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The qualities of graphene and other atomic materials, coupled with computer vision methods, enable radical
improvements in the sensitivity of flaw detection. The data collection process obtained in the methods was high-
resolution imaging which applied to capture minute surface details of the atomic materials. The photos are
exposed to contemporary feature extraction techniques to highlight and improve the details of the main structural
components after undergoing stringent data pretreatment stages like noise reduction and picture
standardization. The unique Effective Chicken Swarm Guided Recursive NeuroNet (ECS-RNN) model aims to
classify and detect defects by applying smart swarms and deep learning. Trained on the performance metrics
achieved in this study, which indicates its capability of producing very high accurate and reliable predictions of
97.3 % F1-score, 98.5 % accuracy and 96.8 % precision. These results indicate advancement in defect detection
using the proposed technique and show applicability of machine learning practices in solving very complex
problems. The ECS-RNN model reveals substantial improvements in neural network computations,
demonstrates its ability to retrieve relevant architectures with minimal erosion, which is advantageous in
scenarios where the retrieval of crucial information is of utmost importance.
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1. INTRODUCTION

The fact that a few elements can create various
elemental mixtures and microstructures is fascinating
from a chemical standpoint. Reflecting on the evolution of
human, they constantly dedicate ourselves to controlling
the structure of materials. To create weapons, the
prehistoric man first polished the precious stones [1]. The
modification that can be made advanced from the macro
framework to the small and even to the atomic level after
a long period of material development. Pristine crystals
can be used to describe everything of solid-state physics
and science of materials only becomes involved when
genuine material qualities need to be defined in terms of
flaws [2]. Effective, contemporary renewable energy
storing and conversion techniques, including solar panels,
splitting of water, hydrogen fuel cell batteries, and super
capacitors have been made possible by the development
and design of materials at the nanoscale. The secret to
obtaining better efficiency and long-term reliability from
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these devices lies not only developing new materials but
also improving their structure and interaction
characteristics [3]. Since it enables the deposit of pinhole-
free sheets with atom-level control over density and
formulation over surfaces that have elevated aspect ratios,
atomic layer deposition (ALD) has emerged as a crucial
technique for nanotechnology. Microstructure is a
collection of all unstable lattice imperfections in a material
[4]. Examples include mesoscopic defects like second-
phase precipitation, planar defects like boundaries and
mounting faults, line defects like displacements, and point
defects like substitutional and interconnected atoms and
voids. The regularity of the normally regular crystalline
structure is broken by these kinds of lattice flaws, which
are defined according to their structural characteristics
[6]. According to the latest nanoscale analytic inquiry,
their chemical characteristics are significant and
distinctive. Both the electrical and thermal transport
capabilities of thermoelectric substances can be strongly
influenced by the arrangement of the defects as well as
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their particular chemical makeup, or their chemical
embellishment state [6]. With quickly developing
applications across atomic, graphical, spectrum, and text-
based techniques, deep learning (DL) constitutes one of
the key data science subjects with the quickest rate of
growth. DL makes it possible to automatically identify
characteristics and analyze unstructured material. The
use of DL techniques in atomistic predicting has been
spurred by the recent growth of huge materials databases.
On the other contrary, improvements in image and
spectrum data have mostly benefited from data
manipulation made possible by generating unregulated
DL techniques and high-quality forwarding models [7].
The main objective of the study is to improve defect
identification in atomic materials by developing a
computer vision approach. The work intends to increase
the precision of structural anomaly identification by
utilizing cutting-edge imaging techniques.

2. RELATED WORKS

With reference to [8], investigated how single atomic
faults in monolayer WSz can cause electrically driven
photon emission, and establish a direct correlation
between the emission and the surrounding atom and
electronic properties. An effective substrate for electrically
driven, widely adjustable, atomic-scale single-photon
generators were provided by inflexible charged carrier
insertion into localized states of defect of two-dimensional
substances.

