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The three-phase Vienna rectifier is a high-performance power conversion topology widely used in indus-
trial and commercial applications due to its superior efficiency, power factor correction (PFC) capabilities,
and reduced harmonic distortion. This paper presents the implementation of a three-phase Vienna rectifier
tailored for DC load applications, utilizing Multicarrier Pulse Width Modulation (MCPWM) to achieve en-
hanced control and performance. The proposed system focuses on optimizing the operation of the Vienna
rectifier through the strategic deployment of MCPWM, enabling precise switching control for effective power
factor correction and reduced Total Harmonic Distortion (THD) in the input current. The design methodol-
ogy, circuit configuration, and modulation strategy are discussed in detail, with a focus on achieving stable
output DC voltage, low switching losses, and improved overall system efficiency. Simulation results validate
the effectiveness of the proposed MCPWM-based Vienna rectifier in handling variable DC loads while main-
taining high efficiency and power quality. The implementation offers a scalable and robust solution for ap-
plications in renewable energy systems, electric vehicle chargers, and industrial power supplies, providing
a pathway for further exploration and development in advanced rectifier technologies.
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1. INTRODUCTION

The increasing demand for energy-efficient and relia-
ble power conversion systems has propelled advance-
ments in rectifier technologies [1]. Among these, the
three-phase Vienna rectifier has emerged as a promising
topology due to its superior performance in power factor
correction (PFC), reduced harmonic distortion, and high
efficiency. Designed primarily for AC to DC conversion,
the Vienna rectifier finds applications in renewable en-
ergy systems, electric vehicle (EV) charging stations, in-
dustrial power supplies, and telecommunications [2]. Its
three-level configuration enables efficient power conver-
sion while ensuring compliance with stringent power
quality standards, making it a preferred choice for mod-
ern power electronic systems [3].

The Vienna rectifier is characterized by its ability to
operate with reduced switching losses, lower component
stress, and high-power density [4, 5]. The use of advanced
modulation techniques, such as Multicarrier Pulse
Width Modulation MCPWM), further enhances its per-
formance by providing precise control over switching de-
vices. This ensures minimal Total Harmonic Distortion
(THD) in the input current and stable DC output voltage,
even under dynamic load conditions [6].
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Over the years, extensive research has been conducted
on the development and optimization of rectifier topologies,
with particular emphasis on achieving high efficiency and
power quality. This section reviews the key contributions
in the field of Vienna rectifiers and the application of mod-
ulation techniques to improve their performance [7].

The Vienna rectifier, introduced by Johann W. Kolar in
the 1990s, represents a milestone in three-phase PFC to-
pologies. It features a three-level structure that minimizes
voltage stress on semiconductor devices, enabling the use
of lower-rated components [8]. Early studies highlighted
the rectifier’s potential for reducing THD in the input cur-
rent while achieving near-unity power factor. Subsequent
advancements focused on enhancing its efficiency and ex-
panding its applicability to higher power ranges [9].

The rectifier’s capability to operate with a high-power
factor and low THD under varying load conditions. These
findings paved the way for further exploration of control
strategies and modulation techniques to improve its perfor-
mance [10]. The modulation strategy plays a crucial role in
determining the performance of Vienna rectifiers. Conven-
tional Pulse Width Modulation (PWM) techniques, though
effective, often result in higher switching losses and limited
harmonic suppression [11]. To address these challenges, re-
searchers have proposed advanced modulation schemes,
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such as Space Vector Modulation (SVM) and Multicarrier
Pulse Width Modulation MCPWM) [12].

MCPWM has gained attention for its ability to pro-
vide enhanced harmonic suppression and precise control
over switching transitions [13]. The use of MCPWM in
three-phase rectifiers demonstrates significant improve-
ments in THD reduction and system efficiency [14]. The
optimized carrier signals and switching sequences, fur-
ther improving the rectifier’s performance. The Vienna
rectifier’s ability to deliver stable DC output with high
efficiency makes it ideal for a variety of applications [15].
In renewable energy systems, it serves as an essential
interface for integrating photovoltaic (PV) arrays and
wind turbines with DC microgrids. Similarly, in EV
charging stations, the rectifier’s PFC capability ensures
compliance with power quality standards while minimiz-
ing energy losses. Use of Vienna rectifiers in industrial
power supplies, highlighting their ability to maintain
stable operation under dynamic load conditions. More re-
cently, investigated the application of MCPWM-based
Vienna rectifiers in high-power data centers, emphasiz-
ing their scalability and robustness [16].

This paper focuses on the implementation of a three-
phase Vienna rectifier using MCPWM for DC load appli-
cations. The proposed approach is designed to optimize
efficiency, reliability, and power quality, making it suit-
able for a wide range of high-performance applications.
Future research is expected to explore the combination of
MCPWM with Al-based control strategies to further en-
hance the rectifier’s performance. Additionally, the de-
velopment of compact and cost-effective designs will be
critical for expanding the adoption of Vienna rectifiers in
emerging applications.

