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Nanomaterial integration in solar photovoltaic systems improves the efficiency of solar photovoltaic systems 

through better light capture and charge carrier transportation. To estimate parameters for these systems, 

improved optimization can fine-tune the efficiency of energy conversion and improve system robustness. This 

study aims to develop an optimization technique for accurate parameter estimation in solar photovoltaic systems 

using nanomaterials. This approach seeks to enhance the efficiency and performance of solar cells by leveraging 

advanced optimization algorithms. Intelligent Ant Colony Optimization (IACO) helps to estimate the parameters 

of solar photovoltaic systems with a more accurate simulation of the behavior of ants and their optimization 

functions to nanomaterials for energy production. For realizing enhanced accuracy and convergence in solar 

photovoltaic parameters, the Scalable Cuckoo Search Algorithm (SCSA) is used in the light of cuckoo nesting. 

The research uses two primary photovoltaic models (Updated One-Diode, and Updated Two-Diode) to assess the 

effects of nanomaterial integration. The integration of nanomaterials with the hybrid IACO-SCSA optimization 

led to significant improvements in solar cell efficiency. The study showed that the UODM and UTDM, while 

optimizing using hybrid IACO-SCSA, outperformed better than other models, such as SSE (Sum of Squared 

Error), RMSE (Root Mean Squared Error), and MAE (Mean Absolute Error).  
 

Keywords: Intelligent Ant Colony Optimization (IACO), Scalable Cuckoo Search Algorithm (ICSA), Updated 

One-Diode, Updated Two-Diode. 
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1. INTRODUCTION 
 

Solar photovoltaic (PV) systems are a well-known 

global choice for delivering renewable energy [1]. These 

systems directly convert sunlight into electrical energy; 

thus, they are good examples of clean technologies that 

free society from reliance on non-renewable resources, 

such as fossil fuels [2]. Another factor that defines the PV 

performance is the levels of accuracy of the estimated 

parameters that play a decisive role in the efficiency as 

well as the amount of power yielded. That makes it easier 

to design, control and manage the PV systems for the 

optimum use of solar resources; this is because of the right 

assessment of parameters. But reaching such a level of 

accuracy is not very easy because of the nonlinear 

characteristics exhibited by PV systems and also they 

depend on other parameters, such as temperature, 

irradiance and shading conditions [3]. 

                                                           
* Correspondence e-mail: tarunctech@gmail.com 

There is also another approach that should be used to 

enhance the efficiency of the utilized parameter 

estimation, and it is the method of nanomaterials 

incorporation in the PV cells. Due to the presence of 

various characteristics, nanomaterials can increase light 

trapping, reduce damages, and enhance solar cell perf 

ormance [4]. For example, such materials as quantum 

dots, carbon nano tubes and nanowires have enhanced 

optical and electrical properties, which will be useful for 

enhancing energy absorption and conversion efficiencies in 

the PV cells [5]. These materials can be further used to 

fine-tune all the parameters that are connected with the 

internal work of the PV system. As demand for energy 

storage from renewable sources continues to rise, these 

nanomaterials for solar opportunities advance approaches 

to enhance the efficiency of PV devices [6]. This is 

important because it would provide researchers and 

engineers with more accurate estimates of parameters for 
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PV power systems, leading to increase efficiency in the 

design of these systems and offering more ideal solutions 

to solar energy challenges. Besides, this approach 

contributes to the promotion of PV systems as well as the 

objectives of achieving the sustainable development goals, 

providing better conditions for the use of renewable 

resources [7]. 

 

2. RELATED WORKS 
 

The impact of the coatings on photovoltaic (PV) panel's 

performance was evaluated in the research by [8]. Under 

three distinct conditions, first solar PV was utilized for the 

self-cleaning procedure after being coated with a 

hydrophobic SiO2 nanomaterial. The second photovoltaic 

panel was hand-cleaned without any kind of coating. 

