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This research focuses on the parametric analysis of the free vibrations of a functionally graded material
(FGM) nanoplate made of (Al:Os/Al), the material properties of the FGM nanoplate are graded only in the
thickness direction. The four-unknown shear deformation theory incorporated in Eringen's nonlocal elasticity
theory is employed to deduce the equations of motion from Hamilton's principle. The solutions of simply
supported FGM nanoplates are obtained and the results are com-pared with those available in the literature.
Detailed numerical analysis is performed to demonstrate the influences of some parameters like nonlocal
parameter, aspect ratio, and side-to-thickness ratio on the behavior of FGM nanoplates.
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1. INTRODUCTION

Functionally graded materials (FGMs) plates are of-ten
composed of a blend of metal and ceramic components,
with the volume fractions of the two materials changed to
the appropriate extent between the two sides. The
characteristics of the plate differ between interfaces.

Nanostructures, such as nanoplates and nanobeams,
are now engineering structures and are used in
nanoelectromechanical (NEMS) and
microelectronmechanical (MEMS) systems. It is essential
to take into consideration the small-scale impact of FGMs
utilized in nanodevices. Furthermore, it can be seen from
the experimental data that ignoring these effects leads to
inaccurate answers, and thus, improper de-signs [1].
Since classical continuum theories lack internal length
scales, they are no longer useful for under-standing the
behavior of FGM nanodevices. As a result, a large
number of theoretical and experimental studies have
been conducted. Many nonlocal theories have been
developed to overcome this issue by introducing an
intrinsic length scale in the constitutive relations and
characterizing the size effect in micro, and nanoscale
structures. Examples of these theories include the
micropolar theory [2] and the nonlocal elasticity theory
[3]. Among these theories, surface tension fluids,
dislocation mechanics, fracture mechanics, lattice
dispersion of elastic waves, wave propagation in
composites, and Eringen’s nonlocal elasticity theory were
all studied [4]. This theory was created to account for the
scale effect in elasticity.

Aghbabaei [5] investigated the bending and free
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vibration of a simply supported rectangular nanoplate
analytically using a third-order shear deformation plate
theory. Messas [6] discussed the analyzing vibration
behavior of Nano FGM (Si3N4/SUS304) plates and the
impact of homogenization models Nano parameters.
Nami [7] used nonlocal trigonometric shear deformation
theory to study the static behavior of rectangular
nanoplates. A non-polynomial four-variable refined plate
theory was proposed by Meftah [8] for the free vibration
of thick, rectangular plates that are functionally graded
on an elastic foundation. A new high-order theory for
buckling temperature analysis of functionally graded
sandwich plates resting on elastic foundations was
presented by Chitour [9]. The impact of mechanical and
geometric properties on the thermal buckling of
functionally graded sandwich plates was investigated by
Berkia [10]. Meftah [11] presented the bending and
buckling analysis of functionally graded plates using a
new shear strain function with reduced unknowns.
Belkorissat [12] studied the free vibration properties of
functionally graded nanoplate using a new nonlocal
refined four-variable model.

In the present parametric analysis, the free vibration
characteristics of FG nanoscale plates are studied using a
nonlocal hyperbolic plate theory.

2. NONLOCAL ELASTICITY THEORY

In an elastic continuum, the stress field at point x
depends not only on the strain field at the point
(hyperelastic case) but also on strains at every other point in
the body, according to [3, 4]. Eringen credited experimental

https://jnep.sumdu.edu.ua

®
© 2025 The Author(s). Journal of Nano- and Electronic Physics published by Sumy State University. This article is
distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Cite this article as: Ali Meftahet al., JJ. Nano- Electron. Phys. 17 No 5, 05002 (2025) https://doi.org/10.21272/jnep.17(5).05002


http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
https://jnep.sumdu.edu.ua/
https://int.sumdu.edu.ua/en
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.21272/jnep.17(5).05002
https://doi.org/10.21272/jnep.17(5).05002
mailto:genietech2013@yahoo.fr
https://orcid.org/0000-0003-3664-3780

ALI MEFTAH

studies of phonon dispersion and the atomic theory of lattice
dynamics for this fact. Consequently, we may represent the
nonlocal stress tensor components o at position x as:

o= Ia(lx’ - xl,r)t(x’)dx’ 2.1

v

where the nonlocal modulus is represented by the kernel
function a(|x’ — x|, 7), where |x" —x| is the distance (in
Euclidean norm) and 7 is a material constant that depends
on internal and external characteristic lengths (such as the
wavelength and lattice spacing, respectively). where #(x) are
the components of the classical macroscopic stress tensor at
point x. The nonlocal constitutive equation given in the
integral form (see Eq.(2.1) can be expressed in an
analogous differential form as demonstrated by Eringen [4].

