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Analysis of semiconductor band gaps in nanomaterials is of great importance for electronics applications. 

Traditional approaches have limitations in dealing with complex, nonlinear relationships for the prediction of 

band gaps. This study proposes a Fine-Tuned White Shark Algorithm-Resilient XGBoost (FWS-RXGBoost) model 

that eliminates the challenges associated with optimizing the hyperparameters of XGBoost for more robust 

predictions. A Kaggle dataset of material fingerprints and target band gap values are used. To ensure that the 

model accuracy, feature normalization by Z-score at preprocessing stage standardizes the features, which 

enhances the gradient-based learning. Optimization inspired by White Shark achieves a balance between the 

global exploration and local exploitation. This model is proven to be more resilient with noise in data. 

Comparisons have been made with a gradient boosting model and the Extra Trees model. According to RMSE 

(0.17), MAE (0.10), and R² score (0.97), FWS-RXGBoost is effective at modeling complex dependencies related to 

band gap predictions. In this regard, these results show that FWS-RXGBoost is a reliable, high-accuracy tool for 

the prediction of semiconductor band gaps and is presently ready for application in any real-world settings where 

accuracy is critical. Here, more varied datasets and sophisticated hybrid models may be used in future 

studies to increase prediction capabilities. 
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1. INTRODUCTION 
 

The analysis of the semiconductor band gap was crucial 

for further applications in energy storage, electronics, and 

optoelectronics since the working of materials was 

described by their optical and electrical properties (Terna 

et al., 2021). It was very challenging to predict band gaps 

in nanomaterials due to quantum effects at the nanoscale; 

hence, the traditional computational methods such as DFT 

are complex and computationally intensive. These 

shortcomings highlight the need for better band gap 

prediction techniques, especially as scientists look to 

identify and design new materials in an expedited manner 

(Burch et al., 2022). One promising alternative was 

machine learning, which relies on data-driven insights to 

predict properties based on material composition, 

structure, and other critical attributes. To discover such 
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complex correlations between atomic and structural 

elements without requiring a lot of computing, an ML 

technique might be developed on a dataset of known band 

gap values for different nanomaterials (Prasad et al., 

2022). It was a clever machine-learning framework that 

will be utilized in the future to expedite the production of 

semiconductors made of nanomaterials with high 

precision, rapidity, and expense effectiveness in band gap 

forecasting (Alcañiz et al., 2023). The creation of such 

models would assure improved next-generation 

semiconductor development, expedite material discovery 

procedures, optimize material design, and foster 

innovation in domains where more precise electronic 

characteristics are required. For use in electronics, 

photovoltaics, and other cutting-edge technologies, precise 

determination of nanomaterials' band gaps was essential 

in semiconductor research (Liu, et al., 2023). Although 
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they work well, traditional approaches like Density 

Functional Theory (DFT) might be laborious and 

operationally taxing, particularly for intricate nanoscale 

systems where material characteristics are greatly 

impacted by quantum phenomena. The difficulty has led 

researchers to look for quicker and more scalable 

alternatives (Pandit et al., 2023). Nanomaterial properties 

and band gap were modelled by machine learning.  

To enhance the accuracy in materials research, the 

current investigation seeks to apply and enhance 

advanced sophisticated machine learning models for 

prediction and analysis regarding semiconductor 

nanomaterial band gap properties.  

An overview of relevant work is given in Part 2, and a 

technique is provided in Part 3. The performance 

evaluation is shown in Part 4, the discussion is shown in 

Part 5 and the conclusion is presented in Part 6. 

 

2. RELATED WORK 
 

The exertion was based on a novel extreme learning 

machine (ELM) computational intelligence method by 

utilizing the size of the compound's crystallite and lattice 

parameters as model characteristics to estimate Doped 

ZnSe's band gap energy nanostructured semiconductors by 

Aldhafferi et al., (2022). The created ELM-based model 

was compared with Support Vector Regression – Genetic 

Algorithm (SVR-GA) and Stochastic Partial Regression 

(SPR) models previously available in the fiction, using 

multiple performance indicators. 

The performance of the established hybrid 

gravitational search (GS) centered multi-layer support 

vector regression model was compared with the traditional 

computational intelligence Support Vector Regression 

(SVR), Confidence Interval (CI) and stepwise regression 

(SWR) presented model in the literature in comparison 

with the advanced hybrid Grid Search-Machine Learning 

Support Vector Regression Model (GS-MLSVRM) with the 

existing SVRCI model and the Systematic Testing (ST)-

based model in terms of the mean absolute percentage 

deviation measure (Shamasah et al., 2020). 

