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In a range of practical applications, which contain microelectronics then aerospace engineering, the sorting
of stress in thin film material is dynamic for maximizing their presentation and dependability. By integrating
revolutionary data training methods with a unique classification, this study suggests an Al-driven Machine
Learning (ML) method for stress classification in thin film material. To promise high-quality input for the
knowledge of manner, the technique uses data cleaning strategies to cast off noise and outliers. Z-score
normalization is used to standardize the data, expanding the technique's applicability to a wider variety of
information. This study presents the Refined Crayfish Optimised K-Nearest Neighbor (RCO-KNN) algorithm for
the enterprise job that is scheduled to raise the precision and resilience of strain detection in skinny movie
materials. The RCO-KNN approach advances at the KNN by making use of Crayfish Optimization, which
maximizes the selection of neighbors and distance metrics to guarantee accurate classification. This ROC-KNN
achieved high accuracy (98.5 %), precision (96.2 %), recall (95.6 %), and Fl-score (97.8 %). According to
experimental results, this information gives a tremendously dependable tool for material science programs in
guessing out the stress levels in thin film materials.
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1. INTRODUCTION

The process of stress classification entails
determining and classifying many types and intensities of
stress that materials undergo in diverse circumstances.
This is important in predicting material behavior,
preventing failures, and optimizing design in disciplines
such as materials science and engineering [1]. Advanced
techniques such as ML improve the performance and
reliability of the materials, and with these, classification
of stress can be done more precisely and rapidly [2]. Stress
classification in thin film materials is all about the
identification and classification of various kinds of stress
that the materials undergo while they are produced and
utilized, including tensile, compressive, and shear stress.
In electronics, optics, and coatings, the thin films have to
be classified precisely so that mechanical integrity and
demonstration can be ensured. Material design and
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dependability can be enhanced with enlarged accuracy
and efficacy of stress analysis by using ML approaches
refined for this kind of analysis [3]. Thin film materials are
highly thin layers that have a definite chemical and
physical characteristics. Typically, the thickness of the
films varies between a few micrometres up to several
micrometres. These materials have enormous applications
in the fields of optics, electronics, and coatings. They are
an essential part of the operation of a number of devices,
from sensors and solar cells to semiconductors. Thin film
growth and characterization is highly essential for the
improvement of the skills that have a critical need for
precision and accuracy [4]. The analysis of stress in Al
driven thin-film materials applies sophisticated ML
measurements that detect and classify accurately the
different stress levels that might prevail in these high-tech
materials. This novel methodology advances conventional
analytical tactics for claims in coatings and electronics by
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having the capability of making it possible to provide more
rapid and accurate insights on material performance. In
stress testing, including Al can effectively reduce the risk
of failure and improve the material's performance [5].
Residual stress is a material property of dropped layers of
thin film used in the Nano system fabrication [6]. The use
of these methods to classify different types and amounts of
stress improves the performance of thin films used in
various applications. These Al-driven methods highly
advance material design and failure avoidance methods by
automatically allowing for the prediction of stress [7]. As
they can learn complex patterns from huge datasets,
neural networks have become real tools in the
classification of stress in thin film materials. They may
dependably and precisely determine the stress level based
on data coming from approaches. This strategy
importantly advances the field of materials science as
conventional analysis methods are refined together and
enabled for real-time monitoring [8]. The objective is to
advance the performance and dependability of materials
by making an Al-driven ML method that properly detects
the degrees of stress in thin-film materials.

2. RELATED WORKS

Sadowski (2022) proposed an auto-organization
technique for a cylindrical shell nonlinear bifurcation
buckling eigenmode: pipes, chimneys, silos, tanks, piles,
and wind turbine support towers. The PyTorch ML
framework is helpful as a foundation, and in order to
validate the presentation of the classifier, there is
employment of a parametric sweep of a cylindrical shell
under asymmetrical wind loads [1].

Yang et al., (2021) suggested a technique to forecast the
behavior of compound materials without regard to
component forms. Geometric hierarchy and boundary
conditions offered visions for carrying out simulations and
physical modeling. The method significantly increased the
efficiency of measuring the physical characteristics of
hierarchical materials based on the geometry of their
structural composition [9-10].

Badkul et al., (2020) suggested a way to forecast a
closed-cell metallic foam experimental behavior in the
compaction area. After adjusting the crushable foam
method's additional input parameters, stress-strain
material curves were evaluated to predict the compressive
load-displacement properties of metallic foam based on
experimental findings. It has been exposed that the way
that metallic foam hardens can be described by
engineering stress. Real strained values correctly predict
its compressive behavior employing a method of crushable
foam [11].

