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Optimizing physical processes in information systems is crucial for enhancing the efficiency of autono-
mous mobile robots (AMRs) and multi-agent systems in dynamic environments. This study presents an ad-
vanced path planning and coordination approach that integrates AMRs with multi-agent strategies to im-
prove real-time navigation and task execution. The A* (A-Star) algorithm is employed and enhanced with
adaptive heuristic modifications to optimize travel time, energy efficiency, and operational throughput. A
dynamic cost function is introduced to adjust path selection based on environmental constraints, obstacle
distributions, and real-time system dynamics. Additionally, a multi-agent coordination framework is devel-
oped to facilitate seamless interaction among multiple robots, ensuring efficient task allocation and collision-
free movement. Simulation results in structured and unstructured environments demonstrate that the pro-
posed methodology significantly reduces travel time, enhances system-wide productivity, and optimizes
physical process execution in industrial and service robotics applications. By integrating intelligent heuristic
adjustments and adaptive multi-agent coordination, this approach provides a robust solution for real-time
autonomous navigation and process optimization in complex, constrained environments.
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1. INTRODUCTION

Autonomous Mobile Robots (AMRs) play a vital role
in modern industries, including manufacturing, logis-
tics, healthcare, and smart warehousing. Efficient path
planning is a fundamental requirement for AMRs to
navigate dynamically changing environments while
avoiding obstacles and optimizing critical performance
metrics such as travel time and operational completion
time [1]. Traditional path planning algorithms often pri-
oritize shortest-path calculations, but in real-world ap-
plications, additional factors such as execution time, en-
ergy efficiency, and dynamic constraints must be consid-
ered [2]. Among the various heuristic-based path plan-
ning techniques, the A (A-Star) algorithm* is widely uti-
lized due to its optimal and complete search properties
[3]. It employs a heuristic function to determine the best
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path efficiently [4]. However, conventional A* imple-
mentations often focus solely on minimizing the path
length without explicitly considering travel time reduc-
tion and overall operational efficiency, which are crucial
in real-time autonomous systems [5]. This study en-
hances the A* algorithm for AMR path planning with
key contributions: an optimized cost function prioritiz-
ing travel time, adaptive heuristic selection for effi-
ciency, and real-time navigation improvements. Simula-
tions validate their superiority over conventional A*.
The paper is structured as follows: Section 2 covers re-
lated works, Section 3 presents the system model, Sec-
tions 4-7 detail methods, results, and implementation,
and Section 8 concludes with future directions. Figure 1
illustrates AMRs in the smart manufacturing industry.
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Fig. 1 - AMRs in smart manufacturing industry

2. RELATED WORK

Mobile robots have gained significant attention due
to their ability to assist in various tasks, particularly
when operating autonomously in diverse environments
[6-8]. Effective navigation is crucial for their success, en-
abling them to complete tasks like urban deliveries or
emergency responses [9]. Navigation methods can be
classified into global and local techniques [10]. Global
navigation approaches, such as Voronoi diagrams, Dijks-
tra’s algorithm, and potential field methods, are used for
broader tasks like self-driving vehicles and warehouse
robots [11]. Local navigation methods, including fuzzy
logic, neural networks, and optimization algorithms, fo-
cus on safety and efficient movement in dynamic or
crowded environments [12-14]. Although both global and
local navigation techniques have been extensively re-
searched, there remain challenges in optimizing these
systems for complex, real-time environments [15-17]. A
notable research gap lies in integrating these ap-
proaches seamlessly to enhance decision-making capa-
bilities, particularly in unstructured environments, and
improving the robots' ability to adapt autonomously in
changing conditions.

3. SYSTEM MODEL-AMR

The AMR system model consists of multiple intercon-
nected components that enable autonomous navigation,
obstacle avoidance, and optimal path planning. The
model can be described in terms of robot kinematics, en-
vironment representation, sensor integration, and opti-
mization objectives.

3.1 Robot Kinematics

The movement of an AMR is typically modeled us-
ing differential drive kinematics or holonomic motion
models, depending on the robot’s design. For a differen-
tial drive AMR, the motion is governed by:
Vr—Vt

x =vcos(d),y =vsin(f),0 = y

(€Y
Where

e x, y are the coordinates of the AMR,

e (1is the orientation,

e v, vr are the right and left wheel velocities,
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e dis the distance between wheels.