An extreme learning machine and crystal distortion 

along with crystallite size were used by Souiyah et al. 

(2023) to use a strontium titanate magnetic photo-

catalyst. With triangular basis (Tranba) sigmoid (Sig) 

activation functions, the established ELM-based models 

surpass the stepwise regression algorithm (SRA) model 

currently used in the fiction when measured using various 

presentation metrics, including the coefficient of 

correlation (CC), mean absolute error (MAE) and root 

mean square error (RMSE). 

 

3. METHODOLOGY 
 

The process goes through relevant datasets sourced 

from reliable sources. Data preparation, which involves 

cleaning and normalizing the data, results in consistency 

and dependability in the subsequent step. The suggested 

model will then be created utilizing cutting-edge machine-

learning techniques. Lastly, appropriate performance 

measures like RMSE, MAE, and 𝑅2 are used to evaluate 

the generated model's performance. Fig. 1 exemplifies the 

overall research flow. 
 

 
 

Fig. 1 – Overall research flow 

 

3.1 Dataset 
 

The subsequent section, "polymer", in the train and 

test data is the name of the polymer in simplified 

molecular-input line-entry system (SMILES) format. The 

84 columns following the polymer name are material 

fingerprints that have been generated for the polymers. 

The target column is the "band_gap" column, which 

represents the band gap of the polymers.  

 

3.2 Data Preprocessing Using Z-Score 

Normalization 
 

The information is scaled using Z-score normalization, 

also known as standardization, which involves deducting 

the information's mean and in-between by the standard 

deviation. For algorithms that were sensitive to feature 

expanding, like gradient-based models, the procedure 

centers the data over a mean of 0 and sets the variance to 

1. In the pre-processing step, normalization was a 

procedure that breaks down data into numerical 

properties and can transform values for data into a range 

of values. In data normalization, several techniques were 

often used, such as normalization by decimal scaling, and 

z-score normalization. Z-score normalization, as shown in 

Equation (1), converts a 𝑢𝑗 value from attribute 𝐹 to 𝑢 into 

a previously unidentified range. 
 

 𝑢′ =
𝑢𝑗−𝐹𝑗

𝑠𝑡𝑑(𝐹)
 (1) 

 

Where 𝑢′ = normalization value's outcome. 𝑢 = the 

attribute's actual value to be adjusted. 𝐹𝑗= attribute's 

mean value. 𝑠𝑡𝑑(𝐹) = property 𝐹of the standard deviation. 

 

3.3 Fine-tuned White Shark Algorithm-Driven 

Resilient XGboost (FWS-RXGboost) 
 

FWS-RXGBoost employs sophisticated optimization 

techniques to increase the presentation of the RXGBoost 

model. The White Shark Algorithm, which is modeled after 

the white shark hunting strategy, optimally fine-tunes the 

XGBoost model's hyperparameters in a hybrid approach 

that balances exploration and exploitation in the pursuit 

of the best model configuration to employ to improve model 

robustness and make high-accuracy predictions. Resilience 
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was given a major central role in this framework, indicating 

that this model will despite function rather well even with 

noisy data or supply distributions. The interaction between 

FWS and RXGBoost makes it easy to understand how the 

patterns have changed. This recently introduced combination 

produces quite good gains on classification tasks, making it a 

powerful tool in machine learning to deal with difficult data 

sets. 

 

1.1.1 The Resilient XGBoost Algorithm 
 

Through efficient hyperparameter tweaking and 

improved model resilience, the Resilient XGBoost 

Optimiser is used in this study to improve accuracy in 

forecasting for semiconductor band gaps. It is appropriate 

for the complicated nature of nanostructured material 

semiconductor characteristics because of its robustness, 

which enables it to continue operating even in the presence 

of noisy data or variable distributions. RXGBoost is a 

boosted tree model that aims to provide a more robust 

classifier model by integrating a large number of tree 

models. The gradient descent tree modification is also the 

method that has been applied to RXGBoost. The 

conventional Gradient-boosted decision trees (GBDT) 

approach merely makes use of XGBoost to perform a 

second-order Taylor on the first derivative. Making the 

loss function larger. This research presents a model of 

XGBoost for fusion multi-batch prediction. A multitasking 

learning process has been developed to learn 

characteristics from various batches. In the meantime, the 

prediction fusion process produces multi-feature fusion 

outcomes. The proposed RXGBoost model reduces gradient 

disappearance and model complexity by adding a regular 

term to the objective function, identifying the best solution 

free from overfitting. 