Lu et al., (2020) developed and frequently used
instrumented indentation for obtaining a material’s
mechanical property. It was preferred difficult to obtain
the mechanical characterization experimentally utilizing
coupon specimen stress-strain information. Direct
contrasts have been used to assess the benefits and
predictive power of these multifidly methods [12].
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3. METHODS AND MATERIALS

This study presents the novel Refined Crayfish
Optimized K-Nearest Neighbor (RCO-KNN) approaches,
which combine the KNN algorithm and optimize the RCO
method for stress classification in thin film materials.
Fig. 1 shows the flow of methodology.

Dataset
The data set includes mechanical
stress, material properties and
environmental conditions.
Classification stress level in thin film

materials
Refined Crayfish Optimized K-Nearest
Neighbour (RCO-KNN)

Performance Metrics
Accuracy, Precision, Recall, F1-Score,
Training loss and Training accuracy and
ROC Curve

Data Pre-processing

Data cleaning and Z-score
Normalization

Methodology

Fig. 1 — Flow of Methodology

3.1 Dataset

The study gathers mechanical stress measurements,
material properties, environmental information, and
material properties. Tensile and compressive stress levels
under numerous situations are among the mechanical
stress measurements included in the data. Besides
recording material characteristics such as film thickness,
it also records environmental parameters like humidity
and temperature during stress testing [13].

3.2 Pre-processing

The study aims at classifying the stress level in thin
film materials. Two pre-processing approaches were also
used in this study for the collected data in the pre-
processing phase-the Z-score Normalization and data
cleaning.

3.2.1 Data Cleaning

Data cleaning has to find and correct erroneous data,
high-quality inputs, inconsistencies, and the missing values
of the set. Thin film material stress classification accuracy
can be refined at. Data formats can now be standardized, and
further outliers eliminated to make more professional
learning by the algorithm from clean data.

3.2.2 Z-score Normalization

To standardize the data and guarantee consistent
feature scaling for more precise stress classification in thin
film materials, Z-score Normalization was used. The
Z-score normalization plots a value from characteristic F
to u’'a range that was previously unlimited, which can be
realized in Equation (1).

1 WiTFj

u === (1)

std(F)
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Where u' represents the outcome of the normalization
value, u depicts the value to be normalized in the attribute,
F; is the mean value of the attribute, then std(F) =
standard deviation attribute F.

3.3 Refined Crayfish K-Nearest

Neighbor (RCO-KNN)

Optimized

In the feature selection, KNN parameters are
dynamically combined with RCO to advance stress
classification accuracy in thin film materials. This
integration is in line with the study of improving material
performance and dependability by means of accurate and
effective stress classification.

3.3.1 K-Nearest Neighbour (KNN)

KNN is utilized to classify stress levels in thin film
materials. A well-liked supervised ML method is the KNN
method. To predict new data points, it takes advantage of
the feature similarity attribute. The projected data points
are assigned values according to which training set points
they most closely match.

Since KNN effectively uses distance-based similarity
metrics to classify stress levels in thin film materials.
Classification accuracy is improved by its versatility and
simplicity with dynamic optimization. Fig. 2 Architecture
of KNN.

Training Data

&) ED-ED

Vote 1 Vote L

Final Prediction

Majority Vote

Fig. 2 — Architecture of KNN

a) Compute the value of k, where k is the neighbor's
closest value.

b) Determine how far off the data point that wishes to
categorize is from the training data points.

¢) Arrange the training data points in ascending order
based on the distance values.

d) Make a forecast based on the bulk of the closest
neighbors.

As a result, the k value is from 2 to 9. It employs the
uniform weight function to assign weights to the points. In
each neighbor, every point is given the same weight by this
function. It utilizes the Minkowski distance formula to
determine the length of time. Between two variables, W
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and Z, the Minkowski distance of order O can be expressed
in Equation (2).

™, W — Z]%) @)

Where m is the variable's dimension number. The
Manhattan distance is represented by O = 1, and the
Euclidean distance by 0 = 2. In this system, it employs 0 = 2.