Every day, the second photovoltaic panel was hand 

cleaned without any kind of coating. Throughout the 

experiment, the final solar panel was left uncoated and 

unclean; it served as a standard for all measurement 

procedures. 

Applying a temporal three-dimensional model, a 

quantitative simulation of a PV thermal system utilizing 

nanofluids and nano-enhanced stage transition materials 

was conducted in the research [9]. The responsive surface 

technique was used to create a predictive model that 

predicted how the system would respond. Both phase 

change material and working fluid were treated with 

aluminum oxide nanoparticles to enhance their thermal 

performance. 

To improve the optimization technique based on the 

salp swarm method (SSA) for recovering parameters from 

PV models, [10] proposed a modified salp swarm optimizer 

(MSSA). Parameters from three PV models were extracted 

to determine how the suggested technique was presented. 

Experimental results were showed that the suggested 

MSSA was more accurate and reliable than the original 

SSA when compared to alternative methods. 

To indicate the thermal efficiency of pyramid solar 

distillers (PSD) [11], a mathematical modeling technique 

was developed that used responding surface methodology 

(RSM) to be employed in solar distillers under various 

environmental factors and nanoparticle kinds and 

concentrations. The three most important climatic process 

characteristics taken into consideration were wind speed, 

ambient temperature, and sun intensity. 

To precisely identify the five characteristics of the 

individual diode models of solar cells, [12-13] presented a 

non-iterative method. By making the calculating process 

simpler, the approach solved the issues of accuracy and 

complexity. To acquire the appropriate five characteristics 

from the I-V curve, it was necessary to dynamically alter 

key components of the equation. 

 

3. METHODOLOGY 
 

This research uses four primary solar photovoltaic 

models (One-Diode, Updated One-Diode, Two-Diode, and 

Updated Two-Diode) to assess the effects of nanomaterial 

integration. Intelligent Ant Colony Optimization (IACO) 

helps to estimate the parameters of solar photovoltaic 

system with a more accurate simulation of the behavior of 

ants and their optimization functions to nanomaterials for 

energy production. For realizing enhanced accuracy and 

convergence in solar photovoltaic parameters, the Scalable 

Cuckoo Search Algorithm (SCSA) is used in light of cuckoo 

nesting. 

 

3.1 Nanomaterials 
 

Titanium Dioxide (TiO2) nanoparticles, Copper Indium 

Gallium Selenide (CIGS) nanoparticles, Silicon nanowires, 

Copper Oxide (CuO2) nanoparticles, and Molybdenum 

Disulfide (MoS2) nanosheets are incorporated to increase 

light trapping, charge mobility and photovoltaic 

conversion efficiency of the solar systems. These 

nanomaterials are useful in optimization strategies by 

improving the parameter estimation methods and 

reducing energy dissipation resulting in enhanced 

performance and efficiency of the solar cells.  

 

3.1.1 One-Diode Model (ODM) 
 

The ODM seems to fit well I-V characteristics of 

photovoltaic (PV) cells incorporating nanomaterials, as 

illustrated in Figure 1. However, this photon absorption 

efficiency can be greatly improved when nanomaterials 

are integrated into the semiconductor. Nanomaterials 

enhance the light capture and carrier density-

recombination rate because they have a high surface area 

to volume ratio and it can easily tune their electronic 

features to develop the general efficiency of the solar cell. 

Due to nanostructuring, the absorption efficiency in solar 

cells is high, resulting in greater power generation. The 

given information on the potential difference across the 

circuit and current flow shows that the electric field 

present at the P-N junction is efficient in the process of 

separating the generated carriers and further, these 

carriers are collected through electrodes, thus giving rise 

to a photovoltaic current. At this point, if a photovoltaic 

current is not present, the cell will function as an ordinary 

diode. The diode current drift follows the Shockley diode 

equation, as shown in Equation (1). 
 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 (𝑓
𝑉+𝐼𝑅𝑠𝑒

