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The qualities of graphene and other atomic materials, coupled with computer vision methods, enable radical 

improvements in the sensitivity of flaw detection. The data collection process obtained in the methods was high-

resolution imaging which applied to capture minute surface details of the atomic materials. The photos are 

exposed to contemporary feature extraction techniques to highlight and improve the details of the main structural 

components after undergoing stringent data pretreatment stages like noise reduction and picture 

standardization. The unique Effective Chicken Swarm Guided Recursive NeuroNet (ECS-RNN) model aims to 

classify and detect defects by applying smart swarms and deep learning. Trained on the performance metrics 

achieved in this study, which indicates its capability of producing very high accurate and reliable predictions of 

97.3 % F1-score, 98.5 % accuracy and 96.8 % precision. These results indicate advancement in defect detection 

using the proposed technique and show applicability of machine learning practices in solving very complex 

problems. The ECS-RNN model reveals substantial improvements in neural network computations, 

demonstrates its ability to retrieve relevant architectures with minimal erosion, which is advantageous in 

scenarios where the retrieval of crucial information is of utmost importance. 
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1. INTRODUCTION 
 

The fact that a few elements can create various 

elemental mixtures and microstructures is fascinating 

from a chemical standpoint. Reflecting on the evolution of 

human, they constantly dedicate ourselves to controlling 

the structure of materials. To create weapons, the 

prehistoric man first polished the precious stones [1]. The 

modification that can be made advanced from the macro 

framework to the small and even to the atomic level after 

a long period of material development. Pristine crystals 

can be used to describe everything of solid-state physics 

and science of materials only becomes involved when 

genuine material qualities need to be defined in terms of 

flaws [2]. Effective, contemporary renewable energy 

storing and conversion techniques, including solar panels, 

splitting of water, hydrogen fuel cell batteries, and super 

capacitors have been made possible by the development 

and design of materials at the nanoscale. The secret to 

obtaining better efficiency and long-term reliability from 
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these devices lies not only developing new materials but 

also improving their structure and interaction 

characteristics [3]. Since it enables the deposit of pinhole-

free sheets with atom-level control over density and 

formulation over surfaces that have elevated aspect ratios, 

atomic layer deposition (ALD) has emerged as a crucial 

technique for nanotechnology. Microstructure is a 

collection of all unstable lattice imperfections in a material 

[4]. Examples include mesoscopic defects like second-

phase precipitation, planar defects like boundaries and 

mounting faults, line defects like displacements, and point 

defects like substitutional and interconnected atoms and 

voids. The regularity of the normally regular crystalline 

structure is broken by these kinds of lattice flaws, which 

are defined according to their structural characteristics 

[5]. According to the latest nanoscale analytic inquiry, 

their chemical characteristics are significant and 

distinctive. Both the electrical and thermal transport 

capabilities of thermoelectric substances can be strongly 

influenced by the arrangement of the defects as well as 
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their particular chemical makeup, or their chemical 

embellishment state [6]. With quickly developing 

applications across atomic, graphical, spectrum, and text-

based techniques, deep learning (DL) constitutes one of 

the key data science subjects with the quickest rate of 

growth. DL makes it possible to automatically identify 

characteristics and analyze unstructured material. The 

use of DL techniques in atomistic predicting has been 

spurred by the recent growth of huge materials databases. 

On the other contrary, improvements in image and 

spectrum data have mostly benefited from data 

manipulation made possible by generating unregulated 

DL techniques and high-quality forwarding models [7]. 

The main objective of the study is to improve defect 

identification in atomic materials by developing a 

computer vision approach. The work intends to increase 

the precision of structural anomaly identification by 

utilizing cutting-edge imaging techniques. 

 

2. RELATED WORKS 
 

With reference to [8], investigated how single atomic 

faults in monolayer WS2 can cause electrically driven 

photon emission, and establish a direct correlation 

between the emission and the surrounding atom and 

electronic properties. An effective substrate for electrically 

driven, widely adjustable, atomic-scale single-photon 

generators were provided by inflexible charged carrier 

insertion into localized states of defect of two-dimensional 

substances. 

The method for sub-picometer accuracy single-atom 

defects probing in a single-layer 2D transition metallic 

dichalcogenide was explained in [9]. Identified and 

categorized point flaws by using deep learning to explore 

massive datasets of aberration-corrected images. These 

findings suggest that computer vision could have an 

influence on the advancement of high-precision 

microscopy using electrons techniques for materials that 

were sensitive to beams. 

