JOURNAL OF NANO- AND ELECTRONIC PHYSICS
Vol. 17 No 5, 05015(6pp) (2025)

REGULAR ARTICLE

MYPHAJI HAHO- TA EJIEKTPOHHOI ®I3HKH
Tom 17 Ne 5, 05015(6cc) (2025)

OPEN ACCESS

AI-Based Enhanced Production of Vanadium Dioxide Thermochromic Films

G.P. Dawange!, T.D. Diwan?, P. William3, P. Kumar4, B.A. Tingare?, N. Yogeesh§, A. Badholia?* ™,
M.V. Kulkarni!

L Engineering Science and Humanities, Sanjivani College of Engineering, Kopargaon, India
2 Controller of Examination (COE), Atal Bihari Vajpayee University, Bilaspur, India
3 Department of Information Technology, Sanjivani College of Engineering, Kopargaon, MH, India
4 Swami Rama Himalayan University Dehradun, Uttarakhand, India
5 Department of Artificial Intelligence and Data Science, D Y Patil College of Engineering, Akurdi, Pune, India
6 Department of Mathematics, Government First Grade College, Tumkur, Karnataka, India
7 Department of Data Science, Shri Shankaracharya Institute of Professional Management and Technology, Raipur,
India

(Received 15 August 2025; revised manuscript received 22 October 2025; published online 30 October 2025)

The study focuses on optimizing the synthesis process of Vanadium Dioxide (VOgz) films through advanced
machine learning (ML) algorithms, enabling precise control over key parameters such as temperature, pressure,
and deposition techniques. By utilizing Artificial Intelligence Al-driven predictive modeling aim to achieve
improved film quality, uniformity, and thermochromic (TC) performance. This study suggested a novel Tabu
Search Optimized Adaptive Long Short-Term Memory (TSO-ALSTM) for the integration of Al to facilitate real-
time monitoring and adjustment of production conditions, reducing defects and minimizing waste. The data was
preprocessed using Min-max normalization. The proposed method is implemented using Python software.
Compared the suggested method with other existing methods. Experimental results demonstrate that Al-
enhanced processes lead to VO: films with larger optical switching characteristics, broadening their potential
applications in smart windows, advanced thermal management systems, and energy-efficient buildings. The
outcomes demonstrate that the suggested approach outperforms the other method in terms of accuracy (90.74 %),
recall (76 %), F1 score (81 %), and specificity (99.1 %). This work highlights the transformative impact of Al
technologies in materials science, paving the way for the next generation of smart materials.
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1. INTRODUCTION

The new material is called VO2, and this material
presents unique properties related to the TC
phenomenon. The phase transition, at about 68 °C, is
reversible from the insulating into the metallic state [1].
In connection with changes in electrical conductivity
and infrared transmittance, it relates to interesting
properties for VOz-based smart windows, optical
switches, sensors, and energy-efficient devices [2].
These challenges lie in straightforward synthesis, the
lack of precise control over the structure, and its
sensitivity to impurities and fabrication conditions,
making the efficient and scalable production of high-
quality VOgz rather difficult to realize [3]. The latest
advancements in Al and ML have gifted competent
solutions  for improving VO: production. The
introduction of Al-based methods enables better
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optimization of synthesis parameters; prediction of
material properties to fine-tune the production process;
hence, minimization of experimental time and
associated cost. The Al-aided method can also serve to
improve the quality of VO:2 by observing real-time
production conditions adjustment [4]. The possibility of
breaking, through the traditional manufacturing
drawbacks using advanced data-driven approaches has
been demonstrated for this introduction to Al-enhanced
VO2 production and high-performance VO:-based
applications. VOz TC films have recently captured
significant attention due to their phenomenal
temperature-sensitive properties. Here, VO2 undergoes
a reversible phase transition from an insulating to a
metallic state at around 68 °C [5]. This could be
optimized further by the incorporation of dopants or the
implementation of nano structuring techniques in the
TC properties of VO: so that, the transition temperature
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goes lower than toward the room temperature to bring
more practicality towards a potential commercial
application [6-7]. Other recent work highlights the need
for development in VO: film for durability,
transmittance, and optical contrast-if large-scale
applications require satisfying performance and
aesthetic needs [8]. The VO2 TC films are in a leading
position among innovating solutions for the line of
quests toward sustainable architecture and advanced
optical technologies [9]. The aim of Al-based
improvement of VO2 TC film production process is on
concerns of TC performance, property enhancement,
and energy efficiency.