𝑁𝑉𝑇 − 1) −
𝑉+𝐼𝑅𝑠𝑒

𝑅𝑠ℎ
     (1) 

 

 
 

Fig. 1 – ODM Circuit 
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3.1.2 Updated One-Diode Model (UODM) 
 

To incorporate the additional resistance due to grain 

boundaries in the quasi-neutral regions, a modification of 

the one-diode model is made to develop the UODM as 

shown in Fig. 2. The separation of charge is enhanced with 

the help of nanomaterials in these applications, thus 

minimizing recombination losses and improving 

conductivity. This serves to increase a photovoltaic 

current, as shown in equation (2). 
 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑐 (𝑓

𝑉+𝐼𝑅𝑠𝑒−𝐼𝑑𝑅𝑠

𝑁𝑉𝑇 − 1) −
𝑉+𝐼𝑅𝑠𝑒

𝑅𝑠ℎ
   (2) 

 

 
 

Fig. 2 – UODM Circuit 

 

3.1.3 Two-Diode Model (TDM) 
 

The improvement achieved by TDM is even higher as 

the second diode is placed in parallel with the current 

source, as described in Figure 3. This addition refers to 

recombination effects that are important in PV cells with 

nanostructures, since boundary and interface factors 

largely influence the mobility and recombination of the 

carrier. The additional diode contributes to the 

recombination current, improving accuracy, particularly 

while illuminating lights of lower intensity or amount. 

TDM is improved through the use of nanomaterials, since 

recombination inside the cell is minimized. For example, 

quantum dots can generate more than one exciton 

(electron-hole pair) per photon, increasing photocurrent 

and minimizing energy losses, as shown in equation (3). 
 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 (𝑓
𝑉+𝐼𝑅𝑠𝑒

𝑁𝑉𝑇 − 1) − 𝐼𝑑1 (𝑓
𝑉+𝐼𝑅𝑠𝑒

𝑁𝑉𝑇 − 1) −
𝑉+𝐼𝑅𝑠𝑒

𝑅𝑠ℎ
 (3) 

 

 
 

Fig. 3 – TDM Circuit 

 

3.1.4 Updated Two-Diode Model (UTDM) 
 

To consider the specific resistance in nanomaterial-

based PV cells, the UTDM extends the TDM by including 

additional resistance, as illustrated in Fig. 4. Some 

nanostructures have different resistances at grain 

boundaries compared to the crystallite boundaries, hence 

affecting the carrier transport across the boundaries. 

Carbon nanotubes and nanowires improve the UTDM by 

increasing the electron transporting capacity between the 

particles. This addition of resistance is consistent with the 

characteristic electron transport in the nanostructured PV 

cells. The UTDM equation (4) is defined below. 
 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 (𝑓

𝑉+𝐼𝑅𝑠𝑒−𝐼𝑑𝑅𝑠

𝑁𝑉𝑇 − 1) − 𝐼𝑑1 (𝑓

𝑉+𝐼𝑅𝑠𝑒−𝐼𝑑𝑅𝑠

𝑁𝑉𝑇 − 1)
𝑉+𝐼𝑅𝑠𝑒

𝑅𝑠ℎ
 (4) 

 

 
 

Fig. 4 – UTDM Circuit 

 

3.2 Intelligent Ant Colony Optimization (IACO) 
 

The advanced algorithmic technique developed for the 

enhancement and optimization of solar photovoltaic (PV) 

systems and incorporated with nanomaterials is known as 

Intelligent Ant Colony Optimization (IACO). Real-world 

problems are solved through the use of simulated ants 

where by IACO makes adjustments to different 

parameters like orientation and efficiency of the PV 

material to get the maximum yields on solar energy. With 

this nanomaterial, IACO seeks to optimize photovoltaic 

performances and durability when exposed to climatic 

conditions, thereby providing a dependable solar energy 

system solution. 

