JOURNAL OF NANO- AND ELECTRONIC PHYSICS
Vol. 17 No 4, 04027(5pp) (2025)

REGULAR ARTICLE

JKYPHAJI HAHO- TA EJIEKTPOHHOI ®I3UKHA
Tom 17 No 4, 04027(5¢c) (2025)

OPEN ACCESS

Intelligent Approach for Analyzing Semiconductor Band Gaps in Nanomaterial Systems

Bhagyashree Ashok Tingarel, R.A. Kapgate?, P. William3

, Jaikumar M. Patil4, Tarun Dhar Diwan5* >,

Prasad M. Patare®, Laxmikant S Dhamande$

L Department of Artificial Intelligence and Data Science, D Y Patil College of Engineering, Akurdi, Pune

2 Department of Mechatronics Engineering, Sanjivani College of Engineering, Kopargaon, MH, India
3 Department of Information Technology, Sanjivani College of Engineering, Kopargaon, MH, India

4 Department of Computer Science and Engineering, Shri Sant Gajanan Maharaj College of Engineering,

Shegaon, SGBAU, Amravati
5 Controller of Examination (COE), Atal Bihari Vajpayee University, Bilaspur, India
6 Department of Mechanical Engineering, Sanjivani College of Engineering, Kopargaon, MH, India

(Received 10 April 2025; revised manuscript received 15 August 2025; published online 29 August 2025)

Analysis of semiconductor band gaps in nanomaterials is of great importance for electronics applications.
Traditional approaches have limitations in dealing with complex, nonlinear relationships for the prediction of
band gaps. This study proposes a Fine-Tuned White Shark Algorithm-Resilient XGBoost (FWS-RXGBoost) model
that eliminates the challenges associated with optimizing the hyperparameters of XGBoost for more robust
predictions. A Kaggle dataset of material fingerprints and target band gap values are used. To ensure that the
model accuracy, feature normalization by Z-score at preprocessing stage standardizes the features, which
enhances the gradient-based learning. Optimization inspired by White Shark achieves a balance between the
global exploration and local exploitation. This model is proven to be more resilient with noise in data.
Comparisons have been made with a gradient boosting model and the Extra Trees model. According to RMSE
(0.17), MAE (0.10), and R? score (0.97), FWS-RXGBoost is effective at modeling complex dependencies related to
band gap predictions. In this regard, these results show that FWS-RXGBoost is a reliable, high-accuracy tool for
the prediction of semiconductor band gaps and is presently ready for application in any real-world settings where
accuracy is critical. Here, more varied datasets and sophisticated hybrid models may be used in future
studies to increase prediction capabilities.
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1. INTRODUCTION

The analysis of the semiconductor band gap was crucial
for further applications in energy storage, electronics, and
optoelectronics since the working of materials was
described by their optical and electrical properties (Terna
et al., 2021). It was very challenging to predict band gaps
in nanomaterials due to quantum effects at the nanoscale;
hence, the traditional computational methods such as DFT
are complex and computationally intensive. These
shortcomings highlight the need for better band gap
prediction techniques, especially as scientists look to
identify and design new materials in an expedited manner
(Burch et al., 2022). One promising alternative was
machine learning, which relies on data-driven insights to
predict properties based on material composition,
structure, and other critical attributes. To discover such
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complex correlations between atomic and structural
elements without requiring a lot of computing, an ML
technique might be developed on a dataset of known band
gap values for different nanomaterials (Prasad et al.,
2022). It was a clever machine-learning framework that
will be utilized in the future to expedite the production of
semiconductors made of nanomaterials with high
precision, rapidity, and expense effectiveness in band gap
forecasting (Alcaniz et al., 2023). The creation of such
models would assure improved next-generation
semiconductor development, expedite material discovery
procedures, optimize material design, and foster
innovation in domains where more precise electronic
characteristics are required. For use in electronics,
photovoltaics, and other cutting-edge technologies, precise
determination of nanomaterials' band gaps was essential
in semiconductor research (Liu, et al., 2023). Although
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they work well, traditional approaches like Density
Functional Theory (DFT) might be laborious and
operationally taxing, particularly for intricate nanoscale
systems where material characteristics are greatly
impacted by quantum phenomena. The difficulty has led
researchers to look for quicker and more scalable
alternatives (Pandit et al., 2023). Nanomaterial properties
and band gap were modelled by machine learning.