2. RELATED WORKS

Temperature or light can cause VO2 [10] and many
binary vanadium compounds to transition from a
semiconducting to a metallic state. Modifications in the
oxide's crystalline structure instigate the metamorphosis.
Nano films of VO: play a crucial role in electronic
applications like smart windows [11]. Understanding the
optical characteristics of these films is vital for modifying
the parameters that affect them. The ability of VO: to
serve as a smart material is enabled by its reversible
phase shift in response to heat, light, electric, magnetic,
and mechanical force [12]. To reduce radiant heat loss and
boost overall efficiency, the experiment suggests using a
parabolic through solar receiver with a TC coating made of
vanadium dioxide. At 68°C, the innermost portion of the
glassy envelope's TC layer undergoes a reversible change
from a monoclinic (M) to a rutile (R) phase [13]. Tracking
the optical constants of the films throughout the TC
process allows for correlating microscopic changes in the
material with its macroscopic behavior as an energy-
saving material [14]. The work offered a promising
strategy to enhance the industrial use of VO;TC windows,
supporting advancements in green building technologies,
window design, and energy efficiency in the automotive
sector [15]. Monoclinic VO3 is a special kind of dynamically
created phase-transition material that shows a noticeable
shift in infrared transmission throughout its phase change,
which makes a great choice for possible uses in passively
TC smart windows [16].

3. METHODS AND MATERIALS

The methodology involved optimizing the VO thin film
synthesis process by employing a model TSO-ALSTM. In
the synthesis process, important synthesis parameters like
temperature, pressure, and deposition techniques were
determined and monitored. Data acquired during
synthesis were preprocessed by employing min-max
normalization to eliminate inconsistency and lack of
reliability. Fig. 1 depicts the methodology flow.

3.1 Data Collection

The dataset was collected from the open-source data
which simulates experimental data for producing high-

J. NANO- ELECTRON. PHYS. 17, 05015 (2025)

purity VO2TC films wusing magnetron sputtering, a
common technique in materials science. The data includes
key reaction parameters that affect the phase and purity of
VOz: films, to optimize conditions for creating VOz: in its
monoclinic phase (VO2 (M)), which has applications in
smart windows and other adaptive materials.

Fig. 1 — Flow of Proposed System
3.2 Preprocessing Using Min-Max Normalization

To apply data normalization to performance metrics for
effective analysis of these films. Data normalization
transforms a feature's values into a much smaller range
with a given interval, in this case, [0-1]. Another popular
method for normalizing in which the minmax
normalization method excels is that it indeed preserves the
relationships that exist with the data. Eq. 1 captures every
value of a specific attribute in terms of the same value that
is normalized as the comparison of the various
measurement values of the sample towards the same TC
characteristics becomes more evident.

"= % (new_maxg — new_ming) + new_ming (1)

In this equation, u' represents the new normalized
value, u' represents the original value of the feature, maxs
represents the maximum value, mins represents the
minimum value, and new_maxs and new_ming represent
the maximum and minimum values for the new range.
This normalization process will enhance the reliability of
the experimental results and facilitate the comparison of
TC behaviors across different conditions and applications.

3.3 Vanadium Dioxide Thermochromic Films
Using Tabu Search Optimized Adaptive Long
Short-Term Memory (TSO-ALSTM)

Tabu Search Optimized Adaptive Long Short-Term
Memory (TSO-ALSTM) is a hybrid model that integrates
the powerful capabilities of networks. This approach
enhances the learning process of ALSTMs by exploring the
parameter space to avoid local minima and improve
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convergence speed. By leveraging the TSO-ALSTM
dynamically adapts its structure and parameters,
resulting in improved performance for time-series
prediction and sequential data tasks. This innovative
combination aims to address challenges in traditional
ALSTM training, leading to more accurate and robust
predictive models.

3.3.1.
(ALSTM)

Adaptive Long Short Term Memory

TC films based on VO: have excellent temperature
responses to optical property changes. The ALSTM models
can probably help in better prediction and control of the
phase transition behaviors with the material, which might
be optimized for application in energy-efficient windows or
smart coatings. Better temporal dynamics modeling leads
to better performance and responsiveness of the materials.
The output es is processed by the forgetting gate layer, and
the result is a number between 0 and 1 that is positively
connected with the position. After completion, a candidate
score of Ds is generated to transform the current state.
The Dsgate's computation is validated into the succession
memory unit. The symbol signifies that the ingredient has
been multiplied. The ALSTM calculates output values
depending on previous data and current input. Memory
unit updates drive the ALSTM's final output value. The
gate structure is described as Eq. (2):

es = [Xe. (gs-1,ws) + @]
Js = U[Xj- (gs—1,ws) + aj]
D= tanh[Xg.(gs-1,ws) + aql
Dy =es0D5 1 +jso 55
Ps = U[Xp- (gs—1,ws) + ap]
gs = Ps o tanh (Dy)

@)

The outputs of three sigmoid functions (es, js, and ps)
are combined with weights (X, Xj, X4, and Pso) to form the
new input (ws). The previous cell, whereas a., aj, ap, and
represent the respective biases. This process can be
likened to the mechanisms in VO TC films, where the
material's properties change in response to temperature,
allowing for adaptive control similar to how LSTM cells
adjust their outputs based on previous inputs and weights.
Fig. 2 illustrates the cell makeup of neural networks. The
fundamental architecture of a standard LSTM neural
network is depicted in Fig. 2(a), and the ALSTM with
dropout is depicted in Fig. 2(b).

