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In this work, the impacts of porosity and nonlocal parameter on the frequency of free vibration behaviors of
functionally graded nanoplates are investigated. The porosity distribution is described by the model. Using the
higher-order shear deformation theory, which has the four unknowns, the displacement field of the nanoplates
is defined. The governing equations of the motion of the functionally graded nanoplates are established by
utilizing the nonlocal elasticity theory in conjunction with Hamilton's principle. A thorough investigation is
conducted into the effects of several parameters, including porosity and nonlocal parameter, on the free
vibration behaviors of functionally graded porous nanoplates. Navier’s method is used to determine the closed-
form solutions, and the solutions to the eigenvalue problems are then solved to give fundamental frequencies.
The outcomes of the current studies are provided and contrasted with those found in the literature.
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1. INTRODUCTION

The domains of mechanical, civil, and aerospace
engineering have recently shown a great deal of interest in
metal foams, as they are typically porous materials [1]. Pore
distributions were the only thing studied in the early stages
of metal foams. Thus, increased focus has been placed on the
creation of functionally graded (FG) porous composite
materials to attain the required me-chanical properties by
adjusting the size and density of interior pores in one or
more directions [2]. With their exceptional mechanical
qualities, including damage tolerance, these materials can
be employed extensively in energy absorption systems, heat
exchangers, noise absorbers, building materials, etc. [3]

Consequently, it overestimates the behaviors of
nanostructures. [4] created the nonlocal elasticity theory,
which is based on continuum mechanics theory, and
included a length scale parameter to address these
drawbacks which consists of small size effects with good
accuracy to nanostructures, into the constitutive
equations. [5] studied an improved four-variable plate
model for thermal buckling characterization of FG
nanoplates under uniform temperature distributions. The
introduction of the generalized differential quadrature
method for the vibration of two-dimensional imperfect
functionally graded porous nano-/micro-beams was
presented [6]. [7-9] examined the characteristics of
advanced smart sandwich plates in terms of thermo-
electro-mechanical, free vibration, and buckling, taking
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into account the impact of porosity. The specific material
parameters and porosity are assumed to be the
determinants of Young's modulus, mass density, and
Poisson's ratio in these examinations. A nonlocal zeroth-
order shear deformation theory for the free vibration of
functionally graded nanoplates was developed [10]. The
buckling behavior of FGM sandwich nanoplates with
porosity was examined in [11] using non-local strain
gradient theory to examine the impact of heat conduction.

Using a high-order non-local shear deformation theory,
the free vibration of a non-local FG nanoplate with porosity
is analyzed in this article. Porosity and non-local
parameters' impacts on free vibration in FG nanoplates are
all examined. It is evident how important the hypothesis is
by contrasting the available data with potential fixes.

2. MODELS BOTH MATHEMATICAL AND
THEORETICAL

A rectangular FGM nanoplate with porosity is taken
into consideration. The plate's dimensions are a x b and its
thickness is A. The center surface of the FGM nanoplates
is where the Cartesian coordinates x, y, and z are put, as
illustrated in Fig. 1.

In non-local theory, the stress tensor at point x of a
physical system is related to the stress tensor in the
surrounding environment using an integral equation. A
particular type of non-local constitutive link was de-fined
by Eringen as follows [4, 12, 13]:
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Fig. 1 — The geometric model of FGM porous nanoplates

o= Ia(lx' —xl,r)t(x’)dx' 2.1
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where the nonlocal modulus is represented by the kernel
function a(|x" — x|, 7), where |x" —x| is the distance (in
Euclidean norm) and t is a material constant that depends
on internal and external characteristic lengths (such as the
wavelength and lattice spacing, respectively). where #(x) are
the components of the classical macroscopic stress tensor at
point x. The nonlocal constitutive equation given in the
integral form (see Eq.(2.1) can be expressed in an
analogous differential form as demonstrated by Eringen [4].
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where the internal and external characteristic lengths are
denoted by @ and L, respectively, and u = (eya), eo is a
material constant.