In the conventional ACO algorithm, every ant is 

assigned to a city at random. Ants use a probabilistic 

decision-making method to choose the next city to visit 

while constructing an optimal solution. Equation 

(5) calculates the probability of ant 𝑙 going to the following 

city 𝑖 that is next to city 𝑗 at time 𝑠 while ant 𝑙 remains in 

city 𝑗 and creates the partial solution. 
 

𝑜𝑗𝑖
𝑙 (𝑠) = {

𝜏𝑗𝑖
𝛼 (𝑠)𝜂𝑗𝑖

𝛽
(𝑠)

∑ 𝜏𝑗𝑙
𝛼 (𝑠)𝜂𝑗𝑙

𝛽
(𝑠)𝑙∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑙

     𝑖𝑓 𝑖 ∈  𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑙

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (5) 

 

Where 𝜂𝑗𝑖 =
1

𝑐𝑗𝑖
   is the heuristic value of traveling from 

city 𝑗 to city 𝑖, 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑙 is the set of cities visited by ant 𝑙, 
and 𝜏𝑗𝑖(𝑠) is the volume of pheromone trail on 𝑎𝑟𝑐(𝑗, 𝑖) at 

time 𝑠. These parameters 𝛼  𝑎𝑛𝑑 𝛽 regulate the comparative 

weight of the pheromone trail and heuristic values. The 

standard ant colony optimization approach has many 

drawbacks, including a slow speed of convergence and a 

tendency to consolidate on a local optimal solution. To 
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improve the global search capability, prevent being stuck in 

a localized optimal solution, and accelerate convergence, it 

suggests a distance heuristic element in addition to the 

standard ACO method. Using the lowest sum of the 

distances between the present node and the next node, as 

well as the next node and the destination node, improve 

𝜂𝑗𝑖  and the impact of the destination node on the following 

node, as shown in Equation (6). 

 𝑚𝑗𝑖 =
1

min [𝑑𝑖𝑠(𝑗,𝑖)+𝑑𝑖𝑠(𝑖,𝑛)]
   (6) 

 

Where the distance between node 𝑗 and the following node 

𝑖 is 𝑑𝑖𝑠(𝑗, 𝑖), and the distance between node 𝑖 and the 

destination node 𝑛 is 𝑑𝑖𝑠(𝑖, 𝑛) in equation (7). 
 

𝑜𝑗𝑖
𝑙 (𝑠) = {

[𝜏𝑗𝑖(𝑠)𝛼] ∙{
1

min[𝑑𝑖𝑠(𝑗,𝑖)+𝑑𝑖𝑠(𝑖,𝑛)]
}

𝛽

∑ [𝜏𝑗𝑙(𝑠)]𝑖
𝛼

∙{
1

min[𝑑𝑖𝑠(𝑗,𝑖)+𝑑𝑖𝑠(𝑖,𝑛)]
}

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                   (7) 

 

Over time, a path's pheromone trail decreases. 

Equations (8) and (9) are used to modify the trail strength 

after time 𝑛. 
 

 𝜏𝑗𝑖(𝑠 + 𝑡) = 𝜌𝜏𝑗𝑖(𝑠) + ∆𝜏𝑗𝑖 (8) 
 

 ∆𝜏𝑗𝑖 = ∑ ∆𝜏𝑗𝑖
𝑙𝑚

𝑙=1  (9) 
 

Where the value of 𝜌, a coefficient that indicates the 

trail's evaporation between time 𝑠 and 𝑠 + 𝑡, ranges from 0 

to 1. Ant 𝑙 lays trail substance (similar to a genuine ant's 

pheromone) on edge (𝑗, 𝑖) between time 𝑠 and 𝑠 + 𝑡, with 

∆𝜏𝑗𝑖
𝑙  being the amount per unit of length, and 𝑚 being the 

overall number of ants. Equation (10) illustrates the use of 

the ant-cycle network data updating model. 
 