—\2

(1 —T2L2v2)a:t, 2 :%:(ﬂj 2.2)
L L

where the internal and external characteristic lengths are

denoted by @ and L, respectively, and u = (e,@, eo is a

material constant.

3. MATERIAL PROPERTIES OF FGM

An FGM nanoplate, as seen in Fig. 1, is investigated
in this paper. The volume percentage of two substances
can be computed using the following formulas.

1 z\ 1 z\

Vo=|—+—1| ,V,,=1-| =+—
5]
where h is the thickness, and p is a component that
affects how the volume fraction varies. The following

formula is used to calculate the material properties at
any position along the nanoplate.

(3.1)

P(z)=B,V,, + PV, (3.2)
where P:. and Pn stand for properties of ceramics and
metals, respectively, such as Poisson's ratio, mass
density, and Young's modulus.

FULL METAL

Fig. 1 — Geometric of FG nanoplate model
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4. GOVERNING EQUATIONS
4.1 The Displacement Field

The displacement field of the higher-order shear de-
formation theory (HSDT) can be written as:

ow, 0
u(x, y,2,) = g (x,,0) = 22— f(2) 2L
ox ox
ow, 0
V(3. 2,8) = v (x, 3,1) — 20— £(2) L.
Oox Ox

W(x,y,z,t)zwo(x,y,t) (41)

where uo, vo and wo are midplane displacements, ¢ is the
rotation of normal to the midplane of the plate. f(2)
represents the mode shapes determining the thickness-
dependent stress and  transverse  deformation
distributions, written as:

7(2) =sin(%.z)+(ﬁ.z),and 2(2) :1—%. 4.2)

4.2 The Nonlocal Constitutive Relations

For elastic FG nanoplate, the two-dimensional non-
local constitutive relations can be written as:

Oxx Oxx| [On O 0 0 0 ||&x

0 o 0, O 0 0 0 |le

¥y ¥y 12 Y2 ¥y

Ty, - uv? Ty, =| O o 00 [yy, (4.3

. . 0 0 0 Os 0

XZ XZ 55 YXZ

Tey Tyy 0 0 0 0 Ollyy
where V2 =2 + 2 s the Laplacian operator in a two-

o’ o’
dimensional Cartesian coordinate system. In which
(axx,ayy,ryz,rxz,rxy) )and (sxx, Syy,}/yz,j/xz,j/xy) are the
stresses and strains components, respectively. The

stiffness coefficients, C;, can be expressed as:

E(z)
———.,02(2) =v(2) 0, (2),
1=(v(2)) £

044(2) = O55(2) = Og(2) = m

011(2) =0 (2) =
(4.4)

4.3 Equations of Motion

Hamilton’s principle is herein used to derive the
equations of motion:

5j(U—K)dt:0

(4.5)

U: the deformation energy; K: the kinetic energy of the
FGM nanoplate.
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4.4 Analytical Solution for Simply-Supported FG
Nanoplates

Navier's procedure, based on the double Fourier se-
ries, is used to solve the partial differential equation
under specified boundary conditions, expressing the
solution of displacement variables.
iot

u,(,)m cos(ax)sin(fy)e

U R | B ot
Vo l_ Vo Sin(aex) cos(By)e’ 0<x<a 46
w mZ::an:l: o sin(ax)sin(ﬂy)elf‘” 0<y<b (4.6)
¢ Yo sin(ax)sin(By)e’

a=mr/aand f=nx/b 4.7

Where (ugm,v?nn,x?nn, yf),m) are unknown parameters to be

determined and ® is the natural frequency. we get the

below eigenvalue equation for any fixed value of m and n,
for the free vibration problem:

SITS12 813 14 mp 0 0 0 ”61/1 0
S12 522 53 S4|_ g2 8 m(%Q 0 0 i :8 (4.8)
513 823 833 534 m33 M3y X0
S|4 24 34 S44 0 0 my4 Mgy 0 0
Ymn
In which:

511 = Ao’ + Ao 51y = (A + dgg )P,

si3 =By’ =By + 2Bgg o’

51 =-Bha’ *(Blsz + 2Bgé)aﬁ2,

530 = g’ + Ap 8,

523 ==Bynf ~(Bp +2B@6)(12/3,

Sy =-Byf’ —(sz + 2356)0‘2ﬁ,

s3=Dya’ +2(Dyy +2Dge)a’ B + Dy,

s34 =D +2{ Diy + 205 a5 + D, 8,

Syq = Hfla4 + 2(Hf2 +2Hgé)a2/32 +H‘2‘2/34 + A§5a2 + Aj4/32,
myy =my, =1ly,my3 =1 +12(a2 +ﬂ2),m34 =J, (0{2 +ﬁ2),

m :KQ(a2 +ﬁ2),/1:1+y(a2 +ﬂ2).