Considering s samples and p feature wafer data sets, 

𝐶 = {(𝑤𝑗 , 𝑧𝑗)}(|𝐶| = 𝑡, 𝑤𝑗 ∈ 𝑄, 𝑧𝑗 ∈ 𝑄) the output result of L 

iterations is used by the boosted tree model. The 

anticipated price for the 𝑗 − 𝑡ℎ wafer, sample is 𝑧𝑗 and it’s 

the phrase is 𝑧̂𝑗 is expressed in equation (1). 
 

 𝑧̂𝑗 = 𝜙(𝑤𝑗) = ∑ 𝑒𝑙(𝑤𝑗)𝐿
𝑙=1    (2) 

 

Calculations (2) and (3) demonstrate the loss function 

throughout the wafer yield forecasting model's instruction: 
 

 𝑜𝑏𝑗 = ∑ 𝑘(𝑧𝑗 ,𝑗 𝑧̂𝑗) +  ∑ Ω𝑙 (𝑒𝑙) (3) 
 

 Ω(𝑒𝑙) = 𝛾𝑆 +
1

2
𝜆||𝑓𝑖||

2
 (4) 

 

The loss function is represented by ∑ 𝑘(𝑧𝑗 ,𝑗 𝑧̂𝑗), the 

regularization term is represented by ∑ Ω𝑙 (𝑒𝑙), and the 

actual value of wafer yield is represented by 𝑧𝑗, and the 

anticipated amount of wafer yield is represented by 𝑧̂𝑗. 

A fresh regression tree is introduced to the model at a 

time throughout the model training process, which uses 

the gradient boosting technique to preserve the current 

models. Assume that in the 𝑠 − 𝑡ℎ iteration, the 𝑗 − 𝑡ℎ 

wafer sample's predicted outcome is 𝑧̂𝑗
(𝑠)

. The newly added 

regression tree, 𝑒𝑠(𝑤𝑗) was derived in the manner 

described below: 
 

𝑧̂𝑗
(2)

= 0, 𝑒1(𝑤𝑗) = 𝑧̂𝑗
(0)

+ 𝑒1(𝑤𝑗), ∑ 𝑒𝑙(𝑤𝑗) + 𝑒2(𝑤𝑗) =𝑠
𝑙=1 𝑧̂𝑗

(1)
+

𝑒2(𝑤𝑗), ∑ 𝑒𝑙(𝑤𝑗)𝑠
𝑙=1 = 𝑧̂𝑗

(𝑠−1)
+ 𝑒𝑠(𝑤𝑗)                     (5) 

 

It then changed (5) into (3) to get the formula (6) that 

follows. 
 

 𝑜𝑏𝑗(𝑠) = ∑ 𝑘𝑗   (𝑧𝑗 , 𝑧̂𝑗
(𝑠−1)

+ 𝑒𝑠(𝑤𝑗))   + Ω(𝑒𝑙) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (6) 

 

Add a common term and do a second-order Taylor 

expansion of the goal variable. 
 

𝑜𝑏𝑗(𝑠) ≅  ∑ [ℎ𝑗𝑒𝑠
 (𝑤𝑗) +

1

2
𝑔𝑗𝑒𝑠

2(𝑤𝑗)]𝑡
𝑗=1 + Ω(𝑒𝑙) =

∑ [ℎ𝑗𝜃𝑟(𝑤) +
1

2
𝑔𝑗𝜃𝑟(𝑤)

2 ]𝑡
𝑗=1 + 𝛾𝑆 +

1

2
𝜆‖𝑥𝑖‖2 =

∑ [(∑ ℎ𝑗𝑗∈𝐼𝑖
)𝜃𝑖 +

1

2
(∑ 𝑔𝑗𝑗∈𝐼𝑖

+ 𝜆)𝑓𝑖
2]𝑡

𝑗=1 + 𝛾𝑆                    (7) 

 

Particularly in ℎ𝑗 = 𝜕
𝑧̂𝑗

(𝑠−1)𝑘 (𝑧𝑗 , 𝑧̂𝑗
(𝑠−1)

) , 𝑔𝑗 =

𝜕 
2𝑧̂𝑗

(𝑠−1)
𝑘 (𝑧𝑗 , 𝑧̂𝑗

(𝑠−1)
) Equation (7) may be simplified by 

defining (8) 𝐻𝑗 = ∑ ℎ𝑖𝑗∈𝐼𝑖
, 𝐺𝑗 = ∑ 𝑔𝑗𝑗∈𝐼𝑖

 and substituting 

them into it,  
 

 𝑜𝑏𝑗(𝑠) = ∑ [𝐻𝑗𝜃𝑖 +
1

2
(𝐺𝑗 + 𝜆)𝜃𝑖

2] + 𝛾𝑆𝑆
𝑖=1  (8) 

 

The value of the leaf node 𝜃𝑖 in equation (9) is unclear. 