∆𝜏𝑗𝑖
𝑙 = {

𝑅

𝐾𝑙
    𝑎𝑟𝑒 (𝑗, 𝑖)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑒𝑠𝑡 𝑡𝑜𝑢𝑟 

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  (10) 

 

Here, 𝑅 is one of the constants related to the total 

pheromone and serves the same purpose as in 

conventional pheromone updating techniques. The 𝑙th 

ant's passage length is denoted by 𝐾𝑙. After a 

predetermined number of iterations, this method will stop 

until an ideal path is determined. 

 

4. RESULT AND DISCUSSION 
 

Python 3.12 operated on Windows 11 with an 11th-

generation Core i7 processor and 32 GB of RAM. It made 

multitasking and development duties demanding 

performance evaluations much easier due to this modern 

laptop design. The study compared the three methods, 

such as SCSA, IACO, and Hybrid ICSA-SACO with the 

Updated One-Diode Model (UODM) and Updated Two-

Diode Model (UODM) of solar PV using nanomaterial, in 

this they compared the proposed model’s execution time 

and statistical results using SSE, MAE, and RMSE. 

 

4.1 Execution Time for UODM 
 

It compares the performance of three algorithms in 

Table 1: Combined results of IACO, SCSA, and Hybrid 

IACO-SCSA in terms of different parameters. For the 

IACO model, SCSA model, and Hybrid IACO-SCSA model, 

the maximum power point voltage (Ipv) is found to be 

9.25 V, 9.30 V, and 9.275 V respectively. The Alpha1 

values of efficiency parameters are 1.45 for IACO, 1.43 for 

SCSA, and 1.44 for the proposed hybrid method. Rse & Rsh 

both give better results with SCSA than with the others 

0.0180 & 260 respectively. The current (I01) values have 

not changed and the series resistance (Rs) indicates that 

SCSA offers the lowest value. Hybrid IACO-SCSA 

demonstrates the best results and takes the shortest time 

of 1.1 seconds for execution. 
 

Table 1 – UODM parameters 
 

Para-

meters 

IACO SCSA Hybrid 

IACO-SCSA 

Ipv 9.2500 9.3000 9.2750 

Alpha1 1.4500 1.4300 1.4400 

Rse 0.1000 0.0180 0.0590 

Rsh 255.000 260.000 257.500 

I01 3.60  10 – 7 3.50  10 – 7 3.55  10 – 7 

Rs 0.1000 0.0160 0.0580 

Execution 

time 

1.2500 1.2000 1.1000 

 

4.2 Execution Time for Updated Two-Diode Model 

(UTDM) 
 

It compares the performance of three algorithms: 

Comparative analysis of IACO, SCSA, and Hybrid IACO-

SCSA based on several indexes. The Ipv values of IACO, 

SCSA, and hybrid model are 9.125 V, 9.215 V, and 9.170 V 

respectively. There are efficiency parameters denoted by 

Alpha1 and Alpha2; based on these values, it can be 

realized that IACO possesses improved Alpha1 & Alpha2 

values. IACO has the lowest Rse for series resistance error 

at 0.016 while the highest Rsh at 268.5. For the current 

values, it is more stable in the hybrid model than in SCSA 

in terms of I01 and I02. Finally, according to the results 

obtained in Table 2, the Hybrid IACO- SCSA requires less 

time for execution in specific seconds and this is computed 

to be 1.17. 
 

Table. 2 – UTDM parameters 
 

Para-

meters 

IACO SCSA Hybrid 

IACO-SCSA 

Ipv 9.1250 9.2150 9.1700 

Alpha1 1.9500 1.6800 1.8150 

Alpha2 1.5500 1.0200 1.2850 

Rse 0.0160 0.0350 0.0250 

Rsh 268.500 158.000 213.250 

I01 2.70  10 – 7 6.10  10 – 7 4.40  10 – 7 

I02 3.30  10 – 7 2.10  10 – 7 3.20  10 – 7 

Rs 0.0150 0.0220 0.0185 

Execution 

time 

1.2200 1.2000 1.1700 
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5. CONCLUSION 
 