(4.9)

The mass inertias of (I;, J;, Ki) are described as follows:

Iy 1 J 4 -
Lo Jy|=| )] 4]d

Sy Ky 0 (4.10)
4] { : ]D @]
= zZ z Z) |
f(2)
+h/2
(A,B,D,BS,DS,H-Y)z I (1,z,zz,f,zf,f2)C(z)dz (4.11)
—h/2
+h/2
Ay = A5 = I g% (2)Cay(2)dz. (4.12)
—h/2
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5. RESULTS AND DISCUSSION

In this section, the parametrically analyzed free
vibration behavior of a simply supported FG nanoplate is
discussed, by supposing the top surface of the plate is
ceramic-rich (Al2Os) and the bottom surface is metal-rich
(Al). The mass density p and Young’s modulus E are:
pe= 380 kg/m3, E.= 380 GPa for Al203 and pm = 2707 kg/m3,
E, =70 GPa for Al Poisson’s ratio v is considered to be
constant and taken as 0.3 for the current study. The
numerical results are presented in graphical and tabular
forms using dimensionless quantities for convenience.

3
& =oh |2, o=(0d ). |2 Dchhz. (5.1)
G, D, 12.(1-v%)

Firstly, to confirm the accuracy of the current model,
the nanoplate results are calculated and compared with
the dimensionless natural frequency results of
Malekzadeh [13]. in Table 1. Simply supported
homogeneous FG nanoplates (p = 0) with different mode
values, non-local parameters, plate thickness, and plate
aspect ratio are considered. It can be seen that the
numerical results presented are in very good agreement
with the results of Malekzadeh [13].

Fig. 2 shows a 3D interaction diagram of the power law
index (p), nonlocal parameter (mu), side-to-thickness ratio
(a/h), and dimensionless natural frequency. It can be seen in
this figure that the dimensionless natural frequencies
decrease with the increase in the power law index (p), this is
due to the fact that a higher value corresponds to a lower
value of the volume fraction of the ceramic phase and thus
makes the plates softer. He also observed from this figure that
for a given value of (p), the dimensionless natural frequency
in-creases if the side-to-thickness ratio (a/h) is decreased. the
natural frequency does not change too much if the side-to-
thickness ratio (a/h) takes large values like (a/h = 100).

Fig. 2 shows a 3D interaction diagram of the power law
index (p), nonlocal parameter (u), side-to-thickness ratio
(a/h), and dimensionless natural frequency. It can be seen in
Fig. 2 that the dimensionless natural frequencies decrease
with the increase in the power law index (p). This is due to the
fact that a higher value of (p) corresponds to a lower value of
the volume fraction of the ceramic phase, and thus makes the
plates softer. He also observed from this figure that for a
given value of (p), the dimensionless natural frequency
increases if the side-to-thickness ratio (a/h) is decreased. the
natural frequency does not change too much if the side-to-
thickness ratio (a/h) takes large values like (a/h = 100).

Fig. 3 illustrates the effect of the nonlocal parameter
() on the dimensionless frequencies of the square FG
nanoplate with the volume fraction exponent (p =5) for
different values of the thickness parameter (a/h). It can
be observed that the dimensionless frequency decreases
as the nonlocal parameter increases. Indeed, an increase
in the thickness parameter (a/h) leads to a decrease in
the frequency of the FG nanoplate. but for a thickness
parameter (a/h > 20) the graphs become flat.
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Table 1 — Comparison of dimensionless natural frequency (@) simply supported FG nanoplate (¢ = 10 nm)