As a result, the optimal value 𝜃𝑖
∗of leaf node 𝑗 may be found 

by solving the objective function 𝑜𝑏𝑗(𝑠), which looks for the 

first derivative for 𝜃𝑖
∗. 

 

 𝜃𝑖
∗ = −

𝐻𝑗

𝐺𝑗+𝜆
 (9) 

 

When 𝜃𝑖
∗ is substituted into the objective function, the 

minimal value is obtained by 𝑜𝑏𝑗(𝑠), 
 

 𝑜𝑏𝑗(𝑠) = −
1

2
∑

𝐻𝑗

𝐺𝑗+𝜆
+ 𝛾𝑆𝑆

𝑖=1  (10) 

 

4. RESULT AND DISCUSSION 
 

Findings from outcomes were conducted using the 

Python 3.11 software version. The research was perform 

using a laptop running Windows 10 with an Intel i7 CPU 

and 32 GB of RAM. The effectiveness of the 

aforementioned model is determined by comparison 

measures like RMSE, MAE, and 𝑅2.The proposed method 

compared to other existing methods such as Gradient 

Boosting [17], Light Gradient Boosting Machine (LGBM) 

Regressor [17], and Extra Trees [17]. Better band gap 

robustness was indicated by the suggested models' more 

accurate band gap predictions and reduced error rate 

when compared to the existing models. In semiconductor 

band gap analysis, the main features of importance are 

particle size, crystal structure, and atomic composition. 

Atomic composition is the most significant factor, while 

importance ratings show the impact of characteristics. 

Figure 2 indicates the outcomes of the results. 
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Fig. 2 – Outcomes of results 

 

4.1 RMSE 
 

A common metric in the assessment of the ordinary 

amount of the errors within predictions is root mean 

squared error. It indicates the square root of the average 

of the squared changes among the predictions and real 

values. The RMSE values, which indicate the number of 

mistakes in the models, decrease with the quality of the 

predictions made by the models. The suggested FWS-

RXGboost model, as shown in Fig. 3 and Table 1, is 

superior to the current models when compared to gradient 

boosting, which has an RMSE of 0.18. In the end, this 

would suit real data better and forecast more accurately. 
 

 
 

Fig. 3 – Result of RMSE 

 

4.2 MAE 
 

To measure the accuracy of predictions by the model is 

the average relative variation between actual and 

expected values, or Mean Absolute Error, or MAE. The 

lower the MAE, the more accurate the prediction. The 

MAE of LGBM and Gradient Boosting for the proposed 

model is 0.12. However, FWS-RXGboost has a higher MAE 

of 0.10; Figure 4 and Table 1 indicate better accuracy and 

predictive capacity. 

 
 

Fig. 4 – Result of MAE 

 

1.2 R2 
 

The constant of drive measurement or R2 is defined as 

the measure of the goodness of fit between model 

prediction and actual data. The larger the value for R2, the 

better the predictability. The R2 of the existing models of 

LGBM and Gradient Boosting is 0.96. The suggested 

model Figure 5 & Table 1. FWS-RXGboost has a greater 

value of R2 = 0.97 hence, it provides greater predictability 

and is very close to the actual values. 
 

 
 

Fig. 5 – Result of R2 

 
Table 1 – Quantitative outcomes of the suggested methods 

 

Method RMSE MAE R2 

Gradient Boosting [17] 0.18 0.12 0.96 

LGBM Regressor [17] 0.19 0.12 0.96 

Extra Trees [17] 0.19 0.12 0.95 

FWS-RXGboost 

[Proposed] 

0.17 0.10 0.97 

 

5. CONCLUSION 
 

Band gaps in nanomaterials can be predicted and 

understood by combining cutting-edge machine learning 

techniques with an intelligent machine learning approach 

for analysing semiconductor band gaps in nanomaterial 

systems; the study successfully highlighted the 
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significance of feature selection, data pre-processing, and 

gradient boosting optimization for precise outcomes using 

the FWS-RXGBoost model. The findings confirmed that 

machine learning techniques can accurately predict and 

assess semiconductor characteristics, dropping the 

essential for costly and time-consuming traditional 

experimental approaches. This produces strong prediction 

metrics, particularly when it comes to increases in RMSE, 

MAE, and R2. Thus, these analyses have strengthened and 

solidified the idea that applying intelligent machine 

learning frameworks to gain an improved understanding 

of semiconductors could lead to improved discovery and 

testing of such materials for further advancements in 

materials science and nanotechnology, in addition to 

appreciating creative algorithms in material analysis.

