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In a range of practical applications, which contain microelectronics then aerospace engineering, the sorting 

of stress in thin film material is dynamic for maximizing their presentation and dependability. By integrating 

revolutionary data training methods with a unique classification, this study suggests an AI-driven Machine 

Learning (ML) method for stress classification in thin film material. To promise high-quality input for the 

knowledge of manner, the technique uses data cleaning strategies to cast off noise and outliers. Z-score 

normalization is used to standardize the data, expanding the technique's applicability to a wider variety of 

information. This study presents the Refined Crayfish Optimised K-Nearest Neighbor (RCO-KNN) algorithm for 

the enterprise job that is scheduled to raise the precision and resilience of strain detection in skinny movie 

materials. The RCO-KNN approach advances at the KNN by making use of Crayfish Optimization, which 

maximizes the selection of neighbors and distance metrics to guarantee accurate classification. This ROC-KNN 

achieved high accuracy (98.5 %), precision (96.2 %), recall (95.6 %), and F1-score (97.8 %). According to 

experimental results, this information gives a tremendously dependable tool for material science programs in 

guessing out the stress levels in thin film materials. 
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1. INTRODUCTION 
 

The process of stress classification entails 

determining and classifying many types and intensities of 

stress that materials undergo in diverse circumstances. 

This is important in predicting material behavior, 

preventing failures, and optimizing design in disciplines 

such as materials science and engineering [1]. Advanced 

techniques such as ML improve the performance and 

reliability of the materials, and with these, classification 

of stress can be done more precisely and rapidly [2]. Stress 

classification in thin film materials is all about the 

identification and classification of various kinds of stress 

that the materials undergo while they are produced and 

utilized, including tensile, compressive, and shear stress. 

In electronics, optics, and coatings, the thin films have to 

be classified precisely so that mechanical integrity and 

demonstration can be ensured. Material design and 
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dependability can be enhanced with enlarged accuracy 

and efficacy of stress analysis by using ML approaches 

refined for this kind of analysis [3]. Thin film materials are 

highly thin layers that have a definite chemical and 

physical characteristics. Typically, the thickness of the 

films varies between a few micrometres up to several 

micrometres. These materials have enormous applications 

in the fields of optics, electronics, and coatings. They are 

an essential part of the operation of a number of devices, 

from sensors and solar cells to semiconductors. Thin film 

growth and characterization is highly essential for the 

improvement of the skills that have a critical need for 

precision and accuracy [4]. The analysis of stress in AI 

driven thin-film materials applies sophisticated ML 

measurements that detect and classify accurately the 

different stress levels that might prevail in these high-tech 

materials. This novel methodology advances conventional 

analytical tactics for claims in coatings and electronics by 
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having the capability of making it possible to provide more 

rapid and accurate insights on material performance. In 

stress testing, including AI can effectively reduce the risk 

of failure and improve the material's performance [5]. 

Residual stress is a material property of dropped layers of 

thin film used in the Nano system fabrication [6]. The use 

of these methods to classify different types and amounts of 

stress improves the performance of thin films used in 

various applications. These AI-driven methods highly 

advance material design and failure avoidance methods by 

automatically allowing for the prediction of stress [7]. As 

they can learn complex patterns from huge datasets, 

neural networks have become real tools in the 

classification of stress in thin film materials. They may 

dependably and precisely determine the stress level based 

on data coming from approaches. This strategy 

importantly advances the field of materials science as 

conventional analysis methods are refined together and 

enabled for real-time monitoring [8]. The objective is to 

advance the performance and dependability of materials 

by making an AI-driven ML method that properly detects 

the degrees of stress in thin-film materials.  

 

2. RELATED WORKS 
 

Sadowski (2022) proposed an auto-organization 

technique for a cylindrical shell nonlinear bifurcation 

buckling eigenmode: pipes, chimneys, silos, tanks, piles, 

and wind turbine support towers. The PyTorch ML 

framework is helpful as a foundation, and in order to 

validate the presentation of the classifier, there is 

employment of a parametric sweep of a cylindrical shell 

under asymmetrical wind loads [1]. 