The enhanced LSTM incorporates a mechanism that
randomly deletes neurons in the hidden layer based on a
predetermined probability during training, which can be
applied to the modeling of complex systems like VO2. After
dropout, disconnected neurons are temporarily destroyed,
followed by conventional training. After training, the
weights and biases of the remaining neurons are adjusted,
while the destroyed neurons are recovered. This iterative
process is repeated until convergence is achieved. The
ALSTM formula with dropout can effectively adapt to the
dynamics of applications, such as TC film behavior Eq. (3).
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(A)

Fig. 2 — (a) Standard LSTM (b) Adaptive LSTM
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Where y represents the mass of every neuron, z ® is
neuronal output via the inactivated layer, g is the chance
given by the bias, y;&*) is the neuron's output at the
following moment. To avoid overfitting during prediction,
the hidden layer of the ALSTM employs random neuron
inactivation. In this design, each neuron connects to
synapses in the dense layer after being inactivated at
random. This method enables the model to compute the
projected movement value using a function of activation
that is obtained by multiplying the hidden layer's output.
The dense layer is critical for operations requiring VO:
films, as it carries information regarding heave motion in
the projected value. These films' characteristics can change
with temperature, necessitating the use of a fully linked
layer to capture the functional relationship between
historical data, such as temperature changes and heave
motion, and predicted results Eq. (4).

9¢ = X,95 +a )

In this context, X, represents the ratio of the fully
connected layer to the ALSTM layer after dropout. gX
indicates the ALSTM layer's output at each time step s,
while gsC represents the output of the LSTM layer at time
step s+1¢,

3.3.2. Tabu Search Optimization (TSO)

The VO2TC films, known for their ability to regulate
infrared light based on temperature, are optimized
using TSO to enhance their TC properties. TSO helps in
refining parameters for improved efficiency in energy-
saving applications, such as smart windows and heat-
responsive coatings. The analytical equations based on
the First Harmonic Approximation (FHA) and the
diagram of the algorithm are shown in Fig. 3 and
explained in Egs. (5) to (12).

K K, K
t1 __t,Kt:_fi'Km:_fl (5)
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a+1.354)
OSq = Ocore + Oy, Ocy = Qo]g,rms + Qt]g,rms (11)

Orec = 2Ug]trms (12)

The TSO is a heuristic search technique that uses
several memory structures to direct the search toward a
good result. After identifying a workable solution, the TSO
continuously precedes a predetermined criterion typically,
the maximum number of iterations is achieved. Each
workable solution to the current issue is a vector of Rk, Kn,
and K;, where a predetermined range of changes can be
made to each element.

4. RESULT AND DISCUSSION

The performance of the proposed method demonstrated
that the Al-enhanced synthesis process significantly
improved the optical switching characteristics of VO3 films,
affirming the efficacy of the proposed approach in
materials science applications. An Intel 16 GB of DDR4
RAM, Xeon E3-1230v5 CPU, and an NVIDIA Quadro K420
discrete graphics card power the system. Table 1 depicts
the metrics outcomes.

Table 1 — Outcomes of metrics

F1-
Accuracy |Recall Specificity
Methods %) %) f;)())re %)
XGBoost [23] |88.52 74 78 98
RF [23] 86.89 69 74 97
TSO-ALSTM |, 7, 76 81 99.1
[Proposed]

4.1 Accuracy

Accuracy is the closeness of the model's predictions to
the actual outcome. It is most commonly calculated as
correct predictions over total predictions. Accuracy is the
most common metric for a classification task and is used to
measure how efficiently the model can classify or label
dataset. High accuracy in such applications as
performance analysis of VO2TC films can symbolize better
performance if classes are balanced. The model properly
distinguishes the phases or states in the materials and
reflects precision about the transitions and thermal
responses. Fig. 3 depicts the outcomes of accuracy.
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Fig. 3 — Analysis of Accuracy

4.2 Recall

Recall in data analysis and ML is a measure used to
refer to the model's accuracy in identifying all relevant
instances in a dataset. Recall measures how the correct
positive observations that are divided by all the actual
positives are determined, meaning it reveals the ability of
the model to capture the actual positive cases. This is a
very fundamental concept that finds applicability in
many areas, including the evaluation of VO:2TC films,
wherein recall would be useful to test if models can
predict correct transitions or material properties from the
dataset without missing the relevant instances. Fig. 4
depicts the outcomes of recall.