To address laccase's intrinsic flaws, an initial iron 

single-atom anchoring N-doped carbon substance 

(Fe1@CN–20) was revealed as a laccase substitute in [10]. 

Furthermore, it can be utilized at least seven times with a 

minor decrease in functionality. Therefore, compared to 

laccase, which has been used in the recognition and 

destruction of a number of phenolic compounds, this 

material is significantly less expensive and has better 

stability and recycling ability. 

According to the author of [3, 11], the localized 

chemically decorating states of different kinds of lattice 

faults in thermoelectric substances were investigated and 

the findings were obtained using atom probe tomography 

(APT). To help direct the rational development of 

outstanding performance thermoelectric substances, APT 

extends the idea of engineering defects to the realm of 

separation engineering, enabling a deeper understanding 

of the interaction between piezoelectric characteristics and 

microstructural characteristics. 

 

3. METHODS AND MATERIALS  
 

In this method, the faults or anomalies of atomic 

structure is evaluated by the collection of dataset, which 

involves SEM and AFM. To remove noise median and 

wiener filter could be effectively utilized for preprocessing 

and gray level co-occurrence matrix (GLCM) is 

implemented for future extraction. The proposed Effective 

Chicken swarm Guided Recursive NeuroNet (ECS-RNN) 

method can be effective determine the defect as shown in 

Fig. 1. 

 
 

Fig. 1 – Schematic view of method flow incorporated in the study 

 

3.1 Data collection 
 

A dataset could consist of images with high resolution 

or scanning the image of graphene layers produced using 

advanced imaging techniques like AFM and SEM. The 

images have revealed a number of faults or anomalies in 

the atomic structure of the graphene, including as empty 

spaces, grain boundaries, displacements, and other 

surface imperfections. To train a computer vision model 

for defect recognition, marked specimens of both defective 

and non-faulty areas have been added to the dataset. 

 

3.2 Data Preprocessing Using Median and Wiener 

Filters 
 

By improving images quality, median and wiener 

filtering are essential preprocessing tools for fault 

identification in graphene layers. Typically, a suitable 

method, both median and wiener filtering is used to repair 

damaged images that are susceptible to noise. This could be 

stated mathematically as follows in Equations (1) and (2): 
 

 ℎ(𝑤, 𝑧) = 𝑒(𝑤, 𝑧) ∗ 𝑣(𝑤, 𝑧) + 𝑚(𝑤, 𝑧) (1) 
 

 𝑔(𝑤, 𝑧) = 𝑄[𝑞(𝑤, 𝑧)] (2) 
 

In this case, 𝑒(𝑤, 𝑧)indicates the obtained image, 

𝑣(𝑤, 𝑧)is the deterioration function, ′′ ∗ ′′indicates 

convolution, 𝑚(𝑤, 𝑧)stands for noise, including Gaussian 

fluctuations, ℎ(𝑤, 𝑧)is the resultant deteriorated image, 

and 𝑔(𝑤, 𝑧)is the last result images after the method 𝑄 has 

been applied. To create de-noised images, the wiener and 
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median filters for noise reducing with quadratic temporal 

ranges are frequently employed. The following steps can 

help to improve the quality of images: Initially, a 𝑚 ×
𝑛mask matrix is established for the three-dimensional 

sound cancellation filter. After that, the filter medium is 

employed to evaluate the deteriorating image's 

newfangled region dimension, which matches its mask 

pixel size, in relation to the covered pixel frequency. The 

Wiener filter is expressed as follows and incorporates both 

the variation in and mean pixel values in the 𝑚 × 𝑛sized 

mask matrix: 
 

 𝜇 =
1

𝑀𝑁
∑ 𝑏(𝑚, 𝑛)𝑚,𝑛∈𝜂  (3) 

 

 𝜎2 =  
1

𝑀𝑁
∑ 𝑏2(𝑚, 𝑛)𝑚,𝑛∈𝜂 − 𝜇2 (4) 

 

Where in 𝑎𝑥(𝑛. 𝑚) stands for each pixel in the 

surrounding area 𝜂 in the mask, 𝑚 × 𝑛is the dimension of 

the surrounding area h, 𝜇 is the median, and 𝜎2 is the 

variability of the gaussian distortion in the images. The 

predicted values are used to convey the wiener filter to the 

additional region, which are denoted as 𝑎𝑥(𝑛. 𝑚). When the 

median and wiener filters are applied together for 

graphene layer defect detection, the noise level is 

significantly reduced. The Wiener filter adjusts to local 

variants, maintaining fine structural details and defects, 

while the median filter successfully removes salt-and-

pepper noise without obscuring important features. This 

results in greater clarity, more reliable images for accurate 

defect identification. 