Yang et al., (2021) suggested a technique to forecast the 

behavior of compound materials without regard to 

component forms. Geometric hierarchy and boundary 

conditions offered visions for carrying out simulations and 

physical modeling. The method significantly increased the 

efficiency of measuring the physical characteristics of 

hierarchical materials based on the geometry of their 

structural composition [9-10]. 

Badkul et al., (2020) suggested a way to forecast a 

closed-cell metallic foam experimental behavior in the 

compaction area. After adjusting the crushable foam 

method's additional input parameters, stress-strain 

material curves were evaluated to predict the compressive 

load-displacement properties of metallic foam based on 

experimental findings. It has been exposed that the way 

that metallic foam hardens can be described by 

engineering stress. Real strained values correctly predict 

its compressive behavior employing a method of crushable 

foam [11]. 

Lu et al., (2020) developed and frequently used 

instrumented indentation for obtaining a material’s 

mechanical property. It was preferred difficult to obtain 

the mechanical characterization experimentally utilizing 

coupon specimen stress-strain information. Direct 

contrasts have been used to assess the benefits and 

predictive power of these multifidly methods [12]. 

3. METHODS AND MATERIALS  
 

This study presents the novel Refined Crayfish 

Optimized K-Nearest Neighbor (RCO-KNN) approaches, 

which combine the KNN algorithm and optimize the RCO 

method for stress classification in thin film materials. 

Fig. 1 shows the flow of methodology. 
 

 
 

Fig. 1 – Flow of Methodology 

 

3.1 Dataset 
 

The study gathers mechanical stress measurements, 

material properties, environmental information, and 

material properties. Tensile and compressive stress levels 

under numerous situations are among the mechanical 

stress measurements included in the data. Besides 

recording material characteristics such as film thickness, 

it also records environmental parameters like humidity 

and temperature during stress testing [13]. 

 

3.2 Pre-processing 
 

The study aims at classifying the stress level in thin 

film materials. Two pre-processing approaches were also 

used in this study for the collected data in the pre-

processing phase-the Z-score Normalization and data 

cleaning. 

 

3.2.1 Data Cleaning 
 

Data cleaning has to find and correct erroneous data, 

high-quality inputs, inconsistencies, and the missing values 

of the set. Thin film material stress classification accuracy 

can be refined at. Data formats can now be standardized, and 

further outliers eliminated to make more professional 

learning by the algorithm from clean data. 

 

3.2.2 Z-score Normalization 
 

To standardize the data and guarantee consistent 

feature scaling for more precise stress classification in thin 

film materials, Z-score Normalization was used. The  

Z-score normalization plots a value from characteristic 𝐹 

to 𝑢′a range that was previously unlimited, which can be 

realized in Equation (1). 
 

 𝑢′ =
𝑢𝑗−𝐹𝑗

𝑠𝑡𝑑(𝐹)
 (1) 
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Where 𝑢′ represents the outcome of the normalization 

value, 𝑢 depicts the value to be normalized in the attribute,  

𝐹𝑗 is the mean value of the attribute, then 𝑠𝑡𝑑(𝐹) = 

standard deviation attribute 𝐹. 

 

3.3 Refined Crayfish Optimized K-Nearest 

Neighbor (RCO-KNN) 
 

In the feature selection, KNN parameters are 

dynamically combined with RCO to advance stress 

classification accuracy in thin film materials. This 

integration is in line with the study of improving material 

performance and dependability by means of accurate and 

effective stress classification. 

 

3.3.1 K-Nearest Neighbour (KNN) 
 

KNN is utilized to classify stress levels in thin film 

materials. A well-liked supervised ML method is the KNN 

method. To predict new data points, it takes advantage of 

the feature similarity attribute. The projected data points 

are assigned values according to which training set points 

they most closely match. 