The Young’s modulus E(z) and material density p(z)
equations of the FG nanoplate with a porosity can be
expressed as:

¢

E(z)=Ema—(<%+%)P>—3)+Eca—((%ﬁ)i”)—%) 2.3)

¢

LY NS Lz ¢
p(2)=pp (1 ((2+h)) 2)+Pc(1 ((2+h)) )y (2.9

2
where € < 0.5 is the maximum porosity value[14].

In the present analysis, the shear deformation plate
theory is suitable for the displacements:

u(xay,zat) :MO(X,y,t) _Z%_f(z)a_go
Ox Ox

Wy

v(x,y,z,t)=v0(x,y,t)—zE—f(z)2—f (2.5)

WX, ¥,2,t) = Wy (X, ,1) + Wy (x, y,1)

Where uo, vo, and wo are mid-plane displacements, ¢ is
the rotation of normal to the midplane of the plate. f(z)
represents the mode shapes determining the thick-ness-
dependent stress and transverse deformation
distributions, written as:
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f(z)=sin(%.z)+(ﬁ.z),and g(z)=l—%. (2.6)

The strain is calculated by:

auo 62Wb 82ws
. E 62)(2 62)62
oy b= S el S A el
7}’ ay 2 ayz
Y%, D) L% | @
o Ox Ox0y Ox0y
Oow
{7YZ} = M ay e =0
Vxz dz % e
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For elastic FG nanoplate, the two-dimensional non-
local constitutive relations can be written as:

Oxx Oxx O1 O, O 0 0 ||&x
Oyy S| %2 On 0 0 0 gy
Tyz (~ uv Tyz (= 0 0 Oy O 0 Tyz (2.8
T T, 0 0 0 Q0 0
XZ XZ 5 5 ;/ XZ
Ty | L0 0 0 0 Oy

two-dimensional Cartesian coordinate system, in

Wthh(Uxx,O'yy,Tyz,sz,Txy) and (exx, gyy,yyz,yxz,yxy) are

the stresses and strains components, respectively. The

stiffness coefficients, Cjj , can be expressed as:

E(z
LZ’QIZ(Z):V(Z)QII(ZL
1—(v(z))

_ _ __E(9)
O44(2) = Os5(2) = Og6(2) 2(1+V(Z))

To obtain the equations of motion, Hamilton’s theory is
used herein. The theory can be described as Reddy [15] in
empirical terms.

011(2) =0 (2) =
2.9)

5j(U—K)dt =0

(2.10)

U: the deformation energy; K: the kinetic energy of the
FGM nanoplate.

3. ANALYTICAL SOLUTION FOR SIMPLY-
SUPPORTED FG NANOPLATES

In order to use the Navier solution process, we as-
sume the following kind of solution (u,v,ws,ws).
R cos(ax)sin(ﬂy)ef"”
ZZ Vo Sin(@x)cos(By)e'™ | [0<x<a 3.1)
Wy Sin(ax)sin(By)e [0 <y <b 2

u

v .
Wy -
W, it

m=1n=1 . .
W Sin(ax)sin(fSy)e
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a=mr/aand B=nxn/b 3.2

Where (4, Vs Womn» Wsmn ) 8re unknown parameters to
be determined, and ® is the natural frequency we get the

below eigenvalue equation for any fixed value of m and n,
for the free vibration problem:
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ratio v is considered to be constant and taken as 0.3 for
the current study. The numerical results are presented in
graphical and tabular forms wusing dimensionless
quantities for convenience.

Q=wh 2,
G,

4.1

Ky Ky Ky Ky My 000 0 Puw] [0 In order to check the accuracy and convergence of the
11512 11?2 ],?3 1{§24 pw g Mozz MO MO Vi | — 8 (3.3) proposed method, the numerical results of the free
13 823 R33 A3y 33 M34 1| | Womn : : :

Ki Ky Ky Ku 0 0 My My||[weml [0 vibration of the nanoplate are compared with the other

4. RESULTS AND DISCUSSION

In this section, the parametrically analyzed free
vibration behavior of a simply supported FG nanoplate is
discussed, by supposing the top surface of the plate is
ceramic-rich (SisN4) and the bottom surface is metal-rich
(SUS304). The mass density p and Young’s modulus E are:
pe=2370 kg/m3, E.=348.43GPa for SisNs, and
pm = 8166 kg/m3, En=201.04 GPa for SUS304. Poisson’s

published results. table 1 shows the first two non-
dimensional natural frequencies of a square nanoplate
without porosity (§=0); a/h =10, with different mode
values, nonlocal parameters, and power-law index (p). It
can be seen that the numerical results presented are in
very good agreement with the results of Phung et al [16].