 

3.3 Gray Level Co-Occurrence Matrix (GLCM) for 

Feature Extraction 
 

To detect flaws like damage or gaps in graphene, 

GLCM measures the spatial correlations between pixel 

pairs and improves quality control analysis. Given a 

spatial relationship between the regions in a pattern, such 

an array displays the combined arrangement of gray 

intensity pairings of neighboring pixels. The three-

dimensional connection of a distinct direction or distance 

among pixels yields matrices with distinct information. 

The co-occurrence matrix's column and row counts are 

solely determined by the pattern's gray values; the image 

size has no bearing. The amount of transition across gray 

levels 𝑚 𝑎𝑛𝑑 𝑛 appearing in the texture based on a certain 

spatial connection is indicated by a component O(n, m)of 

co-occurrence matrices. Prior to calculating the co-

occurrence matrices, the sequence of pixels wherein the 

phases will be taken into consideration must be defined. S 

is constructed. Every pair of regulates for every pixel in 

the relationship makes up this set. Equation (6) serves for 

calculating the number of transitions among every pair of 

gray levels in the surface, once S has been specified. The 

gray value of a pixel in the image at (n, m) is indicated by 

the equation (6) can be written as: 
 

O(n, m) = {(j, i), (l, k)) ∈ T|e(j, i) = n and e(l, k) = m} (6) 
 

After calculating the occurrence for every gray level 

transition, O(n, m) is positioned in the matrix's 𝑛 − 𝑡ℎrow 

as well as 𝑚 − 𝑡ℎcolumn. Following a standardization 

using Equation (7), wherein 𝐺ℎrepresents the greatest 

gray level, descriptors of features are then obtained: 
 

 𝑂𝑛,𝑚 =
𝑂(𝑛,𝑚)

∑ ∑  𝑂(𝑗,𝑖)
𝐺ℎ
𝑗=0

𝐺ℎ
𝑗=0

 , 𝑛, 𝑚 = 0, . . , 𝐺ℎ (7) 

 

The co-occurrence matrix is dependent upon the gray 

level transitions among pixel pairings in set, as per 

Equation (9). In this manner, both the angle and the 

distance among the pairings could be freely specified. Fast, 

non-invasive graphene quality assessment is made 

possible by this technique, which is essential for uses 

requiring excellent material integrity, such as 

nanotechnology and electronic devices. 

 

3.4 Defect Detection Using Effective Chicken 

Swarm Guided Recursive NeuroNet (ECS-RNN) 
 

The hybridized method of chicken swarm optimization 

and recursive neural network integrate cutting-edge deep 

learning methods with nature-inspired optimization to 

discover defects in layers of grapheme. This method 

improves detection efficiency and accuracy, which makes 

it helpful for spotting minute structural irregularities in 

graphene superior resolution electron microscopy images. 

 

1.1.1 Recursive Neural Network (RNN) 
 

Through the analysis of hierarchical data structures, 

RNN provide an efficient method for finding flaws in 

graphene layers. The intricate and recursive linkages seen in 

atomic and molecular structures are captured by RNNs, 

which enables them to identify anomalies. With vectors of 

characteristics, let 𝑧̃𝑖 symbolize the combined result of a 

pattern's vector illustration in a layer. The sub-node phrase 

of the recall gates have two recall barriers for every pair for 

any node 𝑖. Considering using a binary tree, the dimension, 

which is the collection of variables from a pair of nodes 𝑖, is 2. 

A continuous dropout functional is drop (𝑤) in Equation (15). 