Since KNN effectively uses distance-based similarity 

metrics to classify stress levels in thin film materials. 

Classification accuracy is improved by its versatility and 

simplicity with dynamic optimization. Fig. 2 Architecture 

of KNN. 
 

 
 

Fig. 2 – Architecture of KNN 
 

a) Compute the value of 𝑘, where 𝑘 is the neighbor's 

closest value.  

b) Determine how far off the data point that wishes to 

categorize is from the training data points. 

c) Arrange the training data points in ascending order 

based on the distance values.  

d) Make a forecast based on the bulk of the closest 

neighbors. 
 

As a result, the 𝑘 value is from 2 to 9. It employs the 

uniform weight function to assign weights to the points. In 

each neighbor, every point is given the same weight by this 

function. It utilizes the Minkowski distance formula to 

determine the length of time. Between two variables, 𝑊 

and 𝑍, the Minkowski distance of order 𝑂 can be expressed 

in Equation (2). 
 

 (∑ |𝑊𝑗 − 𝑍𝑗|𝑜𝑚
𝑗=1 )

1

𝑜 (2) 
 

Where 𝑚 is the variable's dimension number. The 

Manhattan distance is represented by 𝑂 = 1, and the 

Euclidean distance by 𝑂 = 2. In this system, it employs 𝑂 = 2.  

 

3.3.2 Refined Crayfish Optimization (RCO) 
 

KNN parameters are dynamically optimized through 

the use of RCO, which improves model efficiency and the 

accuracy of stress categorization. A class of crustaceans 

renowned for their quick development, quick migration, 

and remarkable adaptability are crayfish, commonly 

referred to as red crayfish or freshwater crayfish. 

Temperature fluctuations have an impact on them and 

they do best in freshwater settings. They venture into 

caves to protect themselves from the heat when the 

weather is too hot, and they emerge to feed when the 

weather is right. The temperature has an impact on 

crayfish since they are ectotherms, and their range is 20 

to 35 degrees Celsius. Equation (3) gives the calculation 

for temperature. Where 𝑡𝑒𝑚𝑝 represents the surrounding 

crayfish temperature. The process of RCO optimization is 

represented. 
 

 𝑡𝑒𝑚𝑝 =  𝑟𝑎𝑛𝑑 ×  15 +  20 (3) 
 

a) Commencing Population Initialization 

In the RCO 𝑑-dimensional optimization problem, 

crayfish are 1 × 1 matrix solutions. Every item in a set of 

variables (𝑊1 , 𝑊2 , 𝑊3 , . . . 𝑊𝑑 ) has a location (𝑊) that falls 

within the search space's upper 𝑢𝑏 and lower 𝑙𝑏 

boundaries. By computing and comparing, the algorithm 

determines, which answer is ideal. Through the use of 

Equation (4), the crayfish population is initialized. 
 

 𝑊𝑗,𝑖 =  𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑟𝑎𝑛𝑑 (4) 
 

Where 𝑊𝑗,𝑖 denotes the location of the 𝑗-

th crayfish in the 𝑖-th element, 𝑢𝑏𝑖 denotes the upper 

bound of the 𝑖-th dimension, 𝑙𝑏𝑖 denotes the lower bound of 

the 𝑖-th dimension, and a 𝑟𝑎𝑛𝑑 is a random number from 0 

to 1. 

 

b) Summer Retreat Period (Investigation 

Stage) 

To determine whether the current living situation is in 

a high-temperature setting or not, a threshold 

temperature of 30 °C is used. To protect themselves from 

the damaging effects of high temperatures, crayfish seek 

cool, wet caves during the summer months when 

temperatures rise above 30 °C. Equation (5) is the 

calculation for the caves. 
 