The method for sub-picometer accuracy single-atom
defects probing in a single-layer 2D transition metallic
dichalcogenide was explained in [9]. Identified and
categorized point flaws by using deep learning to explore
massive datasets of aberration-corrected images. These
findings suggest that computer vision could have an
influence on the advancement of high-precision
microscopy using electrons techniques for materials that
were sensitive to beams.

To address laccase's intrinsic flaws, an initial iron
single-atom anchoring N-doped carbon substance
(Fel@CN-20) was revealed as a laccase substitute in [10].
Furthermore, it can be utilized at least seven times with a
minor decrease in functionality. Therefore, compared to
laccase, which has been used in the recognition and
destruction of a number of phenolic compounds, this
material is significantly less expensive and has better
stability and recycling ability.

According to the author of [3, 11], the localized
chemically decorating states of different kinds of lattice
faults in thermoelectric substances were investigated and
the findings were obtained using atom probe tomography
(APT). To help direct the rational development of
outstanding performance thermoelectric substances, APT
extends the idea of engineering defects to the realm of
separation engineering, enabling a deeper understanding
of the interaction between piezoelectric characteristics and
microstructural characteristics.
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3. METHODS AND MATERIALS

In this method, the faults or anomalies of atomic
structure is evaluated by the collection of dataset, which
involves SEM and AFM. To remove noise median and
wiener filter could be effectively utilized for preprocessing
and gray level co-occurrence matrix (GLCM) is
implemented for future extraction. The proposed Effective
Chicken swarm Guided Recursive NeuroNet (ECS-RNN)
method can be effective determine the defect as shown in
Fig. 1.
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Fig. 1 - Schematic view of method flow incorporated in the study

3.1 Data collection

A dataset could consist of images with high resolution
or scanning the image of graphene layers produced using
advanced imaging techniques like AFM and SEM. The
images have revealed a number of faults or anomalies in
the atomic structure of the graphene, including as empty
spaces, grain boundaries, displacements, and other
surface imperfections. To train a computer vision model
for defect recognition, marked specimens of both defective
and non-faulty areas have been added to the dataset.

3.2 Data Preprocessing Using Median and Wiener
Filters

By improving images quality, median and wiener
filtering are essential preprocessing tools for fault
identification in graphene layers. Typically, a suitable
method, both median and wiener filtering is used to repair
damaged images that are susceptible to noise. This could be
stated mathematically as follows in Equations (1) and (2):

h(w,z) = e(w, z) * v(w, z) + m(w, z) 1)
9w, z) = Q[q(w, 2)] ()
In this case, e(w,z)indicates the obtained image,

v(w,z)is the deterioration function, " ="'indicates
convolution, m(w, z)stands for noise, including Gaussian
fluctuations, h(w,z)is the resultant deteriorated image,
and g(w, z)is the last result images after the method Q has
been applied. To create de-noised images, the wiener and
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median filters for noise reducing with quadratic temporal
ranges are frequently employed. The following steps can
help to improve the quality of images: Initially, a m X
nmask matrix is established for the three-dimensional
sound cancellation filter. After that, the filter medium is
employed to evaluate the deteriorating image's
newfangled region dimension, which matches its mask
pixel size, in relation to the covered pixel frequency. The
Wiener filter is expressed as follows and incorporates both
the variation in and mean pixel values in the m X nsized
mask matrix:

B = = Ymmen b(m,n) (3)

02 = = Ymnen b2 (m,n) — 2 (4)

Where ina,(n.m)stands for each pixel in the
surrounding area 1 in the mask, m X nis the dimension of
the surrounding area h, u is the median, and o2 is the
variability of the gaussian distortion in the images. The
predicted values are used to convey the wiener filter to the
additional region, which are denoted as a,(n.m). When the
median and wiener filters are applied together for
graphene layer defect detection, the noise level is
significantly reduced. The Wiener filter adjusts to local
variants, maintaining fine structural details and defects,
while the median filter successfully removes salt-and-
pepper noise without obscuring important features. This
results in greater clarity, more reliable images for accurate
defect identification.