3.3.2 Refined Crayfish Optimization (RCO)

KNN parameters are dynamically optimized through
the use of RCO, which improves model efficiency and the
accuracy of stress categorization. A class of crustaceans
renowned for their quick development, quick migration,
and remarkable adaptability are crayfish, commonly
referred to as red crayfish or freshwater crayfish.
Temperature fluctuations have an impact on them and
they do best in freshwater settings. They venture into
caves to protect themselves from the heat when the
weather is too hot, and they emerge to feed when the
weather is right. The temperature has an impact on
crayfish since they are ectotherms, and their range is 20
to 35 degrees Celsius. Equation (3) gives the calculation
for temperature. Where temp represents the surrounding
crayfish temperature. The process of RCO optimization is
represented.

temp = rand X 15 + 20 3)

a) Commencing Population Initialization

In the RCO d-dimensional optimization problem,
crayfish are 1 X 1 matrix solutions. Every item in a set of
variables (W, , W, ,Ws,...W,;) has a location (W) that falls
within the search space's upper ub and lower [b
boundaries. By computing and comparing, the algorithm
determines, which answer is ideal. Through the use of
Equation (4), the crayfish population is initialized.

I/Vj,i = lbl + (ubi - lbl) X rand (4)

Where W;; denotes the location of the j-
th crayfish in the i-th element, ub; denotes the upper
bound of the i-th dimension, Ib; denotes the lower bound of
the i-th dimension, and a rand is a random number from 0
to 1.

b) Summer Retreat Period (Investigation

Stage)

To determine whether the current living situation is in
a high-temperature setting or not, a threshold
temperature of 30 °C is used. To protect themselves from
the damaging effects of high temperatures, crayfish seek
cool, wet caves during the summer months when
temperatures rise above 30°C. Equation (5) is the
calculation for the caves.

Wihage = Wy + W) /2 %)

Where Wy denotes the ideal location of the current
population and Wy is the optimal position found thus far
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for this evaluation number. A random number is
constructed to imitate the unpredictable nature of the
crayfish competition for a cave. Currently, Equation (6) is
used to calculate the updated position of crayfish.

-W) (6)

In this case, D, is a declining curve, and Wnew is the
position that comes after a location update. The equation
(7) for D, is described as follows.

Wnew = W;; + D, X rand X Wgpqqe

D, = 2 — (EF;/MaxEFy) (7

In this case, EF; stands for the total number of
evaluations, and MaxEF; for the highest possible number.

c) Competitive Phase (Application Phase)

Once the temperature surpasses 30 °C and the rand
value is less than 0.5, it suggests that other crayfish
compete with the crayfish for the cave during their
summertime quest. The two crayfish will currently engage
in combat with the cave, and crayfish W; will move in
reaction to where W, is. Equation (8) is used to get the
adjustment position. The equation (9) for the random
individual computation.

Wnew = VV]"L' + Wy,i + Wshade (8)
z = round(rand X (M — 1)) 9

Where Z in this case stands for the crayfish's random
person. M represents the size of the population.

d) Hunting Phase (Exploitation Stage)
Temperature affects crayfish foraging behavior; they
need temperatures of at least 30 °C to be able to climb out
of caverns and obtain food. Crayfish search for the best
place to get food by drilling out of caves when the
temperature is at or below 30 °C.

4. RESULT

The objective of the study is to generate a ML model
powered by Al that can precisely categorize the stress
levels in thin-film materials. To estimate the effectiveness
of the proposed system, the following metrics are
evaluated: recall, precision, accuracy, training and loss
accuracy, F1l-score, Training loss and training accuracy
and ROC curve. Table 1 and Figure 3 show the result of
the proposed method.
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Metrics

Fig. 3 — Result of proposed
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Table 1 — Outcomes of the suggested method

Metrics Values (%)
Accuracy 98.5
Precision 96.2
Recall 95.6
F1-score 97.8

Impressive outcomes are shown by the performance
metrics for the suggested RCO-KNN approach. The model
has a high degree of correctness in classifying cases within
the dataset, with an accuracy of 98.5%. The model's
efficacy in recognizing actual positive situations is
demonstrated by its 95.6 % recall and 96.2 % precision,
which both reveal that a sizable number of its positive
predictions are accurate. A great general performance is
designated by the 97.8% of Fl-score, which attacks a
balance between precision and recall. Together, these
measures demonstrate the practical uses of the RCO-KNN
method promise for efficient categorization.

4.1 Training Loss and Training Accuracy

Training loss refers to the error or difference between the
forecast output of a method and the actual target during the
work. Training accuracy measures how often the model
correctly predicts the target values during the training
process. Accuracy of training and loss graphs are used to
show how well the suggested model performs. In this case,
the x-axis represents the number of model training epochs, or
training cycles, across the entire dataset, while the y-axis
represents the accuracy and loss, respectively. Fig. 4 depicts
the outcomes of training and loss of accuracy.