Table 2 examined the effect of porosity (§ = 0.4) on the
free vibration of the square FG nanoplate. The power law
index p takes the values 0, 5, and 10, the a/h ratio takes
the values 5, 20, and 50 and the nonlocal parameter (u)
takes the values 0 to 4.

Table 1 — The first two non-dimensional natural frequencies 2 of a square nanoplate with a/A =10 and £ =0

Model Mode2
P Method u u

0 1 2 4 0 1 2 4
2 [16] 0.0485 0.0443 0.0410 0.0362 0.1154 0.0944 0.0819 0.0669
Present 0.0488 0.0446 0.0414 0.0365 0.1165 0.0953 0.0827 0.0676
10 [16] 0.0416 0.0380 0.0352 0.0311 0.0990 0.0810 0.0702 0.0574
Present 0.0419 0.0383 0.0355 0.0313 0.0996 0.0816 0.0707 0.0578

Table 2 — The first natural frequency € of a square nanoplate with & = 0.4
Ih =

p a 0 0.5 1 L5 2.5 3 3.5 4
0 5 0.8513 0.8123 0.7784 0.7477 0.6968 0.6751 0.6548 0.6365
20 0.0593 0.0566 0.0542 0.0521 0.0485 0.0470 0.0456 0.0443
50 0.0096 0.0091 0.0087 0.0084 0.0078 0.0076 0.0074 0.0071
5 5 0.1390 0.1325 0.1270 0.1220 0.1137 0.1101 0.1068 0.1039
20 0.0097 0.0093 0.0089 0.0086 0.0080 0.0077 0.0075 0.0073
50 0.0016 0.0015 0.0014 0.0014 0.0013 0.0012 0.0012 0.0012
20 5 0.1209 0.1152 0.1104 0.1062 0.0988 0.0958 0.0930 0.0903
20 0.0085 0.0081 0.0077 0.0074 0.0069 0.0067 0.0065 0.0063
50 0.0014 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010

We examine the FG nanoplate, we can say that the
increase in the ratio (a/h) remarkably leads to the
reduction of the non-dimensional frequency, the dis-
placement of the ceramic phase (z=h/2, p=0) towards
the metallic phase (z=-—h/2, p>>0) also causes the
reduction of the non-dimensional frequency. we also
notice that the increase in the non-local parameter
causes the decrease in frequency.

Fig. 2 indicates the distributions of Young’s modulus
of SUS304/S13N4 across the thickness of the nanoplates. I
can observe that Young's modulus without the porosities
(£ =0) is continuous across the upper surface (ceramic-
rich) and the lower surface (metal-rich). The porous effect

on Young's modulus is also carried out on the curves
where the porosity is equal (£= 0.1, 0.2, 0.3, and 0.4). The
shapes of the Young's modulus curves shown in this
figure are the same except that a decrease in the
magnitude of the Young's modulus also results in a
decrease in the stiffness of the plate.

The density patterns of SUS304/SisNs across the
nanoplate thickness are displayed in Fig. 3. I can see that on
both the bottom (metal-rich) and upper (ceramic-rich)
surfaces, the density without porosities (= 0) is continuous.
On the curves when porosity is equal (£=0.1, 0.2, 0.3, and
0.4), the porosity influence on density also manifests itself,
except for a decrease in the porosity's amplitude, the density
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curve shapes shown in this image are the same.
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Fig. 2 — Young’s modulus of porous SUS304/SizsN4, with a =10,
h=a/l0andp=5
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Fig. 3 — Density of porous SUS304/SisN4, with a =10, A=a/10
andp =5

Fig. 4 shows the influence of the porosity on the non-
dimensional natural frequency of the porous FG nanoplates.
the effect of porosity on the nanoplate frequencies is weak,
on the other hand, the influence of non-local parameters on
the nanoplate is very important, and this is illuminated by
the curves in this figure for (u = 0) that is- i.e. local elasticity,
the non-dimensional frequency takes on a large value, and
as long as (u) increases to the value 4, the non-dimensional
frequencies will decrease.