2. THREE PHASE VIENNA RECTIFIER

The Vienna Rectifier is a high-efficiency, three-
phase, three-level power factor correction (PFC) recti-
fier. It was developed to address the need for compact
and efficient AC-to-DC conversion systems with low har-
monic distortion and high-power quality. Named after
its origin at Vienna University of Technology, this recti-
fier topology is widely used in applications like indus-
trial drives, renewable energy systems, and electric ve-
hicle chargers. The key features are achieves reduced
voltage stress on components and minimizes harmonic
distortion, ensures nearly sinusoidal input currents and
unity power factor. And minimal switching losses due to
reduced switching frequency.
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Fig. 1 — Power circuit of three phase Vienna rectifier
The Vienna Rectifier operates as a unidirectional
three-level rectifier, converting three-phase AC input to
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a regulated DC output. Its topology typically includes a
three-phase full-bridge rectifier at the input, switching
devices are IGBTs that are used for modulation,
achieves three voltage levels using clamping diodes, In-
put inductors and DC-link capacitors for current
smoothing and energy storage. The working stages in-
cludes AC input currents are filtered by inductors to
shape them into nearly sinusoidal waveforms and re-
duce electromagnetic interference (EMI). The input AC
voltage is rectified by the diode bridge, and the output is
modulated using the switching devices to regulate the
DC-link voltage and control the input current shape.
The clamping diodes balance the voltage across the DC-
link capacitors, creating three voltage levels: positive,
negative, and zero. This reduces voltage stress and ena-
bles better current shaping. By controlling the switching
of the power devices, the rectifier ensures the input cur-
rent is in phase with the input voltage, achieving high
power factor and low total harmonic distortion (THD).
The output of the Vienna Rectifier is a regulated DC
voltage suitable for downstream applications like DC
buses or battery charging systems.

The advantages of Vienna Rectifier include high effi-
ciency with reduced conduction and switching losses, low
harmonic distortion with meets stringent power quality
standards like TEEE 519, compact design with fewer com-
ponents compared to other three-level topologies, high
power density with suitable for applications with limited
space. It widely used three-phase AC-to-DC conversion to-
pology designed for high efficiency and excellent power
quality. It addresses the challenges of modern power elec-
tronics systems, such as meeting stringent harmonic dis-
tortion standards and achieving high power factor while
operating at medium to high power levels. The Vienna Rec-
tifier is now recognized as one of the most reliable and ef-
fective solutions for applications requiring regulated DC
output from three-phase AC input.

3. MULTICARRIER PULSE WIDTH MODULA-
TION

Multicarrier Pulse Width Modulation MCPWM) is a
widely used technique in power electronics for generat-
ing gating signals in various power converters. It in-
volves the use of multiple carrier signals to compare
with a reference signal, enabling the creation of multiple
switching levels in the output waveform. This technique
is critical in applications requiring high-power, low-har-
monic distortion, and improved voltage control.
MCPWM is especially useful in multilevel inverters,
which are designed to generate stepped waveforms that
closely approximate sinusoidal output, improving power
quality and reducing stress on electrical components.

It includes carrier signals with multiple triangular
or sawtooth waveforms that are used as carrier signals.
The number of carriers depends on the levels of the
power converter. And reference signal with typically a
sinusoidal or desired waveform used to compare against
the carriers. Comparison Process with each carrier sig-
nal is compared with the reference signal. When the ref-
erence signal exceeds a carrier signal, a gating signal is
generated for the corresponding switch in the inverter.
Switching and output levels with the generated gating
signals control the switching devices in the inverter.
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This results in an output waveform with multiple volt-
age levels, reducing harmonic content and closely ap-
proximating a sinusoidal waveform.

The output voltage of proposed system based on the
applied input voltage and modulation index, which is de-
fined as,

a. Vsin <0 and Vsin > Viagt ——— S1 switched ON
b. Vsin >0 and Vein < Viagg —— S2 switched ON
c. Vsin > Viagag —— -S4 switched ON and

Vsin < Viaga—» S3 switched ON
d. Vsin > Viags —» S5 switched ON and

Vsin < Viagg—— S6 switched ON
e. Vsin > Viagg ———»S7 switched ON
f. Viin > Viags ——®S8 switched ON
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Fig. 2 — Representation of Multicarrier Pulse Width Modulation

4. SIMULATION RESULTS AND DISCUSSIONS

The implementation of a three-phase Vienna Rectifier
for DC load applications using Multicarrier Pulse Width
Modulation (MCPWM) involves designing a system in
MATLAB Simulink with key components such as a three-
phase AC source, diode bridge with clamping diodes,
switching devices, DC-link capacitors, and a resistive or
DC motor load. MCPWM is used to generate gating sig-
nals for the switches by comparing multiple carrier sig-
nals with a sinusoidal reference, enabling multilevel volt-
age control. The control system includes a PI controller
for DC-link voltage regulation and a current control loop
to ensure sinusoidal input currents and unity power fac-
tor. The simulation should focus on key metrics such as
stable DC output voltage with minimal ripple, low total
harmonic distortion (THD) in input currents, and high
conversion efficiency. The results should demonstrate si-
nusoidal input waveforms, steady DC output under vary-
ing load conditions, and efficient switching transitions.
FFT analysis can validate the power quality improve-
ments, and the rectifier’s robust performance under load
changes confirms its suitability for high-power DC appli-
cations like renewable energy systems, industrial drives,
and electric vehicle chargers.