3.3 Gray Level Co-Occurrence Matrix (GLCM) for
Feature Extraction

To detect flaws like damage or gaps in graphene,
GLCM measures the spatial correlations between pixel
pairs and improves quality control analysis. Given a
spatial relationship between the regions in a pattern, such
an array displays the combined arrangement of gray
intensity pairings of neighboring pixels. The three-
dimensional connection of a distinct direction or distance
among pixels yields matrices with distinct information.
The co-occurrence matrix's column and row counts are
solely determined by the pattern's gray values; the image
size has no bearing. The amount of transition across gray
levels m and n appearing in the texture based on a certain
spatial connection is indicated by a component O(n, m)of
co-occurrence matrices. Prior to calculating the co-
occurrence matrices, the sequence of pixels wherein the
phases will be taken into consideration must be defined. S
is constructed. Every pair of regulates for every pixel in
the relationship makes up this set. Equation (6) serves for
calculating the number of transitions among every pair of
gray levels in the surface, once S has been specified. The
gray value of a pixel in the image at (n, m) is indicated by
the equation (6) can be written as:

0(n,m) = {(j,1), (1, k)) € Tle(j,i) = nand e(l,k) = m} (6)

After calculating the occurrence for every gray level
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transition, O(n, m) is positioned in the matrix's n — throw
as well as m — thcolumn. Following a standardization
using Equation (7), wherein Gprepresents the greatest
gray level, descriptors of features are then obtained:

o(nm)
S s 0G0

,nm=0,..,G, 7

On,m =

The co-occurrence matrix is dependent upon the gray
level transitions among pixel pairings in set, as per
Equation (9). In this manner, both the angle and the
distance among the pairings could be freely specified. Fast,
non-invasive graphene quality assessment is made
possible by this technique, which is essential for uses
requiring excellent material integrity, such as
nanotechnology and electronic devices.

3.4 Defect Detection Using Effective Chicken
Swarm Guided Recursive NeuroNet (ECS-RNN)

The hybridized method of chicken swarm optimization
and recursive neural network integrate cutting-edge deep
learning methods with nature-inspired optimization to
discover defects in layers of grapheme. This method
improves detection efficiency and accuracy, which makes
it helpful for spotting minute structural irregularities in
graphene superior resolution electron microscopy images.

1.1.1 Recursive Neural Network (RNN)

Through the analysis of hierarchical data structures,
RNN provide an efficient method for finding flaws in
graphene layers. The intricate and recursive linkages seen in
atomic and molecular structures are captured by RNNs,
which enables them to identify anomalies. With vectors of
characteristics, let Z; symbolize the combined result of a
pattern's vector illustration in a layer. The sub-node phrase
of the recall gates have two recall barriers for every pair for
any node i. Considering using a binary tree, the dimension,
which is the collection of variables from a pair of nodes i, is 2.
A continuous dropout functional is drop (w) in Equation (15).
The RNN for every pattern to the real valued vector can be
written as follows in the Equation (8):

Gi = Zieaw 9u ®)
ji=o(X/[w;, gil + &) €))

eq = o(X°[w;, gil + a®) (10)

pi = o(XP[w;, gil + aP) (11)

v; = tanh(XV[w;, ;] + a) (12)

d; =j; O drop(vy) + Xicagy e © 4 (13)
gi = p; © drop(d;) (14)

bt [P

In Equations (16) and (17), employ an entirely
connected layer as the resultant layer. Two for detection
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and five for type classifiers are the number of classes that
make up the entire layer's output size. For a given
output, select the anticipated label Z; at each node i. The
cost function found in Equation (18) is computed using the
softmax entropy cross classifier. The training set's total
component count is denoted by z. The detection classifier's
loss function changes to give the positive examples a three-
fold higher loss than the negative cases to address the
issue of class in equalities as shown below:

6(z/w)) = XD g, + qleD (16)
2= TAMAXG0 ) (1
10) = %E{‘ z'log(softmax (6 (;—ll)) (18)

RNNSs, can handle multi-scale characteristics inside
the graphene layer by recursively organizing data, which
is essential for spotting minute, subtle fault structures
that conventional techniques can overlook. RNNs improve
detection effectiveness and precision, which makes them
to ideal for continuous tracking in applications, including
quality assurance and graphene fabrication.