Fig. 5 illustrates the effect of the nonlocal parameter
(1) on the dimensionless natural frequency ratio, simply
supported by a square FG nanoplate for the first three
modes with (a/h=10) and volume fraction exponent
(p =5), It is clearly that the non-local parameter has a
very important effect on the frequencies of nanoplate, on
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the other hand, the porosity its influence on the
frequencies remains weak.

—8— y=l—8— y=1—h— y=2—v— u=3—0—pu=4
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Fig. 4 — The influence of the porosity () on the non-dimensional
natural frequency (Q) of the porous FG nanoplates
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Fig. 5 — The influence of the nonlocal parameter (u) on the non-
dimensional natural frequency (Q) of the porous FG nanoplates
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Fig. 6 — Effect of the power-law index (p), the nonlocal
parameter (u) on dimensionless frequency (Q) for a simply
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supported square FG nanoplate

Fig. 6 presents the interaction of the nonlocal
parameter, the power index, and the porosity. for a
homogeneous plate (p=0), perfect (§=0), and a local
theory (u = 0) in this case the non-dimensional frequencies
will take a maximum value as indicated in the figure, on
the other hand, if one of the parameters takes a value
greater than zero, non-dimensional frequencies will take a
value less than that cited previously.

As long as the power index tends towards infinity, i.e.
the mnanoplate becomes rich in metal, the non-
dimensional frequency curve becomes flat.
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Briue HeT0KaJIBLHOCTI TA MOPHUCTOCTI HA XapaKTEePUCTUKHN 9acTOTHOI BiOparii SUS304/SisNy
(pYHKIIOHAIBLHO rpaayiOBAHUX HAHOILJIACTUH

A. Meftah

University Center of Nour Bachir, Institute of Sciences, Department of Technology, El Bayadh, 32000, Algeria

V¥ naniit po6oTi JOCIIIPKEHO BIUIMB IIOPHCTOCTL TA HEJOKAJIBHOIO IIapaMeTpa Ha YaCTOTy BIJIIBHUX KOJIMBAHb
QYHKIIOHAIBHO TPALyMOBAHUX HAHOILIACTUH. PO3MOMAIN HOPHUCTOCTI OMMCYETHCS MOJEJLI. BHKOPHCTOByHOUH
TEOPII0 3CYBY BUIIOIO HOPSAIKY, SIKA MA€ YOTHPH HEBIOMI, BU3HAYAETHCS [I0JIe 3MileHHs HaHomaacTuH. Kepisui
PIBHAHHSA PyXy (YHKI[IOHAJIBHO IPALyHOBAHUX HAHOIUIACTHH BCTA-HOBJIOIOTHCS LIJISIXOM BHKOPHCTAHHS TEOpil
HEeJIOKAJBbHOI MPYKHOCT1 B MOETHAHHI 3 mpuHIunoM ['amins-tona. IIpoBemneHo peresibHe HOCIIIIMKEHHS BILIHBY
KIJTBPKOX IIapaMeTpiB, BKJIIOYAIOYM IIOPHUCTICTh 1 HEJIOKAJbHMU ITapaMeTp, Ha IIOBEMIHKY BLJIbHOI BiOparrii
QYHKITIOHAIBHO TpaayHoBaHMX DOpHUCTUX HaHoIiacTuH. Mertoxn Has’e BuKOpHMCTOBYeThCA IJisi BU3HAYEHHS
PO3B’A3KiB 3akpuTol hOPMH, a4 PO3B’A3KH 3a7a4 HA BJIACHI 3HAUEHHS IIOTIM BUPIIIYIOTHCA, 100 OTPUMATH OCHOBHI
yacToTh. Pe3yJibTaTu MOTOYHUX JOCJIIIKEeHb HAaJaHOo Ta 31CTABJIEHO 3 TUMH, II[0 MICTATHCS B JIiTEpaTypi.

Knouosi cinosa: Hesokasnpaa Teopis, mopucti GyHKIIIOHAIBHO IPaayioBaHl HAHOIIACTUHHY, IIOPUCTICTH, METO

Hawg’e.
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