analysis of Accuracy 

 

4.2 Recall 
 

Recall in data analysis and ML is a measure used to 

refer to the model's accuracy in identifying all relevant 

instances in a dataset. Recall measures how the correct 

positive observations that are divided by all the actual 

positives are determined, meaning it reveals the ability of 

the model to capture the actual positive cases. This is a 

very fundamental concept that finds applicability in 

many areas, including the evaluation of VO2TC films, 

wherein recall would be useful to test if models can 

predict correct transitions or material properties from the 

dataset without missing the relevant instances. Fig. 4 

depicts the outcomes of recall. 
 

 
 

Fig. 4 – Analysis of Recall 

 

4.3 F1-Score 
 

The F1 score measures performance by combining 

precision and recall into a single metric, providing a 

balanced evaluation of accuracy and completeness. The 

formula of the F1 score could be calculated in terms of 

the mean of the precision, which tells how well the 

positive predictions are being made, and the recall, which 

counts how many actual positives are identified. This is 

useful to evaluate models applied to imbalanced datasets, 

VO2TC films taking into account both false positives and 

false negatives while rating the performances. Fig. 5 

depicts the outcomes of the F1-score. 
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Fig. 5 – Analysis of F1-score 
 

The TSO-ALSTM method achieved 81 % which is 

compared with the existing methods of Simple XG Boost 

[23] achieved 78 %, and RF [23] achieved 69 %. It 

explains how the suggested methodology performs better 

in terms of rates than the current methods.  

 

5. CONCLUSION 
 

The feasibility of advanced ML algorithms, 

specifically TSO-ALSTM, for the optimization of the 

synthesis of VO2 films. By using AI-driven predictive 

modeling, were able to show that improved film quality 

and performance are attainable at the same time as 

reduced defects and waste during the production process. 

The superior optical switching characteristics of VO2 

films produced with this method indicated significant 

improvements in their applicability for smart windows, 

energy-efficient buildings, and advanced thermal 

management systems. The quantitative metrics, 

including accuracy at 90.74 %, recall at 76 %, F1 score at 

81 %, and specificity at 99.1 %, further established the 

effectiveness of the approach over existing methods. This 

study not only demonstrates the transformational 

potential of AI in materials science but also sets the stage 

for the next generation of smart materials with improved 

energy efficiency and sustainability in applications. 

 

 

 

REFERENCES 
 

1. Y. Zhang, W. Xiong, W. Chen, Y. Zheng, Nanomaterials 11 No 2, 

338 (2021). 

2. S.F. Linnell, Exploration of Vanadium Sulfates as Positive 

Electrodes for Battery Applications (Doctoral Dissertation, 

University of St Andrews) (2020). 

3. X. Guo, Y. Tan, Y. Hu, Z. Zafar, J. Liu, J. Zou, Sci. Rep. 11 No 1, 

21749 (2021). 

4. A. Ashfaq, N. Cronin, P. Müller, Informat. Med. Unlock. 28, 

100863 (2022). 

5. M. Azmat, S. Shoaib, Hajra, Q. Li, H. Jin, J. Li, ACS Appl. 

Energy Mater. 7 No 15, 6746 (2024). 

6. H. Ren, O. Hassna, J. Li, B. Arigong, Appl. Phys. Lett. 118 No 5, 

(2021). 

7. H. Guo, Y.G. Wang, H.R. Fu, A. Jain, F.G. Chen, Ceram. Int. 47 

No 15, 21873 (2021). 

8. G. Savorianakis, K. Mita, T. Shimizu, S. Konstantinidis, 

M. Voué, B. Maes, J. Appl. Phys. 129 No 18, (2021). 

9. Y. Matamura, Fabrication of Mo2 and VO2 Thin Films Using 

Mist Chemical Vapor Deposition. (2022). 

10. V.T. Lukong, K. Ukoba, T.C. Jen, Energy Environ. 34 No 8, 3495 

(2023). 

11. I.H. Shallal, N.M. Abdul-Ameer, S.Q. Abdul-Hasan, 

M.C. Abdulrida, Mater. Res. Exp. 9 No 1, 015007 (2022). 

12. J.Y. Chae, D. Lee, H.Y. Woo, J.B. Kim, T. Paik, Appl. Surf. Sci. 

545, 148937 (2021). 

13. Q. Wang, B. Shen, J. Huang, H. Yang, G. Pei, H. Yang, Appl. 

Energy 285, 116453 (2021). 