To enhance the accuracy in materials research, the
current investigation seeks to apply and enhance
advanced sophisticated machine learning models for
prediction and analysis regarding semiconductor
nanomaterial band gap properties.

An overview of relevant work is given in Part 2, and a
technique is provided in Part 3. The performance
evaluation is shown in Part 4, the discussion is shown in
Part 5 and the conclusion is presented in Part 6.

2. RELATED WORK

The exertion was based on a novel extreme learning
machine (ELM) computational intelligence method by
utilizing the size of the compound's crystallite and lattice
parameters as model characteristics to estimate Doped
ZnSe's band gap energy nanostructured semiconductors by
Aldhafferi et al., (2022). The created ELM-based model
was compared with Support Vector Regression — Genetic
Algorithm (SVR-GA) and Stochastic Partial Regression
(SPR) models previously available in the fiction, using
multiple performance indicators.

The performance of the established hybrid
gravitational search (GS) centered multi-layer support
vector regression model was compared with the traditional
computational intelligence Support Vector Regression
(SVR), Confidence Interval (CI) and stepwise regression
(SWR) presented model in the literature in comparison
with the advanced hybrid Grid Search-Machine Learning
Support Vector Regression Model (GS-MLSVRM) with the
existing SVRCI model and the Systematic Testing (ST)-
based model in terms of the mean absolute percentage
deviation measure (Shamasah et al., 2020).

An extreme learning machine and crystal distortion
along with crystallite size were used by Souiyah et al.
(2023) to use a strontium titanate magnetic photo-
catalyst. With triangular basis (Tranba) sigmoid (Sig)
activation functions, the established ELM-based models
surpass the stepwise regression algorithm (SRA) model
currently used in the fiction when measured using various
presentation metrics, including the coefficient of
correlation (CC), mean absolute error (MAE) and root
mean square error (RMSE).

3. METHODOLOGY

The process goes through relevant datasets sourced
from reliable sources. Data preparation, which involves
cleaning and normalizing the data, results in consistency
and dependability in the subsequent step. The suggested
model will then be created utilizing cutting-edge machine-
learning techniques. Lastly, appropriate performance
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measures like RMSE, MAE, and R? are used to evaluate
the generated model's performance. Fig. 1 exemplifies the
overall research flow.
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Fig. 1 — Overall research flow

3.1 Dataset

The subsequent section, "polymer", in the train and
test data is the name of the polymer in simplified
molecular-input line-entry system (SMILES) format. The
84 columns following the polymer name are material
fingerprints that have been generated for the polymers.
The target column is the "band_gap" column, which
represents the band gap of the polymers.

Z-Score

3.2 Data Preprocessing Using

Normalization

The information is scaled using Z-score normalization,
also known as standardization, which involves deducting
the information's mean and in-between by the standard
deviation. For algorithms that were sensitive to feature
expanding, like gradient-based models, the procedure
centers the data over a mean of 0 and sets the variance to
1. In the pre-processing step, normalization was a
procedure that breaks down data into numerical
properties and can transform values for data into a range
of values. In data normalization, several techniques were
often used, such as normalization by decimal scaling, and
z-score normalization. Z-score normalization, as shown in
Equation (1), converts a u; value from attribute F to u into
a previously unidentified range.

r_ WiTFj
= wat) (1)

Where u’' = normalization value's outcome. u = the
attribute's actual value to be adjusted. Fj= attribute's
mean value. std(F) = property Fof the standard deviation.