100
80 -
-__--———____ _————_'--_'—-—-’_F
= %91
2
o 40 o
20 -
o T T T
XGBoost [23] RF [23] TSO-ALSTM [Proposed]
Methods

Fig. 4 — Analysis of Recall

4.3 F1-Score

The F1 score measures performance by combining
precision and recall into a single metric, providing a
balanced evaluation of accuracy and completeness. The
formula of the F1 score could be calculated in terms of
the mean of the precision, which tells how well the
positive predictions are being made, and the recall, which
counts how many actual positives are identified. This is
useful to evaluate models applied to imbalanced datasets,
VO:TC films taking into account both false positives and
false negatives while rating the performances. Fig. 5
depicts the outcomes of the F1-score.
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Methods

Fig. 5 — Analysis of F1-score

The TSO-ALSTM method achieved 81 % which is
compared with the existing methods of Simple XG Boost
[23] achieved 78 %, and RF [23] achieved 69 %. It
explains how the suggested methodology performs better
in terms of rates than the current methods.
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JlocmimxeHHS 30cepe/PkeH0 Ha ONTUMI3allil mporecy CHHTe3y ILTBOK miokcuay BaHamio (VOz) 3a qomomoron
HepeIoBUX aJTOPUTMIB MalIuHHOro HaBuaHusa (ML), 1Mo m03BoJIsge TOUHO KOHTPOJIIOBATH KJIIOYOBI IIapaMeTpH,
Takl SIK TeMIlepaTypa, THCK Ta MeTOJW OCAPKeHHsS. J3aBISKH BUKOPHUCTAHHIO IINTYYHOTO IHTEJIEKTY Ta
IIPOTHO3HOTO MOJIEJIIOBAHHS HA OCHOBI IIITYYHOTO 1HTEJIEKTY, METOI0 € TIOKPAIIEeHHS SKOCTI ILTBKHU, OJHOPITHOCTI
ta tepmoxpomuux (TC) xapakrepwcTwik. Y IIbOMY JOCIITJKEHHI 3AIIPOIIOHOBAHO HOBUH METOJ[ AIalTHBHOI
JIOBTOCTPOKOBOI KOPOTKOYACHOI IaM'aATi 3 omTuMisoBaHmM 3a pomomoroio morryky Tabu (TSO-ALSTM) mis
iHTerpamnil IITYYHOIO IHTEJIEKTY, IO IOJIETIIye MOHITOPWHI Ta KOPUTYBAHHS BHPOOHUYMNX YMOB y DPERKHMI
peaJsibHOTO dYacy, 3MeHInye gedextd Ta MiHiMIdye Bimxomu. J[ami Oyim momepeqHbo 0GpOOJIEHI 3a JOIIOMOIOIO
"HopMautidamii Min-max. 3alpomoHOBAHMN METOJ Peaji3oBaHO 3a JJOIIOMOrOK IIPOTPAMHOT0 3a0e3IeueHHs
Python. 3ampomoHoBamwii MeTo[ TMOPIBHIOBAJM 3 IHIMWUMH ICHYIOUHMH MeTOJaMu. KKCIlepuMeHTaTbHI
pe3yIbTaTh IOKA3yITh, IO IIPOIECH, BIOCKOHAJEHI INTYYHUM IHTEJIEeKTOM, IMPU3BOAATEH 10 ILIiBoK VO:2 3
OLIBIIMMHU  XapPaKTEPUCTUKAMHU OITUYHOTO MEePEeMUKAHHS, PO3IMUPIOIYN IX IIOTEHINHe 3aCTOCYBAHHS B
PO3YMHHX BIKHAX, IEPEJOBUX CHCTEMAaX TEeILJIOBOTO YIIPABJIHHS Ta eHeproedeKTUBHHUX OymiBisx. Pesymbratn
MOKA3yI0Th, IO 3aIPOIIOHOBAHWN MIIXia Iepesepinye 1Hmui MeTon 3a Touwictio (90,74%), moBHOTOW (76%),
norkasuukoM F1 (81%) ta cmerumdivnictio (99,1%). Ils pobora migkpeciaioe TpaHchOPMAIIHHUN BILIUB
TEXHOJIOTI IITYYHOTO IHTEJEKTY B MAaTepiaJlo3HABCTBI, IPOKJIANAIYNA IIJISX JJIs HACTYIIHOTO ITOKOJIIHHS
IHTeJIeKTyaJIbHUX MaTepiaJis.

Knrouosi ciosa: Jliokcun sanamgio (VOz), Tepmoxpomui twniekw, [lItyunnit inresnexr (II), Mammune naguauus (MH).
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