Nonlocal Parameter (x)
a/b a/h m, n Method 0 1 P 3 1
10 11 [13] 0.058883 0.055556 0.052736 0.050305 /
0.5 ’ Present 0.058887 0.055560 0.052739 0.050309 0.048186
20 11 [13] 0.014965 0.014119 0.013402 0.012785 /
’ Present 0.014965 0.014120 0.013403 0.012785 0.012246
11 [13] 0.093029 0.085016 0.078771 0.073726 /
’ Present 0.093039 0.085025 0.078779 0.073734 0.069549
10 9 9 [13] 0.34064 0.25464 0.21212 0.16704 /
1 ’ Present 0.340741 0.254713 0.212171 0.185649 0.167097
33 [13] 0.64400 0.41049 0.32055 0.27184 /
’ Present 0.684266 0.410654 0.320681 0.271979 0.240334
2 11 [13] 0.023864 0.021808 0.020206 0.018912 /
’ Present 0.023864 0.021809 0.020207 0.018913 0.017839
Fig. 4 illustrates the effect of the volume fraction ' ' ' Ry
exponent on the dimensionless frequencies of the square _:_"f;
FG nanoplate with thickness parameter (a/h = 10) for 8]
different values of the small-scale parameter. It can be it
observed that the dimensionless frequency decreases as 2
the volume fraction exponent increases. Indeed, an }
increase in the volume fraction exponent leads to a ::\"Aw RS
decrease in the rigidity of the FG nanoplate. There is an v te—e WS ooy
abrupt change in the responses as the volume increases, M :; . T =
and we also see that increasing the nonlocal parameter 0,04 . ‘,‘ . - - 8 - ;‘0
2 P

results in a decrease in the nondimensional frequency.

a/h=50

107

Fig. 2 — Effect of the power-law index (p), nonlocal parameter
(1), and side-to-thickness ratio (a/h) on the non-dimensional
natural frequency (@) of simply supported FG nanoplates
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Fig. 3 — Effect of the nonlocal parameter (), and side-to-
thickness ratio (a/h) on the non-dimensional natural frequency
(@) of simply supported FG nanoplates

Fig 4 — Effect of the power-law index (p), and nonlocal
parameter (4) on the non-dimensional natural frequency (w;) of

simply supported FG nanoplates

Fig. 5 illustrates the effect of the nonlocal parameter (1)
on the dimensionless natural frequency ratio, simply
supported by a square FG nanoplate for the first three
modes with (a/h = 10) and volume fraction exponent (p = 5),
for different values of the parameter on a small scale. It can
be observed that the frequency ratio decreases as the
nonlocal parameter (1) increases. and the influence of non-
local parameter (1) is more apparent with the increase in
the number of modes, ie. the frequency ratio is reduced
from mode 1 to mode 3.

Ty
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=0
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[

Fig. 5 — Effect of the nonlocal parameter (x) on dimensionless

frequency ratio (‘T’NL / E)L) for a simply supported square FG
nanoplate for the first three frequencies with (a/h = 10)
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Fig. 6 — The first nine mode shapes of square FG nanoplate
(p =5) and (a/h =10)

Fig. 6 It is obvious that the variation of the parameter
nonlocal parameter () has a significant effect on the
higher-order frequencies of the FG nanoplates. Overall,
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Amnania BinpHOI BiOpanii pyHKIioHansHO rpaayiiosanoi Hanomiactuau (Al:0s/Al):
nmapaMeTpUYHHUI aHAJII3

Ali Meftah

University Center of Nour Bachir, Institute of Sciences, Department of Technology, El Bayadh, 32000, Algeria

Ile mocmimxeHHS 30CepeKeHO Ha I[MapaMeTPUYHOMY aHaJIi3l BUIBHUX KOJMBAHDb HAHOILJIACTHHHU 3

dyHKIIOHAIBHO TpamyioBaroro watepiany (FGM),

purorossieHoi 3 (Al:0s/Al), BiactmBocTi Marepiasy

"HaHomiactTuau FGM rpafyoioTbea JUIle B HANPAMKY TOBIIMHM. Teopis 4oTMpPBLOX HeBimomux medopMarrii
3CyBY, BRJIIOUEHA B TEOPiI0 HEJIOKAJIBHOI HPY:KHOCTI EpiHreHa, BHUKOPUCTOBYETHCS JJISI BUBEJIEHHS PIBHAHD PYXY
3 mpuHuiy ['aminerona. OTpuMano posunHay HaHomiaactud FGM 3 mpocTon 0mopoo Ta HOPIBHAHO Pe3yJIbTaTh
3 HasgBHUMH B JjirtepaTypi. [IpoBeeHo meTaibHUN YKMCEIbHUN aHasii3, 100 MPOJEeMOHCTPYBATH BILIUB JIESKUX
mapaMeTpiB, TAKUX SK HEeJIOKAJbHUN HapaMeTp, CIIBBIIHOIIEHHS CTOPIiH 1 BIHOIIEHHS CTOPOHH JIO TOBIIUHU, HA

noBemiHKy HaHoImIacTud FGM.

Knouosi cnosa: Hemokanbpaa Teopis npysuocti, [lapamerpuunuii anamgia, FGM manommactunka, [lpunimn

T'amisprona.
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