The RNN for every pattern to the real valued vector can be 

written as follows in the Equation (8): 
 

 𝑔̃𝑖 =  ∑ 𝑔𝑙 𝑙𝜖𝐴(𝑖)  (8) 
 

 𝑗𝑖 = 𝜎(𝑋𝑗[𝑤𝑖 , 𝑔̃𝑖] + 𝑎𝑗) (9) 
 

 𝑒𝑖𝑙 = 𝜎(𝑋𝑒[𝑤𝑖 , 𝑔𝑖] +  𝑎𝑒) (10) 
 

 𝑝𝑖 = 𝜎(𝑋𝑝[𝑤𝑖 , 𝑔̃𝑖] +  𝑎𝑝) (11) 
 

 𝑣𝑖 = tanh(𝑋𝑣[𝑤𝑖 , 𝑔̃𝑖] + 𝑎𝑣) (12) 
 

 𝑑𝑖 = 𝑗𝑖 ⊙ 𝑑𝑟𝑜𝑝(𝑣𝑖) + ∑ 𝑒𝑖𝑙  ⊙  𝑑𝑙𝑙∈𝐴(𝑖)  (13) 
 

 𝑔𝑖 = 𝑝𝑖 ⊙ 𝑑𝑟𝑜𝑝(𝑑𝑖) (14) 
 

 𝑑𝑟𝑜𝑝(𝑤) = {
max∗ 𝑤 if train phase;

𝑤, otherwise
 (15) 

 

In Equations (16) and (17), employ an entirely 

connected layer as the resultant layer. Two for detection 
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and five for type classifiers are the number of classes that 

make up the entire layer's output size. For a given 

output, select the anticipated label 𝑧̃𝑖 at each 𝑛𝑜𝑑𝑒 𝑖. The 

cost function found in Equation (18) is computed using the 

softmax entropy cross classifier. The training set's total 

component count is denoted by 𝑧. The detection classifier's 

loss function changes to give the positive examples a three-

fold higher loss than the negative cases to address the 

issue of class in equalities as shown below: 

 

 𝑜̂(𝑧/𝑤𝑖) = 𝑋(𝑒𝑑)𝑔𝑖 + 𝑎(𝑒𝑑) (16) 
 

 𝑧̂ =
𝑎𝑟𝑑 𝑚𝑎𝑥

𝑧
𝑜̂(𝑧, 𝑤𝑖) (17) 

 

 𝐼(𝜃) =
1

𝑛
∑ 𝑧𝑙log (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜̂𝑛

𝑙 (
𝑧𝑙

𝑤𝑙
)) (18) 

 

RNNs, can handle multi-scale characteristics inside 

the graphene layer by recursively organizing data, which 

is essential for spotting minute, subtle fault structures 

that conventional techniques can overlook. RNNs improve 

detection effectiveness and precision, which makes them 

to ideal for continuous tracking in applications, including 

quality assurance and graphene fabrication. 
 

4. RESULT 
 

In this study, implementing Python 3.10 with Windows 

10’s system setup. When it comes to identifying atomic-

level flaws, AFM performed better than SEM in terms of 

accuracy, precision, and recall. AFM proved its efficacy in 

atomic defect analysis by exhibiting better performance, 

especially in detecting pointed imperfections, structure 

warping, and lattice deformations, with improved 

precision and recall levels among various anomaly types. 

 

4.1 Observation of Atomic Force Microscopy (AFM) 
 

AFM, or atomic force microscopy, Table 1 and Fig. 2 

shown remarkable efficacy in identifying a variety of flaws 

when used to analyze atomic structural abnormalities of the 

proposed model (ECS-RNN). With a F1 value of 96.7 % and 

mAP of 94.2 %, gaps were found with the greatest 

accuracy.With a mAP of 91.6 % and a F1 index of 95.3 %, 

dislocations came in second. The identification of the surface 

texture showed comparable superior accuracy, with a mAP of 

92.5 % and a F1 index of 96.5 %. With a F1 value of 96.1 % 

and a mAP of 93.7 %, the identification of structural defects 

demonstrated a strong overall performance, demonstrating 

the efficiency of SEM in precisely detecting and describing 

atomic-level structural anomalies. 
 

Table 1 – Characterization of atomic material defects using F1 

score and map 
 

Irregularity Type F1 Score (%) mAP (%) 

Voids 96.7 94.2 

Dislocations 95.3 91.6 

Surface Roughness 96.5 92.5 

Structural Defects 

(Overall) 
96.1 93.7 

 
 

Fig. 2 – AFM-based microscopic surface features 

 

4.2 SEM-Based Surface Topography Analysis 
 

Numerous defect forms, including as gaps, 

displacements, rough surfaces, and atomic flaw 

localizations, were discovered through the application of 

SEM to analyze atomic structural anomalies as shown in 

the Table 2 and Fig. 3. High performance was shown in the 

identification of these abnormalities, with mean Average 

Precision (mAP) levels among 92.5 and 94.2 and F1 scores 

around 96.5 and 96.1. In particular, voids exhibited mAP 

of 94.2 and F1 score of 97.3, whereas rough surfaces and 

displacements had mAP measurements of 91.6 and 92.5, 

respectively, with F1 values of 95.3 and 96.5. With a F1 

value of 96.1 and mAP of 93.7, atomic defect localizations 

had the greatest detection performance, demonstrating 

the excellent accuracy and dependability of SEM in 

detecting and describing atomic-scale defects. 
 