3.3 Fine-tuned White Shark Algorithm-Driven
Resilient XGboost (FWS-RXGboost)

FWS-RXGBoost employs sophisticated optimization
techniques to increase the presentation of the RXGBoost
model. The White Shark Algorithm, which is modeled after
the white shark hunting strategy, optimally fine-tunes the
XGBoost model's hyperparameters in a hybrid approach
that balances exploration and exploitation in the pursuit
of the best model configuration to employ to improve model
robustness and make high-accuracy predictions. Resilience
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was given a major central role in this framework, indicating
that this model will despite function rather well even with
noisy data or supply distributions. The interaction between
FWS and RXGBoost makes it easy to understand how the
patterns have changed. This recently introduced combination
produces quite good gains on classification tasks, making it a
powerful tool in machine learning to deal with difficult data
sets.

1.1.1 The Resilient XGBoost Algorithm

Through efficient hyperparameter tweaking and
improved model resilience, the Resilient XGBoost
Optimiser is used in this study to improve accuracy in
forecasting for semiconductor band gaps. It is appropriate
for the complicated nature of nanostructured material
semiconductor characteristics because of its robustness,
which enables it to continue operating even in the presence
of noisy data or variable distributions. RXGBoost is a
boosted tree model that aims to provide a more robust
classifier model by integrating a large number of tree
models. The gradient descent tree modification is also the
method that has been applied to RXGBoost. The
conventional Gradient-boosted decision trees (GBDT)
approach merely makes use of XGBoost to perform a
second-order Taylor on the first derivative. Making the
loss function larger. This research presents a model of
XGBoost for fusion multi-batch prediction. A multitasking
learning process has been developed to learn
characteristics from various batches. In the meantime, the
prediction fusion process produces multi-feature fusion
outcomes. The proposed RXGBoost model reduces gradient
disappearance and model complexity by adding a regular
term to the objective function, identifying the best solution
free from overfitting.

Considering s samples and p feature wafer data sets,
C= {(Wj,Zj)}(|C| =t,w; €Q,z € Q) the output result of L
iterations is used by the boosted tree model. The
anticipated price for the j — th wafer, sample is z; and it’s
the phrase is Z; is expressed in equation (1).

2 = ¢(w;) = Zi el(wy) @)

Calculations (2) and (3) demonstrate the loss function
throughout the wafer yield forecasting model's instruction:

obj =X jk(z,2) + X0 (e) 3)
ey =v* + 22l (4)

The loss function is represented by ¥ ;k(z,%;), the
regularization term is represented by Y,;Q(e;), and the
actual value of wafer yield is represented by z;, and the
anticipated amount of wafer yield is represented by Z;.

A fresh regression tree is introduced to the model at a
time throughout the model training process, which uses
the gradient boosting technique to preserve the current
models. Assume that in the s — th iteration, the j —th
wafer sample's predicted outcome is 2].(5). The newly added
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regression tree, es(wj) was derived in the manner
described below:

2]-(2) =0,¢e (W]-) = 2]-(0) +e (Wj),Zle el(wj) +e, (W]-) =z”j(1) +

e2(w)), Zizs el(wy) = 2570 + es(wy) ®)
It then changed (5) into (3) to get the formula (6) that
follows.

0bj® = ¥k (Zj'ZA](s—l) + es(Wj)) + Q(e;) + constant (6)

Add a common term and do a second-order Taylor
expansion of the goal variable.

0bj®) = Z;zl [h]-es(wj) +%gje§(wj)] +Q(e) =

8y [AiOraw) + 39,67 + 7S + 5 AlxilI? =

28 [(Sjen )0 + 3 (Sjer, ) + DFE] +v° )

Particularly in hj = 0,6k (z,2877),9; =
622”].(5_1) k (zj,z”](-s_l)) Equation (7) may be simplified by
defining (8) H; = X je;, hi, G; = Xjei, gj and  substituting
them into it,

0bj® = Y5, [H;6; +3(G; + 1)87] +¥° ®

The value of the leaf node 6; in equation (9) is unclear.
As a result, the optimal value 6] of leaf node j may be found
by solving the objective function 0bj®, which looks for the
first derivative for 6;.