For a holonomic robot (e.g., omni-wheeled), motion
can be controlled in any direction independently using
matrix transformations. Figure 2 illustrates Robot Kin-
ematics, while Figure 3 presents the block diagram of
the AMR driving circuit with set/reset functionality.
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Fig. 3 — AMRs driving circuit

3.2 Sensor Integration

The AMR uses multiple sensors for environment per-
ception and localization:
e LiDAR & Depth Cameras: Mapping

e  Ultrasonic Sensors: Collision Avoidance
e IMU: Motion Estimation
e  Wheel Encoders: Localization
e RGB Cameras: Object Detection
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Fig. 4 — Circuit diagram for LiDAR sensor
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Fig. 5 — AMRs sensors integration

Figure 4 presents the block diagram of a typical Li-
DAR sensor, while Figure 5 illustrates the integration of
sensors in AMRs.

3.3 Environmental Representation

The workspace of an Autonomous Mobile Robot
(AMR) is represented as a 2D or 3D grid map or a con-
tinuous space with known and unknown obstacles.

Known
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Fig. 6 — Workspace of the AMRs

The environment has static (walls, shelves) and dy-
namic (moving objects, humans) obstacles. Occupancy
Grid Mapping and Voronoi Diagrams aid AMRs in effi-
cient, collision-free navigation through complex and dy-
namic spaces.
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Fig. 7 — Occupancy grid mapping (OGM)

Figure 6 depicts the workspace of the AMRs, while
Figure 7 illustrates Occupancy Grid Mapping.
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3.4 Optimization Objectives

The path planning is optimized using:
Minimization of Travel Time (7T%):

dj
Te =Xy )

where d; is the segment distance and v; is the velocity.
Minimization of operational completion time (7%):

To=T:+ Tprocessing (3)
Where,
Torocessing 18 the computational time required for decision-
making.

4. PROPOSED METHOD

The A* algorithm, developed in 1968 at SRI Interna-
tional, is widely used in robotics, Al, and route optimiza-
tion. It finds the shortest path using actual travel cost
(g-cost) and heuristic cost (h-cost) for efficient navigation
and decision-making. The total cost function is given by:

f(n) = g(n) + h(n) 4

where:

2(n) is represents the actual cost;

h(n) is the heuristic estimate of the cost from n to the goal.
By balancing these two components, A* efficiently finds an
optimal path while avoiding unnecessary exploration, mak-
ing it faster than uninformed search methods like Dijks-
tra’s Algorithm and more optimal than purely heuristic ap-
proaches like Greedy Best-First Search.

5. IMPLEMENTATION

The A* algorithm optimally solves the Bilge and Ulusoy
(1995) problem by minimizing travel and operational time
in job scheduling. Using heuristics and actual costs, it en-
sures efficient path planning. Job set 1 and Layout 2 illus-
trate its implementation.

Step 1: Considering the job set

Job Layout [No of |No of
Set No Jobs operations
1 2 5 13

Sequence of]
Machines

Job 1: 1-2-4

Job 2: 1-3-2

Job 3: 3-4-1

Job 4: 4-2

Job 5: 3-1

Step 2. Operations as network diagram
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Step 3. Generate Heuristic function value h(n):

JJ. NANO- ELECTRON. PHYS. 17, 03025 (2025)

Table 1 — Travel time through A* algorithm

ONo |1 2 3 4 5 6 7
h(n) | 10 12 6 8 13 3 7
O.No | 8 9 10 11 12 13
h(n) | 7 10 |2 9 4 1
Step 4. Total Cost Function calculation
O.No | M.No | g(n) =L/IU-M| h(n) | f(n) | Priority
1 M1 4 10 14 4
4 M1 4 8 12 2
7 M3 8 7 15 5
10 M4 6 2 8 1
12 M3 8 4 12 3
Order of execution=10-4-12-1-7
O.No | M.No | POMN | g(n) | h(n) | f(n) | Priority
11 M1 M2 2 9 11 7
2 M1 M2 2 12 13 9
13 M3 M1 10 1 11 8
5 M4 M3 12 13 25 10
8 M3 M4 2 7 9 6

Order of execution for the second set of operations =
8-11-13-9-5

O.No | M.No | POMN | g(n) | h(n) | f(n) | Priority
6 M2 M4 4 3 7 11
3 M3 M2 12 6 18 12
9 M4 M1 8 10 18 13

Order of execution for the final set of operations: 6 —3 —9

Step 4: Final Sequence of the operation according to A*
10-4-12-1-7-8-11-13-9-5-6-3-9

Step 5: Find the maximum travel time.