14. J. Outón, E. Blanco, M. Domínguez, H. Bakkali, J.M. Gonzalez-

Leal, J.J. Delgado, M. Ramírez-del-Solar, Appl. Surf. Sci. 580, 

152228 (2022). 

15. L. Hu, Y. Zhou, C. Wang, L. Liu, L. Ma, Sol. Energy 259, 

364 (2023). 

16. Z. Zhu, K. Zhu, J. Guo, Z. Fan, Z. Li, J. Zhang, Colloid Interface 

Sci. Commun. 48, 100619 (2022). 

 

 

Покращене виробництво термохромних плівок діоксиду ванадію  

на основі штучного інтелекту  
 

G.P. Dawange1, T.D. Diwan2, P. William3, P. Kumar4, B.A. Tingare5, N. Yogeesh6, A. Badholia7, 

M.V. Kulkarni1 

 
1 Engineering Science and Humanities, Sanjivani College of Engineering, Kopargaon, India 

2 Controller of Examination (COE), Atal Bihari Vajpayee University, Bilaspur, India 
3 Department of Information Technology, Sanjivani College of Engineering, Kopargaon, MH, India 

4 Swami Rama Himalayan University Dehradun, Uttarakhand, India 
5 Department of Artificial Intelligence and Data Science, D Y Patil College of Engineering, Akurdi, Pune, India 

6 Department of Mathematics, Government First Grade College, Tumkur, Karnataka, India 
7 Department of Data Science, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, 

India 

https://doi.org/10.3390/nano11020338
https://doi.org/10.3390/nano11020338
https://doi.org/10.1038/s41598-021-01025-8
https://doi.org/10.1038/s41598-021-01025-8
https://doi.org/10.1016/j.imu.2022.100863
https://doi.org/10.1016/j.imu.2022.100863
https://doi.org/10.1021/acsaem.4c01385
https://doi.org/10.1021/acsaem.4c01385
https://doi.org/10.1063/5.0038969
https://doi.org/10.1016/j.ceramint.2021.04.205
https://doi.org/10.1016/j.ceramint.2021.04.205
https://doi.org/10.1063/5.0049284
https://doi.org/10.1177/0958305X221145204
https://doi.org/10.1088/2053-1591/ac4733
https://doi.org/10.1016/j.apsusc.2021.148937
https://doi.org/10.1016/j.apsusc.2021.148937
https://doi.org/10.1016/j.apenergy.2021.116453
https://doi.org/10.1016/j.apenergy.2021.116453
https://doi.org/10.1016/j.apsusc.2021.152228
https://doi.org/10.1016/j.apsusc.2021.152228
https://doi.org/10.1016/j.solener.2023.05.029
https://doi.org/10.1016/j.solener.2023.05.029
https://doi.org/10.1016/j.colcom.2022.100619
https://doi.org/10.1016/j.colcom.2022.100619


 

G.P. DAWANGE, T.D. DIWAN, P. WILLIAM ET AL. J. NANO- ELECTRON. PHYS. 17, 05015 (2025) 

 

 

05015-6 

Дослідження зосереджено на оптимізації процесу синтезу плівок діоксиду ванадію (VO2) за допомогою 

передових алгоритмів машинного навчання (ML), що дозволяє точно контролювати ключові параметри, 

такі як температура, тиск та методи осадження. Завдяки використанню штучного інтелекту та 

прогнозного моделювання на основі штучного інтелекту, метою є покращення якості плівки, однорідності 

та термохромних (TC) характеристик. У цьому дослідженні запропоновано новий метод адаптивної 

довгострокової короткочасної пам'яті з оптимізованим за допомогою пошуку Tabu (TSO-ALSTM) для 

інтеграції штучного інтелекту, що полегшує моніторинг та коригування виробничих умов у режимі 

реального часу, зменшує дефекти та мінімізує відходи. Дані були попередньо оброблені за допомогою 

нормалізації Min-max. Запропонований метод реалізовано за допомогою програмного забезпечення 

Python. Запропонований метод порівнювали з іншими існуючими методами. Експериментальні 

результати показують, що процеси, вдосконалені штучним інтелектом, призводять до плівок VO2 з 

більшими характеристиками оптичного перемикання, розширюючи їх потенційне застосування в 

розумних вікнах, передових системах теплового управління та енергоефективних будівлях. Результати 

показують, що запропонований підхід перевершує інший метод за точністю (90,74%), повнотою (76%), 

показником F1 (81%) та специфічністю (99,1%). Ця робота підкреслює трансформаційний вплив 

технологій штучного інтелекту в матеріалознавстві, прокладаючи шлях для наступного покоління 

інтелектуальних матеріалів. 
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