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This research focuses on the parametric analysis of the free vibrations of a functionally graded material 

(FGM) nanoplate made of (Al2O3/Al), the material properties of the FGM nanoplate are graded only in the 

thickness direction. The four-unknown shear deformation theory incorporated in Eringen's nonlocal elasticity 

theory is employed to deduce the equations of motion from Hamilton's principle. The solutions of simply 

supported FGM nanoplates are obtained and the results are com-pared with those available in the literature. 

Detailed numerical analysis is performed to demonstrate the influences of some parameters like nonlocal 

parameter, aspect ratio, and side-to-thickness ratio on the behavior of FGM nanoplates. 
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1. INTRODUCTION 
 

Functionally graded materials (FGMs) plates are of-ten 

composed of a blend of metal and ceramic components, 

with the volume fractions of the two materials changed to 

the appropriate extent between the two sides. The 

characteristics of the plate differ between interfaces. 

Nanostructures, such as nanoplates and nanobeams, 

are now engineering structures and are used in 

nanoelectromechanical (NEMS) and 

microelectronmechanical (MEMS) systems. It is essential 

to take into consideration the small-scale impact of FGMs 

utilized in nanodevices. Furthermore, it can be seen from 

the experimental data that ignoring these effects leads to 

inaccurate answers, and thus, improper de-signs [1]. 

Since classical continuum theories lack internal length 

scales, they are no longer useful for under-standing the 

behavior of FGM nanodevices. As a result, a large 

number of theoretical and experimental studies have 

been conducted. Many nonlocal theories have been 

developed to overcome this issue by introducing an 

intrinsic length scale in the constitutive relations and 

characterizing the size effect in micro, and nanoscale 

structures. Examples of these theories include the 

micropolar theory [2] and the nonlocal elasticity theory 

[3]. Among these theories, surface tension fluids, 

dislocation mechanics, fracture mechanics, lattice 

dispersion of elastic waves, wave propagation in 

composites, and Eringen’s nonlocal elasticity theory were 

all studied [4]. This theory was created to account for the 

scale effect in elasticity. 

Aghbabaei [5] investigated the bending and free 

vibration of a simply supported rectangular nanoplate 

analytically using a third-order shear deformation plate 

theory. Messas [6] discussed the analyzing vibration 

behavior of Nano FGM (Si3N4/SUS304) plates and the 

impact of homogenization models Nano parameters. 

Nami [7] used nonlocal trigonometric shear deformation 

theory to study the static behavior of rectangular 

nanoplates. A non-polynomial four-variable refined plate 

theory was proposed by Meftah [8] for the free vibration 

of thick, rectangular plates that are functionally graded 

on an elastic foundation. A new high-order theory for 

buckling temperature analysis of functionally graded 

sandwich plates resting on elastic foundations was 

presented by Chitour [9]. The impact of mechanical and 

geometric properties on the thermal buckling of 

functionally graded sandwich plates was investigated by 

Berkia [10]. Meftah [11] presented the bending and 

buckling analysis of functionally graded plates using a 

new shear strain function with reduced unknowns. 

Belkorissat [12] studied the free vibration properties of 

functionally graded nanoplate using a new nonlocal 

refined four-variable model. 

In the present parametric analysis, the free vibration 

characteristics of FG nanoscale plates are studied using a 

nonlocal hyperbolic plate theory. 

