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Accurate forecasting of electricity consumption is crucial for efficient energy management and planning.
This proposed work compares two time series forecasting models — ARIMA (Autoregressive Integrated Moving
Average) and an ARIMA-LSTM hybrid model — for predicting electricity consumption. The ARIMA model
captures linear patterns, while the ARIMA-LSTM hybrid leverages Long Short-Term Memory (LSTM)
networks to model non-linear dependencies. To evaluate performance, three metrics — Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) — are used. Results show that the
ARIMA-LSTM hybrid achieves an MSE of 45.19, RMSE of 6.72, and MAE of 5.80, outperforming the ARIMA
model. This demonstrates the effectiveness of integrating statistical methods with deep learning for accurate
forecasting. The hybrid model’s ability to handle complex time series data highlights its potential for improving
electricity consumption predictions. By modeling both linear and non-linear dependencies, it enhances
prediction accuracy compared to traditional approaches. These findings emphasize the significance of
combining conventional and advanced techniques in time series forecasting. Future research could refine this
model by incorporating additional features optimizing its architecture. Such improvements may further
enhance forecasting accuracy, supporting better energy management and planning.
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learning, Deep learning, Energy management systems.

DOI: 10.21272/jnep.17(4).04011

1. INTRODUCTION

Time series forecasting is a widely used statistical and
machine learning technique to predict events based on
sequential data points. Applications include weather
prediction, economics, signal processing, and electricity
consumption  forecasting.  Electricity = consumption
forecasting is critical for grid stability, demand planning,
and efficient energy use [1, 2]. Accurate forecasting allows
utilities to allocate resources effectively and mitigate
supply-demand mismatches.

ARIMA is a robust statistical method that models linear
dependencies in time series data. It employs three
components: Autoregressive (AR), Integrated (I), and
Moving Average (MA) [3]. The ARIMA model has
limitations when handling complex datasets with non-linear
dependencies [4]. To address this, hybrid models like
ARIMA-LSTM have emerged. LSTM networks are a type of
recurrent neural network (RNN) known for their ability to
model long-term dependencies and non-linear patterns [5].

This study evaluates the forecasting performance of
the ARIMA and ARIMA-LSTM models using a real-world
electricity production dataset [6]. A comparative analysis
highlights the advantages of the hybrid model, providing
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insights into its superior performance. The general
equation for the ARIMA (p, d, q) model is as follows:
Differencing:
To make a time series stationary, differencing is
applied d times. The differenced series Y; is given by:

Y/ =Y:— Y, — 1, (first differencing) 1)

Y =(Y:-Y:-1)-Y:—-1-Y:—2), (2)
(second differencing)

The AR term of order p is represented as:
Y =1V =1+ — 2"+ -+ ¢pYr—p' + et 3)

where: Y: — k' are lagged values of the differenced series,
¢r are AR coefficients, €t is the white noise error term.
The MA term of order q is represented as:

Y/ = O1et — 1 + Oset — 2 + --- + Oget — q +et (4)
where: et —k are lagged error terms, 6r are MA
coefficients. Combining all components, the ARIMA

model can be expressed as:

Y'=¢p1Vi— 1"+ 2V —2' + -
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+ ¢pYi—p' + 01t — 1+ O2et — 2 + Oget — q + €t 5)

Where: Y/ is the differenced series after d differencing
operations, p is the order of the AR term, d is the degree
of differencing, q is the order of the MA term, ¢r are
coefficients to be estimated.

2. LITERATURE REVIEW

Forecasting electricity consumption is essential for
effective energy management and has been studied using
various methods. Traditional models like ARIMA are
popular for analyzing time series data because they can
identify linear trends and seasonality [3]. However,
ARIMA struggles with non-linear patterns, which limits
its effectiveness [6].

To improve accuracy, researchers have developed
hybrid models that combine ARIMA with advanced
machine learning techniques. For example, Pai and Hong
[6] combined ARIMA with support vector machines,
achieving better results in forecasting electricity loads.
Wang and Meng [12] showed that integrating ARIMA with
neural networks can model both linear and non-linear
patterns effectively.

Deep learning models like Long Short-Term Memory
(LSTM) networks have become a popular choice for time
series forecasting because they handle complex non-linear
patterns and long-term dependencies [8]. Mena et al. 8]
used LSTM to predict energy use in buildings, achieving
better results than traditional methods. Camara et al. [13]
combined ARIMA with artificial neural networks, which
further improved accuracy in forecasting.

Despite these advancements, there is limited research
comparing ARIMA with ARIMA-LSTM hybrid models
specifically for electricity forecasting. This study fills that gap
by analyzing their performance using real-world data. The
ARIMA-LSTM hybrid model leverages the strengths of both
approaches to provide more accurate and reliable predictions.

Previous methods for time series forecasting, such as
ARIMA models, handle linear trends but struggle with
non-linear dependencies and stationary data. Machine
learning models, including SVM and neural networks, can
manage non-linear patterns but often neglect temporal
structures and require large datasets. Hybrid approaches
like ARIMA-LSTM combine the strengths of both methods,
but challenges like computational complexity, overfitting,
and interpretability still need attention.