The efficiency and performance of solar cells 

incorporated with nanomaterials in solar photovoltaic 

systems are enhanced by employing several optimization 

algorithms, such as the newly developed hybrid Intelligent 

Ant Colony Optimization-Scalable Cuckoo Search 

Algorithm (IACO-SCSA). Nanomaterial incorporation 

enhances the charge transports and light capturing, and 

minimizes energy dissipation while increasing the 

efficiency of the optimizing method offering enhances 

parameter estimations, and enhancing the convergence of 

the system. When comparing the two main solar PV 

models using nanomaterials, such as UODM the one-diode 

model using the hybrid method provides the least SSE 

value of (𝑀𝑒𝑎𝑛 = 4.80 × 10⁻³, 𝑆. 𝐷 = 2.10 × 10⁻³), RMSE 

(𝑀𝑒𝑎𝑛 = 1.58 × 10−2, 𝑆. 𝐷 = 1.05 × 10−2), and MAE 

(𝑀𝑒𝑎𝑛 = 3.20 × 10⁻³, 𝑆. 𝐷 = 2.20 × 10⁻³) and UTDM the 

two-diode model using the hybrid method offered the least 

SSE value of (𝑀𝑒𝑎𝑛 = 5.30 ×  10⁻³, 𝑆. 𝐷 = 2.35 ×  10⁻³), 
RMSE (𝑀𝑒𝑎𝑛 = 1.66 ×  10⁻², 𝑆. 𝐷 = 1.13 ×  10⁻²), and MAE 

(𝑀𝑒𝑎𝑛 = 3.50 ×  10⁻³, 𝑆. 𝐷 = 2.45 ×  10⁻³). Thus, the 

results of this work may indicate further opportunities for 

introducing nanomaterials into the development of solar 

PV technology to enhance efficient renewable energy. 

Future studies can expand on enhancing nanomaterials 

and optimizing algorithms to take the efficiency of solar 

photovoltaic systems to the next level.
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Інтеграція наноматеріалів у сонячні фотоелектричні системи підвищує ефективність сонячних 

фотоелектричних систем завдяки кращому захопленню світла та транспортуванню носіїв заряду. Для 

оцінки параметрів таких систем покращена оптимізація може точно налаштувати ефективність 

перетворення енергії та підвищити стійкість системи. Метою роботи є розробка методу оптимізації для 

точної оцінки параметрів у сонячних фотоелектричних системах з використанням наноматеріалів. Цей 

підхід спрямований на підвищення ефективності та продуктивності сонячних елементів шляхом 

використання передових алгоритмів оптимізації. Інтелектуальна оптимізація колонії мурах (IACO) 

допомагає оцінити параметри сонячних фотоелектричних систем за допомогою точнішого моделювання 

поведінки мурах та їхніх функцій оптимізації для наноматеріалів для виробництва енергії. Для реалізації 

підвищеної точності та конвергенції параметрів сонячних фотоелектричних систем використовується 

масштабований алгоритм пошуку зозулі (SCSA) з урахуванням гніздування зозулі. У дослідженні 

використовуються дві основні фотоелектричні моделі (оновлена однодіодна та оновлена дводіодна) для 

оцінки впливу інтеграції наноматеріалів. Інтеграція наноматеріалів з гібридною оптимізацією IACO-SCSA 

призвела до значного покращення ефективності сонячних елементів. UODM та UTDM, оптимізовані за 

допомогою гібридної IACO-SCSA, показали кращі результати, ніж інші моделі, такі як SSE (сума 

квадратичних помилок), RMSE (середньоквадратична помилка) та MAE (середня абсолютна помилка). 
 

Kлючові слова: Інтелектуальна оптимізація (IACO), Масштабований алгоритм (ICSA), Оновлені 

однодіодна і дводіодна моделі. 
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