! )

When 6; is substituted into the objective function, the
minimal value is obtained by 0bj,

is) — _lys _Hj
Ob] ZZL=1Gj+).

+yS (10)

4. RESULT AND DISCUSSION

Findings from outcomes were conducted using the
Python 3.11 software version. The research was perform
using a laptop running Windows 10 with an Intel 17 CPU
and 32 GB of RAM. The effectiveness of the
aforementioned model is determined by comparison
measures like RMSE, MAE, and R%.The proposed method
compared to other existing methods such as Gradient
Boosting [17], Light Gradient Boosting Machine (LGBM)
Regressor [17], and Extra Trees [17]. Better band gap
robustness was indicated by the suggested models' more
accurate band gap predictions and reduced error rate
when compared to the existing models. In semiconductor
band gap analysis, the main features of importance are
particle size, crystal structure, and atomic composition.
Atomic composition is the most significant factor, while
importance ratings show the impact of characteristics.
Figure 2 indicates the outcomes of the results.
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Fig. 2 — Outcomes of results
4.1 RMSE

A common metric in the assessment of the ordinary
amount of the errors within predictions is root mean
squared error. It indicates the square root of the average
of the squared changes among the predictions and real
values. The RMSE values, which indicate the number of
mistakes in the models, decrease with the quality of the
predictions made by the models. The suggested FWS-
RXGboost model, as shown in Fig. 3 and Table 1, is
superior to the current models when compared to gradient
boosting, which has an RMSE of 0.18. In the end, this
would suit real data better and forecast more accurately.

0.20

....................................... *
0.15 4
w
2 10
'3
0.05
0.00 ! ! |
Gradient LeBM Extra Trees [17] FWS-RXGBoost
Boosting [17]  Regression [17] [Proposed]
Methods
Fig. 3 — Result of RMSE
4.2 MAE

To measure the accuracy of predictions by the model is
the average relative variation between actual and
expected values, or Mean Absolute Error, or MAE. The
lower the MAE, the more accurate the prediction. The
MAE of LGBM and Gradient Boosting for the proposed
model is 0.12. However, FWS-RXGboost has a higher MAE
of 0.10; Figure 4 and Table 1 indicate better accuracy and
predictive capacity.
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1.2 R?

The constant of drive measurement or R? is defined as
the measure of the goodness of fit between model
prediction and actual data. The larger the value for R2, the
better the predictability. The R? of the existing models of
LGBM and Gradient Boosting is 0.96. The suggested
model Figure 5 & Table 1. FWS-RXGboost has a greater
value of R2 = 0.97 hence, it provides greater predictability
and is very close to the actual values.

Fig. 5 — Result of R?

Table 1 - Quantitative outcomes of the suggested methods

Method RMSE | MAE | R?
Gradient Boosting [17] 0.18 0.12 0.96
LGBM Regressor [17] 0.19 0.12 0.96
Extra Trees [17] 0.19 0.12 0.95
FWS-RXGboost 0.17 0.10 0.97
[Proposed]

5. CONCLUSION

Band gaps in nanomaterials can be predicted and
understood by combining cutting-edge machine learning
techniques with an intelligent machine learning approach
for analysing semiconductor band gaps in nanomaterial
systems; the study successfully highlighted the
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significance of feature selection, data pre-processing, and
gradient boosting optimization for precise outcomes using
the FWS-RXGBoost model. The findings confirmed that
machine learning techniques can accurately predict and
assess semiconductor characteristics, dropping the
essential for costly and time-consuming traditional
experimental approaches. This produces strong prediction
metrics, particularly when it comes to increases in RMSE,
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IarenexryanpHuii miaxia 4o amanidy 3a00poOHEHUX 30H y HAMIBOPOBIAHMKOBUX HAHOMAaTepiagax