 

2. NONLOCAL ELASTICITY THEORY 
 

In an elastic continuum, the stress field at point x 

depends not only on the strain field at the point 

(hyperelastic case) but also on strains at every other point in 

the body, according to [3, 4]. Eringen credited experimental 
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studies of phonon dispersion and the atomic theory of lattice 

dynamics for this fact. Consequently, we may represent the 

nonlocal stress tensor components  at position x as: 
 

 ( ), ( )

v

x x t x dx    = −  (2.1) 

 

where the nonlocal modulus is represented by the kernel 

function 𝛼(|𝑥′ − 𝑥|, 𝜏), where |𝑥′ − 𝑥| is the distance (in 

Euclidean norm) and  is a material constant that depends 

on internal and external characteristic lengths (such as the 

wavelength and lattice spacing, respectively). where t(x) are 

the components of the classical macroscopic stress tensor at 

point x. The nonlocal constitutive equation given in the 

integral form (see Eq. (2.1)) can be expressed in an 

analogous differential form as demonstrated by Eringen [4]. 
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2
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where the internal and external characteristic lengths are 

denoted by  𝛼̅ and L, respectively, and 𝜇 = (𝑒0𝛼̅, e0 is a 

material constant. 

 

3. MATERIAL PROPERTIES OF FGM 
 

An FGM nanoplate, as seen in Fig. 1, is investigated 

in this paper. The volume percentage of two substances 

can be computed using the following formulas. 
 

 
1 1

, 1
2 2

p p

c m
z z

V V
h h

   
= + = − +   
   

 (3.1) 

 

where h is the thickness, and p is a component that 

affects how the volume fraction varies. The following 

formula is used to calculate the material properties at 

any position along the nanoplate. 
 

 ( ) m m c cP z P V PV= +  (3.2) 

 

where Pc and Pm stand for properties of ceramics and 

metals, respectively, such as Poisson's ratio, mass 

density, and Young's modulus. 
 

 
 

Fig. 1 – Geometric of FG nanoplate model 

4. GOVERNING EQUATIONS 
 

4.1 The Displacement Field 
 

The displacement field of the higher-order shear de-

formation theory (HSDT) can be written as: 
 

 

0
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where u0, v0 and w0 are midplane displacements,  is the 

rotation of normal to the midplane of the plate. f(z) 

represents the mode shapes determining the thickness-

dependent stress and transverse deformation 

distributions, written as: 
 

 ( ) ( ) ( )2.
sin . . ( ) 1 .,and 

h h

df
f z z z g z

dz

 = + = −  (4.2) 

 

4.2 The Nonlocal Constitutive Relations 
 

For elastic FG nanoplate, the two-dimensional non-

local constitutive relations can be written as: 
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where
2 2

2 2

2

x y

 

 
 = +  is the Laplacian operator in a two-

dimensional Cartesian coordinate system. In which

( ), , , ,xx yy yz xz xy     )and ( ), , , ,xx yy yz xz xy     are the 

stresses and strains components, respectively. The 

stiffness coefficients, ijC , can be expressed as: 
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4.3 Equations of Motion 
 

Hamilton’s principle is herein used to derive the 

equations of motion: 
 

 ( )
0

0

t

U K dt − =  (4.5) 

 

U: the deformation energy; K: the kinetic energy of the 

FGM nanoplate.  
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4.4 Analytical Solution for Simply-Supported FG 

Nanoplates 
 

Navier's procedure, based on the double Fourier se-

ries, is used to solve the partial differential equation 

under specified boundary conditions, expressing the 

solution of displacement variables. 
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Where ( )0 0 0 0, , ,mn mn mn mnu v x y are unknown parameters to be 

determined and  is the natural frequency. we get the 

below eigenvalue equation for any fixed value of m and n, 

for the free vibration problem: 
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In which: 
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The mass inertias of (Ii, Ji, Ki) are described as follows: 
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5. RESULTS AND DISCUSSION 
 

In this section, the parametrically analyzed free 

vibration behavior of a simply supported FG nanoplate is 

discussed, by supposing the top surface of the plate is 

ceramic-rich (Al2O3) and the bottom surface is metal-rich 

(Al). The mass density  and Young’s modulus E are: 

c = 380 kg/m3, Ec = 380 GPa for Al2O3 and m = 2707 kg/m3, 

Em = 70 GPa for Al. Poisson’s ratio v is considered to be 

constant and taken as 0.3 for the current study. The 

numerical results are presented in graphical and tabular 

forms using dimensionless quantities for convenience. 
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Firstly, to confirm the accuracy of the current model, 

the nanoplate results are calculated and compared with 

the dimensionless natural frequency results of 

Malekzadeh [13]. in Table 1. Simply supported 

homogeneous FG nanoplates (p = 0) with different mode 

values, non-local parameters, plate thickness, and plate 

aspect ratio are considered. It can be seen that the 

numerical results presented are in very good agreement 

with the results of Malekzadeh [13]. 