 𝑊𝑠ℎ𝑎𝑑𝑒 = (𝑊𝐻 + 𝑊𝐾)/2 (5) 
 

Where 𝑊𝐾 denotes the ideal location of the current 

population and 𝑊𝐻 is the optimal position found thus far 
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for this evaluation number. A random number is 

constructed to imitate the unpredictable nature of the 

crayfish competition for a cave. Currently, Equation (6) is 

used to calculate the updated position of crayfish. 
 

 𝑊𝑛𝑒𝑤 = 𝑊𝑗,𝑖 + 𝐷2 × 𝑟𝑎𝑛𝑑 × (𝑊𝑠ℎ𝑎𝑑𝑒 − 𝑊𝑗,𝑖) (6) 
 

In this case, 𝐷2 is a declining curve, and 𝑊𝑛𝑒𝑤 is the 

position that comes after a location update. The equation 

(7) for 𝐷2 is described as follows. 
 

 𝐷2 = 2 − (𝐸𝐹𝑇/𝑀𝑎𝑥𝐸𝐹𝑇) (7) 
 

In this case, 𝐸𝐹𝑇 stands for the total number of 

evaluations, and 𝑀𝑎𝑥𝐸𝐹𝑇 for the highest possible number. 

 

c) Competitive Phase (Application Phase) 

Once the temperature surpasses 30 °C and the rand 

value is less than 0.5, it suggests that other crayfish 

compete with the crayfish for the cave during their 

summertime quest. The two crayfish will currently engage 

in combat with the cave, and crayfish 𝑊𝑗 will move in 

reaction to where 𝑊𝑦 is. Equation (8) is used to get the 

adjustment position. The equation (9) for the random 

individual computation. 
 

 𝑊𝑛𝑒𝑤 = 𝑊𝑗,𝑖 + 𝑊𝑦,𝑖 + 𝑊𝑠ℎ𝑎𝑑𝑒 (8) 
 

 z =  round(rand × (M −  1)) (9) 
 

Where 𝑍 in this case stands for the crayfish's random 

person. 𝑀 represents the size of the population. 

 

d) Hunting Phase (Exploitation Stage) 

Temperature affects crayfish foraging behavior; they 

need temperatures of at least 30 °C to be able to climb out 

of caverns and obtain food. Crayfish search for the best 

place to get food by drilling out of caves when the 

temperature is at or below 30 °C.  

 

4. RESULT 
 

The objective of the study is to generate a ML model 

powered by AI that can precisely categorize the stress 

levels in thin-film materials. To estimate the effectiveness 

of the proposed system, the following metrics are 

evaluated: recall, precision, accuracy, training and loss 

accuracy, F1-score, Training loss and training accuracy 

and ROC curve. Table 1 and Figure 3 show the result of 

the proposed method. 
 

 
 

Fig. 3 – Result of proposed 

Table 1 – Outcomes of the suggested method 
 

Metrics Values (%) 

Accuracy 98.5 

Precision 96.2 

Recall 95.6 

F1-score 97.8 
 

Impressive outcomes are shown by the performance 

metrics for the suggested RCO-KNN approach. The model 

has a high degree of correctness in classifying cases within 

the dataset, with an accuracy of 98.5 %. The model's 

efficacy in recognizing actual positive situations is 

demonstrated by its 95.6 % recall and 96.2 % precision, 

which both reveal that a sizable number of its positive 

predictions are accurate. A great general performance is 

designated by the 97.8 % of F1-score, which attacks a 

balance between precision and recall. Together, these 

measures demonstrate the practical uses of the RCO-KNN 

method promise for efficient categorization. 