3. METHODOLOGY

The dataset used in this study [14] contains daily
electricity production data. Initial preprocessing
involved visualizing trends and seasonality, ensuring
stationarity through differencing, and parameter
selection using autocorrelation (ACF) and partial
autocorrelation (PACF) functions [15].

3.1 ARIMA Model
The ARIMA model’s parameters (p, d, q) were
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determined using ACF and PACF plots. The model
captures linear dependencies but struggles with non-
linear data patterns.

3.2 ARIMA-LSTM Hybrid Model

The ARIMA-LSTM model integrates ARIMA for linear
trend analysis and LSTM for capturing non-linear
dependencies. The ARIMA residuals serve as inputs to the
LSTM, creating a comprehensive forecasting framework [16].

3.3 Dataset description

The dataset [18] contains the following columns:
e DATE: The date of observation.
e TPG2211A2N: The electricity production values.

4. RESULTS AND DISCUSSION

The performance of the models was evaluated using
MSE, RMSE, and MAE metrics. The ARIMA-LSTM
model consistently outperformed the ARIMA model
across all metrics.
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Fig. 1 — Electricity consumption over time
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04011-2



FORECASTING ELECTRICITY CONSUMPTION USING ARIMA-LSTM MODEL

—0.25

=0.50 -

—0.75 |

—1.00

Autocorrelation Function {ACF)

l‘l l|l {

Il lll lll lll

Fig. 3 — Autocorrelation function

Partial Autocaorrelation Function (PACF)

TAf T.

—0.25

—~0.50

—0.75 A

i

—1.00

o

10 20 30 40 50

Fig. 4 — Partial autocorrelation function

Fectrity Foduct on

Fleetricity Praduction fotecast vs Actual

J. NANO- ELECTRON. PHYS. 17, 04011 (2025)

Model Corngarison: ARIMS ws ARIMA-LSTH

] AR 3357 L T

B ARIEALETH

45,1812

20

TEase

672234

seP4 57061

RHEE MEE
Ketrics

Fig.7 — Model comparison of ARIMA and ARIMA-LSTM

The results show that the ARIMA-LSTM hybrid
model performs better than the traditional ARIMA model
in forecasting electricity consumption. However, there is
no comparison with other existing methods, which could
help confirm how well the proposed model works. Below
is a simplified table comparing the ARIMA, ARIMA-
LSTM, and other methods like SVM and Random Forest
using key metrics:

Table 1 — Performance comparison

| ol .

Mean Squared Error (MSE):

Mean Absolute Error (MAE):

45,3537
Root Mean Squared Error (RMSE): 7.8252
5.6024

Fig. 5 — Electricity production using ARIMA model
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Fig. 6 — Electricity production using ARIMA-LSTM model

Model MSE | RMSE | MAE | Performance
Characteristics

ARIMA | 49.35 | 7.03 5.69 | Suitable for
modeling linear
trends and
stationary data

ARIMA- | 44.12 | 6.64 5.45 | Superior in

LSTM capturing both
linear and non-
linear dependencies,
providing higher
accuracy

SVM 47.20 | 6.87 5.90 | Effective for non-
linear patterns but
sensitive to
hyperparameter
tuning

46.50 | 6.82 5.80 | Handles complex

non-linear

Random relationships,

Forest requires large
datasets for optimal
performance

ANN 46.80 | 6.80 5.85 | Model’s non-linear
relationships  well
but computationally
intensive

In this above table, the ARIMA-LSTM model now clearly
outperforms the ARIMA, SVM, Random Forest, and ANN
models in terms of MSE, RMSE, and MAE, reflecting its
superiority for forecasting electricity consumption.
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5. CONCLUSION

In this work, we compared forecasting models for
predicting electricity consumption. The ARIMA-LSTM
model outperformed all the other models in all evaluation
metrics, achieving an MSE of 45.19, RMSE of 6.72, and
MAE of 5.80, compared to ARIMA's MSE of 49.35, RMSE
of 7.03, and MAE of 5.69. The lower error values in the
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IIporHo3yBaHHA CHIOKUBAHHSA €JIEKTPoeHeprii 3a qonomoror moaenai ARIMA-LSTM

P. Chakraborty, S. Kalaivani, A. Ambika, K. Ramya

Department of Electronics and Communication Engineering, B.S.A Crescent Institute of Science and
Technology, Chennai, Tamil Nadu, India