Fig. 2 shows a 3D interaction diagram of the power law 

index (p), nonlocal parameter (mu), side-to-thickness ratio 

(a/h), and dimensionless natural frequency. It can be seen in 

this figure that the dimensionless natural frequencies 

decrease with the increase in the power law index (p), this is 

due to the fact that a higher value corresponds to a lower 

value of the volume fraction of the ceramic phase and thus 

makes the plates softer. He also observed from this figure that 

for a given value of (p), the dimensionless natural frequency 

in-creases if the side-to-thickness ratio (a/h) is decreased. the 

natural frequency does not change too much if the side-to-

thickness ratio (a/h) takes large values like (a/h = 100). 

Fig. 2 shows a 3D interaction diagram of the power law 

index (p), nonlocal parameter (), side-to-thickness ratio 

(a/h), and dimensionless natural frequency. It can be seen in 

Fig. 2 that the dimensionless natural frequencies decrease 

with the increase in the power law index (p). This is due to the 

fact that a higher value of (p) corresponds to a lower value of 

the volume fraction of the ceramic phase, and thus makes the 

plates softer. He also observed from this figure that for a 

given value of (p), the dimensionless natural frequency 

increases if the side-to-thickness ratio (a/h) is decreased. the 

natural frequency does not change too much if the side-to-

thickness ratio (a/h) takes large values like (a/h = 100). 

Fig. 3 illustrates the effect of the nonlocal parameter 

() on the dimensionless frequencies of the square FG 

nanoplate with the volume fraction exponent (p = 5) for 

different values of the thickness parameter (a/h). It can 

be observed that the dimensionless frequency decreases 

as the nonlocal parameter increases. Indeed, an increase 

in the thickness parameter (a/h) leads to a decrease in 

the frequency of the FG nanoplate. but for a thickness 

parameter (a/h  20) the graphs become flat. 
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Table 1 – Comparison of dimensionless natural frequency ( )   simply supported FG nanoplate (a = 10 nm) 

 

a/b a/h m, n Method 
Nonlocal Parameter ()  

0 1 2 3 4 

0.5 

 

10 1, 1 
[13] 0.058883 0.055556 0.052736 0.050305 / 

Present 0.058887 0.055560 0.052739 0.050309 0.048186 

20 1,1 
[13] 0.014965 0.014119 0.013402 0.012785 / 

Present 0.014965 0.014120 0.013403 0.012785 0.012246 

1 

10 

1, 1 
[13] 0.093029 0.085016 0.078771 0.073726 / 

Present 0.093039 0.085025 0.078779 0.073734 0.069549 

2, 2 
[13] 0.34064 0.25464 0.21212 0.16704 / 

Present 0.340741 0.254713 0.212171 0.185649 0.167097 

3, 3 
[13] 0.64400 0.41049 0.32055 0.27184 / 

Present 0.684266 0.410654 0.320681 0.271979 0.240334 

20 1, 1 
[13] 0.023864 0.021808 0.020206 0.018912 / 

Present 0.023864 0.021809 0.020207 0.018913 0.017839 
 

Fig. 4 illustrates the effect of the volume fraction 

exponent on the dimensionless frequencies of the square 

FG nanoplate with thickness parameter (a/h = 10) for 

different values of the small-scale parameter. It can be 

observed that the dimensionless frequency decreases as 

the volume fraction exponent increases. Indeed, an 

increase in the volume fraction exponent leads to a 

decrease in the rigidity of the FG nanoplate. There is an 

abrupt change in the responses as the volume increases, 

and we also see that increasing the nonlocal parameter 

results in a decrease in the nondimensional frequency. 
 