Table 2 – Graphene SEM image detection and classification 

effectiveness for atomic defects 
 

Irregularity Type F1 Score (%) mAP (%) 

Voids 97.3 94.2 

Dislocations 95.3 91.6 

Surface Roughness 96.5 92.5 

Atomic Defect Localizations 96.1 93.7 
 

 
 

Fig. 3 – Examination of surface morphology by SEM 
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The suggested ECS-RNN model's metrics of 

performance for identifying different kinds of flaws. All 

fault categories show remarkable outcomes from the 

algorithm. For Voids, it attains a mAP of 96.5 %, an 

excellent F1 score of 94.9 %, recall of 95.6 %, precision of 

94.9 %, and accuracy of 96.2 %. Although its mAP is 95.1 %, 

ECS-RNN performs slightly higher in the identification of 

dislocations, with accuracy of 97.3 %, precision of 95.5 %, F1 

score of 96.2 % and recall of 96.8 %. While the mAP lowers 

to 94.2 %, Surface Roughness is also recognized precisely, 

with an F1 score of 95.3 %, precision of 96.5 %, accuracy of 

95.6 %, and recall of 97.5 %.The model's mAP is little lower 

at 95.9 %, but generally it does exceptionally well in 

detecting structural defects, with the greatest accuracy of 

98.5 %, precision of 97.2 %, recall of 96.5 %, and F1 score of 

98.1 %. These outcomes show the ECS-RNN's excellent 

performance in a range of fault types. 

5. CONCLUSION 
 

Overall, the suggested method enhances neural 

network simulations with impressive outcomes. ECS-

RNN's 98.5 % accuracy, 98.1 % F1-score, and 97.2 % 

precision demonstrate how well it produces reliable and 

accurate predictions. Its outstanding recall of 96.5 % 

further demonstrates its ability to detect relevant patterns 

with minimal loss. These findings 

establish that ECS-RNN significantly enriches the 

performance of models and offers a workable solution for 

difficult machine learning problems with optimization. 

The ECS-RNN method's dependence on certain datasets 

for testing may restrict its applicability to a variety of real-

world scenarios. To improve ECS-RNN's resilience and 

generalization, future research could focus on applying it 

to larger datasets in a variety of fields.
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Властивості графену та інших атомних матеріалів у поєднанні з методами комп'ютерного зору 

дозволяють радикально покращити чутливість дефектоскопії. Процес збору даних, отриманий за допомогою 

цих методів, включав зображення високої роздільної здатності, які застосовувалися для захоплення дрібних 

деталей поверхні атомних матеріалів. Фотографії піддаються сучасним методам вилучення ознак, щоб 

виділити та покращити деталі основних структурних компонентів після проходження суворих етапів 

попередньої обробки даних, таких як зменшення шуму та стандартизація зображення. Унікальна модель 

Effective Chicken Swarm Guided Recursive NeuroNet (ECS-RNN) спрямована на класифікацію та виявлення 

дефектів за допомогою застосування інтелектуальних роїв та глибокого навчання. Навчання проводилося 

на основі показників продуктивності, досягнутих у цьому дослідженні, що вказує на її здатність створювати 

дуже точні та надійні прогнози з показником F1 97,3 %, точністю 98,5 % та прецизійністю 96,8 %. Ці 

результати свідчать про прогрес у виявленні дефектів за допомогою запропонованої методики та 

демонструють застосовність методів машинного навчання у вирішенні дуже складних задач. Модель ECS-

RNN демонструє суттєві покращення в обчисленнях нейронних мереж, демонструє свою здатність 

отримувати відповідні архітектури з мінімальною ерозією, що є перевагою в сценаріях, де отримання 

важливої інформації має першорядне значення. 
 

Kлючові слова: Шар графену, Атомна структура, Ефективна рекурсивна нейромережа, Керована методом 

Chicken Swarm (ECS-RNN), Медіанний та вінерський фільтри. 
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