 

4.1 Training Loss and Training Accuracy 
 

Training loss refers to the error or difference between the 

forecast output of a method and the actual target during the 

work. Training accuracy measures how often the model 

correctly predicts the target values during the training 

process. Accuracy of training and loss graphs are used to 

show how well the suggested model performs. In this case, 

the x-axis represents the number of model training epochs, or 

training cycles, across the entire dataset, while the y-axis 

represents the accuracy and loss, respectively. Fig. 4 depicts 

the outcomes of training and loss of accuracy. 
 

 
a          b 

 

Fig. 4 – Result of Training and loss of accuracy 
 

The RCO-KNN model's training results across a number 

of epochs are shown in the graphs. As the model reduces 

errors, the accuracy loss in graph (a) dramatically drops from 

almost 1.0 to almost 0.0 during the first epochs, suggesting 

successful learning. Graph (b) indicates that the model 

attains a high degree of prediction accuracy as training goes 

on, with the training accuracy rising gradually and 

stabilizing close to 1.0. Collectively, these patterns show how 

the model can effectively lower loss while quickly enhancing 

performance throughout training. 

 

4.2 Receiver Operating Characteristic Curve 
 

A graphical tool for assessing a binary classification 

model's performance is a ROC curve. At different 
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threshold values, it shows how the true positive rate and 

false positive rate are traded off. The ROC curve is 

frequently used to assess the performance of several 

models and choose the ideal threshold for classification in 

a variety of domains.  Fig. 5 illustrates the ROC curve. 
 

 
 

Fig. 5 – Result of ROC Curve 
 

 

 

The ROC curve demonstrates the performance of the 

RCO-KNN method in stress classification of thin film 

materials. The value 0.085 indicates that a true positive 

rate of ROC. 

 

5. CONCLUSION 
 

The objective of the study is to produce an AI-powered 

ML method for the strain classification of thin-film 

materials. The method pursues to advance accuracy and 

efficiency over conventional approaches by automating 

stress detection using sophisticated algorithms. This 

technique advanced material dependability in sensors, 

electronics, and optics applications. High accuracy 

(98.5 %), prediction (96.2 %), recall (95.6 %), and F1-score 

(97.8 %) were achieved by the RCO-KNN technique for the 

classification of stress in thin-film materials. 

Furthermore, advanced hybrid AI approaches can boost 

prediction efficiency and accuracy in a variety of industrial 

applications. The RCO-KNN approach's drawback is its 

dependence on the quality and quantity of training data, 

since incomplete or skewed data may result in incorrect 

stress classifications. Furthermore, the Crayfish 

Optimization process's processing complexity can limit its 

use in situations requiring prompt decision-making. 
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У низці практичних застосувань, що включають мікроелектроніку та аерокосмічну техніку, сортування 

напружень у тонкоплівкових матеріалах є динамічним для максимізації їх представлення та надійності. 

Інтегруючи революційні методи навчання даних з унікальною класифікацією, це дослідження пропонує 

метод машинного навчання (ML) на основі штучного інтелекту для класифікації напружень у 

тонкоплівкових матеріалах. Щоб гарантувати високоякісний вхідний сигнал для знань про тип, метод 

використовує стратегії очищення даних для видалення шуму та викидів. Нормалізація Z-оцінки 

використовується для стандартизації даних, розширюючи застосовність методу до ширшого кола 

інформації. Це дослідження представляє вдосконалений алгоритм Crayfish Optimised K-Nearest Neighbor 

(RCO-KNN) для корпоративного проекту, який має підвищити точність та стійкість виявлення деформацій 

у тонкоплівкових матеріалах. Підхід RCO-KNN розвивається в KNN, використовуючи Crayfish 

Optimization, яка максимізує вибір сусідів та метрик відстані для гарантії точної класифікації. Цей ROC-

KNN досяг високої точності (98,5 %), прецизійності (96,2 %), повноти (95,6 %) та F1-оцінки (97,8 %). Згідно з 

експериментальними результатами, ця інформація є надзвичайно надійним інструментом для програм 

матеріалознавства для визначення рівнів напружень у тонкоплівкових матеріалах. 
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Nearest Neighbor (RCO-KNN), Нормалізація Z-оцінки. 