 

 

REFERENCES 
 

1. A.D. Terna, E.E. Elemike, J.I. Mbonu, O.E. Osafile, 

R.O. Ezeani, Mater. Sci. Eng.: B 272, 115363 (2021). 

2. M. Bursch, J.M. Mewes, A. Hansen, S. Grimme, Angew. 

Chem. Int. Ed. 61 No 42, e202205735 (2022). 

3. K.R.K.V. Prasad, V.S. Rao, P. Harini, R.R. Mukiri, 

K. Ravindra, D.V. Kumar, R. Kasirajan, J. Nanomater. 2022, 

5450826 (2022). 

4. A. Alcañiz, D. Grzebyk, H. Ziar, O. Isabella, Energy Rep. 9, 

447 (2023). 

5. A.C. Liu, Y.Y. Lai, H.C. Chen, A.P. Chiu, H.C. Kuo, 

Micromachines 14 No 4, 764 (2023). 

6. B. Pandit, S.R. Rondiya, S.F. Shaikh, M. Ubaidullah, 

R. Amaral, N.Y. Dzade, E.S. Goda, H.S. Gill, T. Ahmad,  

J. Colloid Interface Sci. 633, 886 (2023). 

7. J. Lu, F. Zhang, W.Y. Wang, G. Yao, X. Gao, Y. Liu, Z. Zhang, 

J. Wang, Y. Wang, X. Liang, H. Song, J. Am. Ceram. Soc. 106 

No 11, 6923 (2023). 

8. N. Aldhafferi, Mater. Today Commun. 31, 103626 (2022). 

9. S.M.I. Shamsah, T.O. Owolabi, Chin. J. Phys. 68, 493 (2020). 

10. A. Alqahtani, J. Nanomater. 2021 No 1, 4797686 (2021). 

11. Y. Jia, X. Hou, Z. Wang, X. Hu, ACS Sustain. Chem. Eng. 9 

No 18, 6130 (2021). 

12. D. Hejazi, S. Liu, A. Farnoosh, S. Ostadabbas, S. Kar, 

Machine Learning: Sci. Technol. 1 No 2, 025007 (2020). 

13. X. Chen, H. Lv, NPG Asia Mater. 14 No 1, 69 (2022). 

14. M. Taniguchi, H. Takei, K. Tomiyasu, O. Sakamoto, N. Naono, 

J. Phys. Chem. C 126 No 29, 12197 (2022). 

15. M. Souiyah, Cogent Eng. 10 No 1, 2232596 (2023). 

16. M.H. Zeb, A. Rehman, M. Siddiqah, Q. Bao, B. Shabbir, M.Z. 

Kabir, Adv. Theory Simul. 7 No 7, 2400190 (2024).

 

 

Інтелектуальний підхід до аналізу заборонених зон у напівпровідникових наноматеріалах 
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Аналіз заборонених зон у напівпровідникових наноматеріалах має велике значення для застосування 

в електроніці. Традиційні підходи мають обмеження в роботі зі складними, нелінійними зв'язками для 

прогнозування заборонених зон. У роботі пропонується модель FWS-RXGBoost (Fine-Tuned White Shark 

Algorithm-Resilient XGBoost), яка усуває проблеми, пов'язані з оптимізацією гіперпараметрів XGBoost для 

більш надійних прогнозів. Використовується набір даних Kaggle про відбитки матеріалів та цільові 

значення забороненої зони. Для забезпечення точності моделі нормалізація ознак за Z-оцінкою на етапі 

попередньої обробки стандартизує ознаки, що покращує градієнтне навчання. Оптимізація, натхненна 

White Shark, досягає балансу між глобальним дослідженням та локальним використанням. Ця модель 

виявилася більш стійкою до шуму в даних. Були проведені порівняння з моделлю градієнтного бустингу та 

моделлю Extra Trees. Згідно з показниками RMSE (0,17), MAE (0,10) та R² (0,97), FWS-RXGBoost 

ефективний для моделювання складних залежностей, пов'язаних з прогнозами забороненої зони. У зв'язку 

з цим, ці результати показують, що FWS-RXGBoost є надійним, високоточним інструментом для 

прогнозування ширини заборонених зон напівпровідників і наразі готовий до застосування в будь-яких 

реальних умовах, де точність є критично важливою. У майбутніх дослідженнях можуть бути використані 

більш різноманітні набори даних та складні гібридні моделі для розширення можливостей прогнозування. 
 

Ключові слова: Машинне навчання, заборонені зони у напівпровіднику, наноматеріали, алгоритм White 

Shark, стійкий до XGBoost (FWS-RXGBoost). 
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