4. RESULT

In this study, implementing Python 3.10 with Windows
10’s system setup. When it comes to identifying atomic-
level flaws, AFM performed better than SEM in terms of
accuracy, precision, and recall. AFM proved its efficacy in
atomic defect analysis by exhibiting better performance,
especially in detecting pointed imperfections, structure
warping, and lattice deformations, with improved
precision and recall levels among various anomaly types.

4.1 Observation of Atomic Force Microscopy (AFM)

AFM, or atomic force microscopy, Table 1 and Fig. 2
shown remarkable efficacy in identifying a variety of flaws
when used to analyze atomic structural abnormalities of the
proposed model (ECS-RNN). With a F1 value of 96.7 % and
mAP of 94.2 %, gaps were found with the greatest
accuracy.With a mAP of 91.6 % and a F1 index of 95.3 %,
dislocations came in second. The identification of the surface
texture showed comparable superior accuracy, with a mAP of
92.5 % and a F1 index of 96.5 %. With a F1 value of 96.1 %
and a mAP of 93.7 %, the identification of structural defects
demonstrated a strong overall performance, demonstrating
the efficiency of SEM in precisely detecting and describing
atomic-level structural anomalies.

Table 1 — Characterization of atomic material defects using F1
score and map
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Fig. 2 — AFM-based microscopic surface features

4.2 SEM-Based Surface Topography Analysis

Numerous defect forms, including as gaps,
displacements, rough surfaces, and atomic flaw
localizations, were discovered through the application of
SEM to analyze atomic structural anomalies as shown in
the Table 2 and Fig. 3. High performance was shown in the
identification of these abnormalities, with mean Average
Precision (mAP) levels among 92.5 and 94.2 and F1 scores
around 96.5 and 96.1. In particular, voids exhibited mAP
of 94.2 and F1 score of 97.3, whereas rough surfaces and
displacements had mAP measurements of 91.6 and 92.5,
respectively, with F1 values of 95.3 and 96.5. With a F1
value of 96.1 and mAP of 93.7, atomic defect localizations
had the greatest detection performance, demonstrating
the excellent accuracy and dependability of SEM in
detecting and describing atomic-scale defects.

Table 2 — Graphene SEM image detection and classification
effectiveness for atomic defects

Irregularity Type F1 Score (%) |mAP (%)
Voids 97.3 94.2
Dislocations 95.3 91.6
Surface Roughness 96.5 92.5
Atomic Defect Localizations |96.1 93.7

I F1 Score

Irregularity Type F1 Score (%) | mAP (%)
Voids 96.7 94.2
Dislocations 95.3 91.6
Surface Roughness 96.5 92.5
Structural Defects

(Overall) 96.1 93.7

Fig. 3 - Examination of surface morphology by SEM
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The suggested ECS-RNN model's metrics of
performance for identifying different kinds of flaws. All
fault categories show remarkable outcomes from the
algorithm. For Voids, it attains a mAP of 96.5 %, an
excellent F1 score of 94.9 %, recall of 95.6 %, precision of
94.9 %, and accuracy of 96.2 %. Although its mAP is 95.1 %,
ECS-RNN performs slightly higher in the identification of
dislocations, with accuracy of 97.3 %, precision of 95.5 %, F'1
score of 96.2 % and recall of 96.8 %. While the mAP lowers
to 94.2 %, Surface Roughness is also recognized precisely,
with an F1 score of 95.3 %, precision of 96.5 %, accuracy of
95.6 %, and recall of 97.5 %.The model's mAP is little lower
at 95.9 %, but generally it does exceptionally well in
detecting structural defects, with the greatest accuracy of
98.5 %, precision of 97.2 %, recall of 96.5 %, and F1 score of
98.1 %. These outcomes show the ECS-RNN's excellent
performance in a range of fault types.
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Sonal C. Bhangale!, Laxmikant S. Dhamande?, Bhagyashree Ashok Tingare3, Tarun Dhar Diwan?,
R.A. Kapgatel, P. William5, Prasad M. Patare?