The Switching pulses generation using multicarrier
PWM shown in fig.3. DC Output voltage of Vienna rectifier
is shown in fig.4, which is 580 V. The Voltage across the
capacitors VC1 and VC2 is 290.5 and 289.5 respectively,
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which is shown in fig.5. Voltage across the power switches
is shown in fig.6, which varies up to 290 V. The voltage
across the inductor is shown in 7. The PI tuned voltage for
pulse generation is shown in fig.8. The current through the
DC load is shown fig.9, which is shown in fig.9. The current
through three phase ac voltage is shown in fig.10.
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Fig. 3 —- Switching pulses generation using multicarrier
PWM
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Fig. 4 - DC Output voltage of Vienna rectifier
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Fig. 5 — Voltage across the capacitors VC1 and VC2
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Fig. 6 — Voltage across the power switches
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Fig. 7 - Voltage across the inductor L1
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Peanisania tpudasnoro Bigencbkoro sunpamiaya ajid 3aCTOCyBaHb IIOCTIITHOIO HABAHTA-
JKEeHHA 3 BUKOPUCTAHHAM 0araToKaHaJIbHOI IIHUPOTHO-IMITYJILCHOT MOy JIALT
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Tpudasuuit BieHCHKUM BUIPAMIIAY — I1€ BUCOKOIPOIYKTHBHA TOIIOJIOTISA IIePeTBOPEHHS eHeprii, sKa Iu-
POKO BUKOPHUCTOBYETHCS B IIPOMHUCJIOBHX TA KOMEPIIIMHHUX 3aCTOCYBAHHSX 3aBISIKU CBOIM BUCOKIM epeKTUBHO-
CTl, MOKJIMBOCTSAM KOpeKIl Koedimienra noryskuocti (PFC) Ta sHM:meHMM rapMOHIAHMM CIIOTBOPEHHAM. Y
Ii# CTATTI IIPeJCTABJIEHO peasi3alliio TPHu(asHoro BieHCHKOr0 BUIIPAMIIAYA, aJallTOBAHOTO JJIsI 3aCTOCYBAHb
THOCTIHOTO HABAHTAMKEHHS, 3 BUKOPUCTAHHAM 0araToKkaHaJIbHOI MTHPOTHO -iMIy IbcHOI Moy sii (MCPWM)
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JIJIS1 MOCATHEHHS ITOKPAIIEHOr0 KePyBaHHs Ta IPOAYKTUBHOCTI. 3aIIPOIIOHOBAHA CHCTEMA 30Cepe/PKeHa Ha OIl-
TEMI3aIfii poGoTH BIIEHCHKOTO BUIMIPAMIISTYA NMUIAXOM cTpareridaoro posroprarnus MCPWM, mo 3abesmeuye
TOYHE KePYBAHHS KOMYTAITIEIO JIJI e(DEKTHBHOI KOPEKIT] KoedillieHTa MOTY KHOCTI Ta 3HUKEHHS 3arajIbHOT0
rapmomniitHoro crorBopenus (THD) y Bximaomy crpymi. JleTasbHO 0OGroBOPIOIOTHCA METOOJIOTISI IPOEKTY-
BaHHS, KOHQITYPAI[S CXeMU Ta CTPaTeris MOIYJIAIIi, 3 aKIeHTOM Ha JOCATHEeHHS cTablIFHOI BUXITHOI Ha-
IPYTH MOCTIHHOTO CTPYMY, HU3BKHX BTPAT HA KOMYTAIII0 TA MOKPAIIEHHS 3araJbHOI e(DeKTHBHOCTI CHCTEMH.
PesynbraTi MomemoBaHHS MATBEPIKYIOTH €(PeKTUBHICTD 3aIIPOIIOHOBAHOTO BIIEHCHKOTO BUIIPSIMIISYA HA 0C-
HoBl MCPWM y 06p0611i 3MIHHUX HABAHTAYKEHB IOCTIHHOTO CTPYMY, 30epiraloyu mMpH IbOMY BHCOKY e(peKTH-
BHICTB Ta SIKICTH eJIeKTpoeHeprii. Peasrizaris mporonye MacinraboBaHe Ta HagillHe PITEHHS JIJIA 3aCTOCYBAHb
y cHCTeMax BIIHOBJIIOBAHOI €HepTii, 3apsIHUX MPUCTPOSIX JIJIS eJIEKTPOMOOLIIB Ta IPOMHUCIOBUX JiFKepesiax
JKUBJICHHS, 110 3a0e3meduye MIJIAX JJIS TOJAJIbIIOT0 JOCTIIMKEeHHS T4 PO3BUTKY IIePeIOBUX TeXHOJIOTIN BAIPSI-
MUISTIIB.

Knrouosi cnosa: Tpudasuwmit Binencbruit Bunpsamisad, [lluporao-immnyibeaa Moayisinis, [loBae rapmoHiiiHe
criorBopeHHsI, Kopekiria koedirieHTa moTyKHOCTI.
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