Step 6: Identify the machine number for each task.
4-1-3-1-3-4-2-1-1-3-2-4-1:

Step 7: Select AMR 1 for the operation.

Step 8: Identify the vehicle’s previous location (VPL).

Step 9: Determine the previous operation machine num-

ber (POMN).

Step 10: Identify the vehicle ready time (VRT = 0).

Step 11: Retrieve the previous operation completion time

(POCT = 0).

Step 12: Calculate vehicle empty trip time (VET = VRT

+TRT1 =0+ 0=0).

Step 13: Determine max vehicle empty travel time

Max(VET) = max(POCT, VET) = max(0, 0) = 0).

Step 14: Compute total travel time (TT = VET + travel

time, TT =0 + 3 = 3).

Step 15: Identify machine ready time (MRT = 0).

Step 16: Find max travel time of AMRs (Max Travel

Time = max(TT, MRT) = max(3, 0) = 3).

Step 17: Add max travel time to process time for opera-

tional completion time (OCT).

Step 18: Repeat Steps 7 to 16 for remaining operations.

Step 19: Determine max travel time as job set comple-

tion time are presented in Table 1.

O.No | M.No All\\f/f)R I\I/)[?\I VRT | VET | MRT | VLT
10 4 1 0 0 0 0 3
4 1 2 0 0 0 0 2
12 3 1 0 3 5 0 9
1 1 2 0 2 5 42 42
7 3 2 0 7 10 29 29
8 4 1 3 9 53 31 54
11 2 2 4 14 31 0 36
13 1 2 3 36 37 58 58
9 1 1 4 77 77 118 | 118
5 3 2 1 54 58 53 60
6 2 2 3 60 80 72 86
3 4 1 2 74 75 70 77
9 1 1 4 77 77 118 | 118

From the above table it is observed that travel time
for all operations is calculated as 118 units

6. COMPUTATIONAL INTRICACY

The complexity of A* in task scheduling depends on
jobs, machines, and AMRs. For 4 layouts with 2 AMRs
and 4 machines each, scheduling 10 jobs leads to
0(128'%) complexity. Optimizations like heuristic prun-
ing, branch-and-bound, or hybrid metaheuristic ap-
proaches can improve efficiency. Table 2 presents the
computational complexity of different methods.

Table 2 — Computational Complexity of various methods

Methods
Breadth-First
Search (BFS)
Beam Search

Complexity
O(b?) (where b is the branching fac-
tor, d is the depth)
O(b9) in worst case, but reduced to
OW-d) (where W is the beam
width)
O(I'n) (where I is the number of it-
erations, n is the problem size)

Tabu Search

A Search* O(bd) in worst case, but depends on
heuristic quality

IDA(Iterative O(b?%) in worst case (similar to A*

Deepening but with iterative deepening)

A)**

Hill Climbing | O(I'n) (where I am the number of it-
erations, n is the number of neigh-

bors per iteration)

7. SIMULATION RESULTS

This section analyzes travel time and operational
completion time for proposed and conventional methods
in FMS. The A* method was tested on ten job sets from
Bilge and Ulusoy (1995) with tool requirements, creating
40 test scenarios. A case with four layouts examined TT
and OCT, with results shown in Figures 8-11.

For work station-1, A* achieved a total energy saving
of 48.9% compared to BFS [18] in the cases where it was
more efficient. However, in several cases, A* consumed
more energy than BFS. This suggests that while A* can
be beneficial in some scenarios, its efficiency varies de-
pending on specific conditions.
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For work station-2, A* achieved a total energy saving of
34.78 % in the cases where it was more efficient than
BFS. However, in multiple instances, A* consumed more
energy, indicating that its effectiveness depends on spe-
cific conditions within the layout.
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Fig. 10 — AMRs activities in WS-3
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For work station-3, A* achieved a total energy saving
of 32.91 % in the cases where it was more efficient than
BFS. Similar to other layouts, A* shows potential energy
savings, but its performance can vary depending on the
specific scenario.
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Fig. 11 — AMRs activities in WS-4

For work station-4, A* achieved a total energy saving
of 39.01 % in the cases where it was more efficient than
BFS. As with the other layouts, A* demonstrated signif-
icant energy savings in certain cases, but its efficiency
can vary depending on the specific scenario.