1.0 1.0

08 08

08 06

04 04

Training Loss
Training Accuracy

0.2
0.2

0.0

5 10 15 20 25 30 0.0

Epochs
Epochs

a b
Fig. 4 — Result of Training and loss of accuracy

The RCO-KNN model's training results across a number
of epochs are shown in the graphs. As the model reduces
errors, the accuracy loss in graph (a) dramatically drops from
almost 1.0 to almost 0.0 during the first epochs, suggesting
successful learning. Graph (b) indicates that the model
attains a high degree of prediction accuracy as training goes
on, with the training accuracy rising gradually and
stabilizing close to 1.0. Collectively, these patterns show how
the model can effectively lower loss while quickly enhancing
performance throughout training.

4.2 Receiver Operating Characteristic Curve

A graphical tool for assessing a binary classification
model's performance is a ROC curve. At different

05036-4



AI-DRIVEN MACHINE LEARNING MODEL FOR STRESS CLASSIFICATION...

threshold values, it shows how the true positive rate and
false positive rate are traded off. The ROC curve is
frequently used to assess the performance of several
models and choose the ideal threshold for classification in
a variety of domains. Fig. 5 illustrates the ROC curve.
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True Positive Rate

0.2+

’ ——RCO-KNN
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 5 — Result of ROC Curve
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VY HU3I TPAKTUIHUX 3aCTOCYBAHb, M0 BRJIOYAITH MIKPOEJIEKTPOHIKY Ta aePOKOCMIYHY TEXHIKY, COPTYBaHHS
HAMPYKEeHb Y TOHKOIIIBKOBUX MaTepiajiaX € IMHAMIYHUM JJIsT MaKCHUMI3arlii X IpecTaBJIeHHs Ta HaJIAHOCTI.
THTerpyoUn PeBOTIOIINHI METON HABYAHHS JIAHUX 3 YHIKAJIBHOIO KJIACH(DIKAIIIE0, Il JOCIIPKeHHS IPOIIOHYE
meron wmamwmHHOro Has4yaHHs (ML) Ha ocHOBI mITyYHOro IHTeJIEKTY /I Kiacudiraiii HampyskeHb y
TOHKOILTIBKOBUX Marepiasnax. 1lo6 rapanTyBaT BHUCOKOSKICHHUM BXIMHUM CUTHAJ JJIS 3HAHBL PO THUII, METO]
BUKOPHMCTOBY€E CTpaTerii OYHUINEHHs JAaHUX JJId BHIAJEHHS IIyMy Ta BHKHAIB. Hopmasmisamis Z-OI[iHKA
BHUKOPHMCTOBYETHCA JJIs CTAHAAPTH3AIlli JTaHUX, POSIIUPIOIOYMA 3ACTOCOBHICTH METOMY [0 IIIHUPIIOTO KOJIa
indopmarrii. Ile mocmimxenus mpencrasiisie Baockouamenui anroputm Crayfish Optimised K-Nearest Neighbor
(RCO-KNN) 11151 KOPIIOPATHBHOTO MIPOEKTY, SKUH Ma€ MBUIIATA TOYHICTh Ta CTIAKICTh BUABJICHHS JedopMartii
y ToHkomwriBrkoBux Marepiasax. Ilimxim RCO-KNN possuBaerbcs B KNN, sBuropucroByioum Crayfish
Optimization, aka Makcumidye BUOIp CyCiIiB Ta METPUK BijicTaHi s rapaTii Tounol kiacudikarrii. [leir ROC-
KNN nocar Bucokoi Tounocti (98,5 %), npenusiiinocti (96,2 %), mosaotu (95,6 %) Ta F1-ominku (97,8 %). 3rigHo 3
EKCIIepUMEHTATbHUMU pPe3yJIbTaTaMu, I 1H(opMaIlis € HaJ3BUYaWHO HATIHHUM I1HCTPYMEHTOM JJIs IIPOTpam
MaTepiaJIO3HABCTBA JIJIs BU3HAYEHHS PIBHIB HAIIPYKEHb Y TOHKOILIIBKOBUX MaTepiaax.

Kirouosi cinosa: Knacudiraris manpyskens, TourommiBkoBl matepianu, Asnropurm Crayfish Optimised K-
Nearest Neighbor (RCO-KNN), Hopmaurizartisa Z-o1iHku.
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