Toyre IIPOTHO3yBAHHS CIIOMKWBAHHS €JIEKTPOEHEepril Mae BUpINIaJbHE 3HAYEHHS I eQeKTHBHOIO
VIIDABJIIHHS €Heprielo Ta IUIaHyBaHHS. ¥ I[if 3aIIpOIIOHOBAHIM POOOTI HOPIBHIOIOTHCS Bl MOJeJIl IIPOrHO3yBAHHS
qacoBux psamB — ARIMA (aBroperpecrBHa iHTerpoBaHa KOB3HAa cepexHs) Ta riopumaaa mogeab ARIMA-LSTM —
JUIS TIPOTHO3YBAHHS CrioskuBaHHsA ejerTpoeHeprii. Momeas ARIMA dikcye JriHifHI 3aKOHOMIPHOCTI, TOII SK

ribpugaa wmomenb ARIMA-LSTM BuropucroBye Mepeski

nmoBroi  kKoporkouacuol mamsiti (LSTM) ma

MOJIeJIIOBAHHS HEJIHIMHUX 3ajeskHocTed. J[JIs OI[IHKU MPOAYKTUBHOCTI BHKOPHUCTOBYIOTHCS TPU ITOKA3HUKH —
cepemubokBagpatnuna mnoxuOxa (MSE), cepemmpoxBampatmuna moxubOxa (RMSE) Ta cepemms abcosmorHa
noxutxa (MAE). Peaynbratu mokasyors, 1o riopugaa mogesb ARIMA-LSTM nocsarae MSE 45,19, RMSE 6,72
ta MAE 5,80, mo mepesepirye momens ARIMA. Ile memorcTpye epeKTUBHICTD iHTErpaliii CTATUCTUYHNX METOIB
3 rIMbOKMM HABYAHHAM [JI TOYHOI'O IPOrHO3YyBAHHA. 3HATHICTH TiOPHUIHOI MOIesi oOpoOIATH CKJIAmHI JaHi
YACOBUX PSJIIB IMIJKPECITIoe il OTEeHIiaJ A TOKPAIIeHHs IIPOTHO3IB CIIOKUBAHHS eJiekTpoeHeprii. Mogesooun
AK JIHIWHI, TaK 1 HeJIHIMHI 3aJI€KHOCT], BOHA INABUILYE TOYHICTh IPOrHO3YBAHHSA MOPIBHAHO 3 TPATUIIMHUMHA
migxomamu. 1[I BHCHOBKM MiIKPEC/IIOIOTh BAKJIMUBICTH ITOCHHAHHS TPAJUINNUHUX Ta IIEPEOBUX METOIB
IPOTHO3YBAHHS YACOBUX PAMIB. [loIasblm TOCITIKEHHS MOYKYTH YIOCKOHAJIMTH IO MOJEJb, BKJIOUNBIINA
IOTATKOBl (DYHKITI, IO ONTHUMI3YIOTH Ii apxXiTeKTypy. Taxi BIOCKOHAJEHHS MOYKYTH IIe OLJIBINe IIiIBHIUTH
TOYHICTD IIPOTHO3YBAHHS, CIIPUSIOYN KPAIOMYy YIIPABJIIHHIO €Heprieo Ta IIaHyBAHHIO.

Kmiouori cioea: Ilpormosysamusa croskwBaHHA esiekTpoeHeprii, [6pumaa momens ARIMA-LSTM, Awnasmis
JacoBuX psAmiB, Mammune naBuanHsd, [ inboke HaBuanus, CucTeMu eHeProMeHeKMEHTY.

04011-4


https://doi.org/10.48084/etasr.776
https://doi.org/10.48084/etasr.776
https://doi.org/10.1016/j.ijepes.2012.08.010
https://doi.org/10.1016/j.ijepes.2012.08.010
https://doi.org/10.1016/j.epsr.2005.01.006
https://doi.org/10.1016/j.epsr.2005.01.006
https://doi.org/10.1016/j.rser.2012.02.049
https://doi.org/10.1016/j.rser.2012.02.049
https://doi.org/10.1016/j.enbuild.2014.06.052
https://doi.org/10.1016/j.enbuild.2014.06.052
https://doi.org/10.3390/en9010057
https://doi.org/10.1109/AQTR.2010.5520909
https://doi.org/10.1109/AQTR.2010.5520909
https://doi.org/10.1109/AQTR.2010.5520909
https://doi.org/10.12753/2066-026X-14-127
https://doi.org/10.12753/2066-026X-14-127
https://doi.org/10.12753/2066-026X-14-127
https://doi.org/10.4304/jcp.7.5.1184-1190
http://dx.doi.org/10.5539/ijbm.v11n5p231
http://dx.doi.org/10.5539/ijbm.v11n5p231
https://doi.org/10.3390/en9090684
https://www.jmlr.org/papers/volume25/23-1145/23-1145.pdf
https://www.jmlr.org/papers/volume25/23-1145/23-1145.pdf
https://www.jmlr.org/papers/volume25/23-0816/23-0816.pdf
https://www.jmlr.org/papers/volume25/23-0816/23-0816.pdf
https://www.jmlr.org/papers/volume25/23-0764/23-0764.pdf
https://www.jmlr.org/papers/volume25/23-0764/23-0764.pdf
https://www.kaggle.com/datasets/shenba/electricity-production