L Department of Mechatronics Engineering, Sanjivani College of Engineering, Kopargaon, MH, India
2 Department of Mechanical Engineering, Sanjivani College of Engineering, Kopargaon, MH, India
3 Department of Artificial Intelligence and Data Science, D Y Patil College of Engineering, Akurdi, Pune
4 Controller of Examination (COE), Atal Bihari Vajpayee University, Bilaspur, India
5 Department of Information Technology, Sanjivani College of Engineering, Kopargaon, MH, India

Bracrusocti rpadeny Ta IHmIKMX aTOMHHAX MaTeplaJiB y IO€JHAHHI 3 METOJaM{ KOMII'IOTEPHOIO 30Dy
JTI0O3BOJISIOTH PAIMKAJIHFHO TIOKPAIIUTH Iy TJIUBICTD ederTockorrii. [Tporec 360py maHux, OTPUMAaHUHT 34 JOIIOMOTOI0
IIAX METO/IIB, BKJIIOYAR 300paskeHHs BUCOKOI PO3ILITLHOI 3[aTHOCTI, K1 3aCTOCOBYBAJIHCS JIJIs 3aXOTLIEHHS PIOHIX
merasiell IoBepxXxHI aToMHMX Marepiaiis. Portorpadii miamanwTbCA CYYACHMM METOOAM BHJIYYEHHS O3HAK, 100
BUUINTYA TA IOKPAIIUATU JEeTaJli OCHOBHUX CTPYKTYPHUX KOMIIOHEHTIB ITICJIS IIPOXO/PKEHHS CyBOPHX E€TAIIB
HOIepeIHbOl 00POOKY TaHUX, TAKUX K 3MEHIIeHHs IIIyMy Ta CTAHJAAPTU3AIISA 300paskeHHs. YHIKAIbHA MOJIEhb
Effective Chicken Swarm Guided Recursive NeuroNet (ECS-RNN) cipsamosana Ha kiracudikairio Ta BUSIBIEHHS
IedeKTiB 3a JOIOMOIOK 3aCTOCYBAHHS 1HTEJIEKTYaJIbHUX POIB Ta INIMOOKOro HaBYaHHS. HaBuaHHS IpOBOOMIIOCS
HA OCHOBI IIOKA3HUKIB IIPOLYKTUBHOCTI, JOCATHYTHX Y IIOMY JOCJIIKEHH], 10 BKa3ye Ha Ii 3IaTHICTh CTBOPIOBATH
Oy’ke TOYHI Ta HAMIMHI HporHo3u 3 mokasHukoM F1 97,3 %, toumictio 98,5 % Ta mpenmsiiimictio 96,8 %. IIi
pe3yabTaTHh CBIIYATH [P0 IIPOTPEC y BHUABJEHHI JedeKTIB 3a JOIMOMOrOI0 3alpOIIOHOBAHOI METOJIWKH Ta
JIEeMOHCTPYIOTH 3aCTOCOBHICTH METOIB MAIITMHHOIO HABUAHHA y BUPIIIEHH] aysKe criaguux 3agad. Mogeas ECS-
RNN pgemonHcTpye CyTTEBI IIOKpAIEeHHS B OOYMCICEHHSX HEHPOHHUX Mepesk, IEeMOHCTPYE CBOIO 3IaTHICTH
OTPUMYBATH BIJIOBIIHI apXiTEKTypy 3 MIHIMAJIBHOK €pO3i€l0, IO € IIepeBaroi B CIEHApPISX, Je OTPHMAHHS

BaskJIMBOI 1H(OPMAIIl Mae IIePIIOPsIHEe SHAYEHHS.

Korouori ciiora: Illap rpadeny, Atomua crpykrypa, Edexrusna pexypcueua Helipomepeska, KepoBana meromom
Chicken Swarm (ECS-RNN), Meniauuuii Ta Binepcbkunii (pisbTpu.
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