8. CONCLUSIONS

This study compared the energy efficiency of the A*
and BFS algorithms across four layouts. A* showed en-
ergy savings in certain cases, with Layout-1 achieving
48.9 %, Layout-2 34.78 %, Layout-3 32.91 %, and Layout-
4 39.01 %. However, A* also consumed more energy than
BFS in some instances. The results indicate that A* can
be more energy-efficient depending on the specific prob-
lem. Future work could focus on optimizing A* for better
energy savings through heuristic adjustments and hy-
bridizing it with BFS. Testing larger, more complex
problems would also provide insights into its scalability
and real-world efficiency.
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Juuamika Ta ontumisanis ¢gpismaHux npounecie B ingopmaniiiHuX cucreMax 3 BUKOPUCTAHHIM
ABTOHOMHHX MOOIiJILHUX POOOTIB Ta DaraToareHTHUX CUCTEM
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Ormrrumisariis QisuIHEX IPOIeciB B iHQOPMAIIHHAX CHCTEMAaX Mae€ BUpINIAIbHE 3HAYEHHS JULS IIIBU-
meHHs e)eKTUBHOCTI aBTOHOMHUX MOO1IbHEX poboTriB (AMR) Ta 6araToareHTHUX CHCTEM y AMHAMIYHHUX Ce-
penosumax. Lle mociimpxeHHs pecTaBiIsge BIOCKOHAJICHUH MIAXIT 0 IIJIAHYBAHHS T4 KOOPAUHAIII] IIJIAXIB,
axnit inTerpye AMR 3 GaraToareHTHEMM CTpATEriAMH [IJIA MOKPAIIEHHS HABIrallil Ta BUKOHAHHS 3aBIAHD Y
peasibHOMY Yaci. AnroputM A* (A-Star) BHKOPHCTOBY€EThCS TA BAOCKOHAJIEHUHN aJallTUBHUMI €BPUCTUIHIMUI
MoaudIKAIIAMEA IJIS OITHMI3allil Yacy IMOJ0Poski, eHeproeeKTUBHOCTI Ta OIEePAIiiHOI IIPOIYCKHOI 3IaTHO-
cti. BBoguThes muHamMivyHA (QYHKITIS BAPTOCTI /I KOPUT'YBAHHS BHOOPY IIJIAXY HA OCHOBI 0OME/KeHb HABKO-
JINIITHBOTO CePEIOBUINA, POSIIOILLY IEPEIIKO ] Ta JUHAMIKM CHCTEMHU B peasbHoMy daci. KpiMm Toro, po3po0-
JIEHO CTPYKTYPY 0araroareHTHOI KOOPAUHALIII A1 3a0e3medeHHA Oe3mepediiiHol B3aeMo/Iil MisK KIJIbKOMA Po-
6oramu, 3abe3nedyoun epeKTUBHUN PO3MOILTI 3aBAAHB Ta Pyx 0e3 3iTkHeHBL. PeayspraTy MozesloBaHHS y
CTPYKTYPOBAHUX T4 HECTPYKTYPOBAHUX CEPEJIOBUINAX JEMOHCTPYIOTh, 10 3aIIPOIIOHOBAHA METOI0JIOTIs 3HA-
YHO CKOPOYYE Yac ITOIOPOsKI, MIBUIIYe ITPOIYKTUBHICTE YCI€l CHCTEMH Ta ONTHUMI3y€ BUKOHAHHS (DISUYHUX
IPOIIECIB y IIPOMUCJIOBHX Ta CEPBICHUX POOOTOTEXHIUHIX 3aCTOCYBAHHSX. 3aBIsIKYU 1HTErpallii IHTeIeKTyaIb-
HUX €BPUCTUYHHMX HAJIAIITYBAHb TA aJalTHBHOI 0AraToareHTHOI KOOPAWHAIII, Ieil miaxin sabesmedye Ha-
MifiHe pIIIeHHs JJIsT ABTOHOMHOI HABITAIlll Ta OIITUMI3aIlii IPoIeciB y peasbHOMY Yacl B CKJIQIHUX CePeIOBH-

mrax 3 00MEKEeHNMU MOKJIMBOCTSIMU.

Kmiouosi cioBa: Asromomai MoGimeHI poboru (AMR), Bararoaremtni cmcremwu, IlnamyBaHHA ILIAXY,
Anropurm A*, Hasiramia B peskumi peasIbHOIO 4acy Ta ollepalliiiHa OITHMI3allis.
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