 
 

Fig. 2 – Effect of the power-law index (p), nonlocal parameter 

(), and side-to-thickness ratio (a/h) on the non-dimensional 

natural frequency 1( )  of simply supported FG nanoplates 

 

 
 

Fig. 3 – Effect of the nonlocal parameter (), and side-to-

thickness ratio (a/h) on the non-dimensional natural frequency 

1( )  of simply supported FG nanoplates 

 

 
 

Fig 4 – Effect of the power-law index (p), and nonlocal 

parameter () on the non-dimensional natural frequency 1( )  of 

simply supported FG nanoplates 
 

Fig. 5 illustrates the effect of the nonlocal parameter () 

on the dimensionless natural frequency ratio, simply 

supported by a square FG nanoplate for the first three 

modes with (a/h = 10) and volume fraction exponent (p = 5), 

for different values of the parameter on a small scale. It can 

be observed that the frequency ratio decreases as the 

nonlocal parameter () increases. and the influence of non-

local parameter (μ) is more apparent with the increase in 

the number of modes, i.e. the frequency ratio is reduced 

from mode 1 to mode 3. 
 

 
 

Fig. 5 – Effect of the nonlocal parameter () on dimensionless 

frequency ratio ( )NL L   for a simply supported square FG 

nanoplate for the first three frequencies with (a/h = 10) 
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Fig. 6 – The first nine mode shapes of square FG nanoplate 

(p = 5) and (a/h = 10) 
 

Fig. 6 It is obvious that the variation of the parameter 

nonlocal parameter () has a significant effect on the 

higher-order frequencies of the FG nanoplates. Overall, 

for all cases of nonlocal parameters, the non-dimensional 

frequencies of the nonlocal FG nanoplates are smaller 

than those of local ones. 

 

6. CONCLUSION 
 

In this work, the free vibration analysis of FG 

nanoscale plates is numerically investigated by 

employing the higher-order hyperbolic shear deformation 

theory based on the nonlocal differential constitutive 

relations of Eringen. Hamilton's principle serves as the 

basis for the motion equations. The natural frequency of 

FG nanoplates is obtained by analytically solving these 

equations. The accuracy of the results is investigated by 

utilizing available data in the literature. It is concluded 

that various factors, such as the nonlocal scale 

parameter, the volume fraction exponent, the aspect 

ratio, and side-to-thickness ratios, play considerable roles 

in the dynamic response of FG nanoscale plates. 
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Аналіз вільної вібрації функціонально градуйованої нанопластини (Al2O3/Al): 

параметричний аналіз 
 

Ali Meftah 
 

University Center of Nour Bachir, Institute of Sciences, Department of Technology, El Bayadh, 32000, Algeria 

 
Це дослідження зосереджено на параметричному аналізі вільних коливань нанопластини з 

функціонально градуйованого матеріалу (FGM), виготовленої з (Al2O3/Al), властивості матеріалу 

нанопластини FGM градуюються лише в напрямку товщини. Теорія чотирьох невідомих деформацій 

зсуву, включена в теорію нелокальної пружності Ерінгена, використовується для виведення рівнянь руху 

з принципу Гамільтона. Отримано розчини нанопластин FGM з простою опорою та порівняно результати 

з наявними в літературі. Проведено детальний чисельний аналіз, щоб продемонструвати вплив деяких 

параметрів, таких як нелокальний параметр, співвідношення сторін і відношення сторони до товщини, на 

поведінку нанопластин FGM. 
 

Ключові слова: Нелокальна теорія пружності, Параметричний аналіз, FGM нанопластинка, Принцип 

Гамільтона. 
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