Bhagyashree Ashok Tingarel, R.A. Kapgate2, P. William3, Jaitkumar M. Patil¢, Tarun Dhar Diwan5,

Prasad M. Patare®, Laxmikant S Dhamande®
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Amnairia 3a00poHEHNX 30H y HAIIBIPOBIIHUKOBUX HAHOMATEPIAIaxX Mae BeJIMKe 3HAYEHH JUIS 3aCTOCYBAHHS
B esekTpoHiri. Tpa uiiiial maxoau MaioTh 00MeXeHHsT B po0OTl 31 CKJIQIHWUMU, HEIHIMHUMHU 3B'S3KaMU JIJIST
IIPOTHO3YBAHHS 3a00poHEHHX 30H. ¥ pobori mpomnonyerhess Monesb FWS-RXGBoost (Fine-Tuned White Shark
Algorithm-Resilient XGBoost), sika ycyBae mipobiemu, moB'ss3asi 3 ornrrumisariero rimeprapamerpie XGBoost mtst
OlIpIn HAmIMHUX HpOrHO3iB. BuropmcroByerscst HaOlp manwmx Kaggle mpo BigbmTkm marepiasiB Ta IfJIBOBI
3HaveHHs 3abopoHeHoi 30mu. JJy1a 3abe3rmeueHHsT TOYHOCTI MOJIeJII HOPMAJTI3allisi 0O3HAK 34 Z-OIIIHKOI0 Ha eTarll
moIepeaHbol 00POOKK CTAHIAPTU3YE O3HAKH, IO IIOKpAallye rpamieHTHe HaBYaHHS. OmnTuMisallis, HaTXHEHHA
White Shark, mocsrae Gajamcy Misk TIO0AJBHHM JOCTIAMKEHHAM Ta JIOKAJIBHUM BHKOPHCTAHHAM. Lla Momesn
BUABIJIACA OLJIBII CTIMKOIO [0 IIIyMy B JaHUX. By mpoBeaeH] MOPiBHAHHA 3 MOIEJLIIO TPAJIEHTHOrO OyCTUHTY Ta
mopmesutio Extra Trees. 3rigmo 3 morxasamkamu RMSE (0,17), MAE (0,10) ta R?* (0,97), FWS-RXGBoost
eeKTUBHMI [IJIsT MOJIEJTIOBAHHS CKJIATHUX 3aJIEKHOCTEMN, OB I3aHUX 3 IIPOTHO3aMu 3a00pOHEHO1 30HU. Y 3B'I3KY
3 muMm, Il peaysbraTu nokKasyiorh, mo FWS-RXGBoost e HamiitHUM, BUCOKOTOYHUM I1HCTPYMEHTOM JIJIS
IPOrHO3YyBAHHA IIMPHUHU 3a00POHEHMX 30H HAINBIPOBITHHUKIB 1 Hapasl FOTOBHM J0 3aCTOCYBAHHS B OYIb-IKHUX
peasIbHUX yMOBaX, Je TOYHICTh € KPUTHIHO BAYKJIUBOK. Y MAMOYTHIX JOCTIIKEHHSIX MOKYTh OyTH BUKOPHUCTAHI
01JIBIII PIBHOMAHITHI HAO0OPH JaHUX TA CKJIAIHI MIOPH/IHI MOJEJII IJIS PO3IIUPEHHS MOKJINBOCTEH TPOTHO3yBAHHS.

Knrouogsi ciioBa: Mamumaue HaByaHHsl, 3a00pOHEH] 30HN y HAIIIBIIPOBLIHUKY, HaHOMAarepianu, aaropurm White
Shark, criiikuit 10 XGBoost (FWS-RXGBoost).
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