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Metal oxide nanoparticles (MeOxNP) are receiving increasing attention in the last few years due to their 

various applications in electronics, medicine, and environmental remediation. However, their potential toxicity 

poses significant hurdles for safe usage. Therefore, this paper aims at developing a new artificial intelligence 

(AI)-based model for the efficient classification of the toxicity of MeOxNP using a Dynamic Pelican Optimizer 

finetuned Random Forest (DPO-RF) technique. A database has been prepared considering different types of 

nanoparticles (NPs) such as Al2O3, CuO, Fe2O3, TiO2, and ZnO, and the most important key physicochemical 

attributes. This model is followed by pre-processing using handling of missing values with imputation and 

performing standardization by applying the Z-score normalization. Features were extracted with principal 

component analysis (PCA) reducing dimension while keeping the vital information associated with toxicity in 

this model. The applied DPO-RF based model enhanced the feature selection of this model while achieving 

enhanced accuracy through adaptive exploration of this model. The results reflect the valid classification of 

MeOxNP either as toxic or non-toxic, which implies a total accuracy of about 98.2 % for classes of toxicity, and a 

corresponding accuracy rate of about 98.5 % for classes of nontoxicity, which is offering some important 

implications for the assessment of potential risks while using the respective nanotechnology application. 
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1. INTRODUCTION 
 

Nanoparticles (NPs) possess some unique, special 

physical and chemical characteristics. Some of their 

special features are characterized by tiny and quantum 

size influences. The NPs have wide applicability in many 

sectors, such as electronics, consumer goods (such as 

paints, textiles, and even cosmetics), personal hygiene 

products (such as sunscreen), and health-related issues 

within the framework of biomedicine. MeOxNP make up 

the sizeable share of the overall market volume, and this 

is estimated to be at 80 percent. Indeed, lots of other 

nanomaterials (NMs) are in use (Na et al., 2020). 

The scientific discipline of nanotechnology is concerned 

with the development and alteration of particles at a 

nanoscale, mainly in the range of 1-100 nanometers. It can 

be applied in making stronger, lighter, and more durable 
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batteries, fuel cells, and solar cells compared to the 

traditional way. It can be used in computers, nanodiodes, 

and nano transistors (Nair et al., 2022; Zhang et al., 2022). 

NPs are of a size smaller than 200 nm, which makes them 

suitable for biomedical applications. They also possess better 

colloidal stability and permeability through the blood-brain 

barrier. Their morphology needs to be characterized to utilize 

them effectively in diagnostics and therapeutics. Current 

applications of NPs include imaging molecular markers, 

genetic diseases, malignant tumors, photodynamic therapy, 

and drug delivery (Nikolova and Chavali 2020). 

The traditional approaches regarding the 

determination of toxicity often follow experimental 

studies, whereby in vivo and in vitro testing are often 

solely used. Such in vitro and in vivo assessments usually 

face ethical and logistic limitations, especially when there 

is a variety of NMs presented and an array of conditions that 
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might be encountered for the evaluation of toxicity. With ML 

and Deep learning (DL)-based models, such issues would be 

handled in the following way: large data sets would enable 

patterns to be discovered with toxicity levels predicted to 

show possible insights that guide the safe designs of MeOxNP 

(Huang et al., 2022; Gakis et al., 2023). 

 

2. RELATED WORKS 
 

Chandrasekaran et al., (2024) advanced the protection 

of ZnO NPs by including factors together with Mg, Ca, Sr, 

and Ba. The produced NMs established reduced toxicity 

ranges each in vitro and in vivo, as well as possible 

antioxidant features. Because ZnCaO NMs consist of Ca2 

ions, they were much less dangerous to fish and mice, 

which increased material safety.  

Zhou et al., (2023) used Deep learning (DL) capabilities 

and created an in silico version to forecast aquatic species' 

toxicity to metallic nanomaterials (MNMs). It was 

determined that variables, which include hydrodynamic 

diameter, primary length, light, and exposure time, all had 

an impact on ecotoxicity. More species-unique records 

were probably brought to the algorithm to decorate its 

prediction capabilities. 

Zhang et al., (2023) anticipated the mixed toxicity of  

7 steel-engineered NPs (ENPs) for Escherichia coli at 

numerous mixing ratios by using the use of literature and 

lab toxicity records. Two neural network community-

quantitative structure-activity relationship (NN-QSAR) 

fashions and support vector machine (SVM)-QSAR models 

done nicely when ML strategies were used. For both inner 

and external datasets, the very best prediction capability 

changed into verified through a QSAR model based on NN 

and chemical descriptors.  

Xiao created prediction models for the cellular toxicity 

of MeOxNP by automated ML, or autoML. AutoML 

generated models have better performance than ML 

models. Three different autoML systems' models 

performed satisfactorily; none of them outperformed the 

others. The performance of models constructed from 

higher-quality data was superior.  

 

3. METHODOLOGY 
 

This methodology outlines the comprehensive 

approach for evaluating the toxicity of metal oxide NPs 

through data sourcing, preprocessing, feature extraction, 

and classification. Key techniques such as principal 

component analysis (PCA) and the DPO-RF model are 

employed to enhance predictive accuracy and 

interpretability while effectively managing data 

complexities. Fig. 1 outlines the flow of methodology. 

 

3.1 Data Set 
 

The dataset, titled Toxicity Assessment MeOxNP, was 

sourced from open source Kaggle 

(https://www.kaggle.com/datasets/apalania/toxicityassess

ment-meoxnp) and focuses on the computational hazard 

assessment of MeOxNP toxicity using ML techniques. 

 
 

Fig. 1 – Methodology flow 
 

It includes various NPs such as Al2O3, CuO, Fe2O3, TiO2, 

and ZnO. The dataset encompasses more key features. 

These attributes provide a comprehensive overview of the 

chemical and physical properties of the NPs, along with 

their biological impact, enabling effective toxicity 

assessment and analysis through ML models. 

 

3.2 Preprocessing 
 

In predicting MeOxNP toxicity, handling missing 

values and making use of Z-score normalization are crucial 

preprocessing steps. Imputation addresses statistics gaps, 

making sure dataset completeness, while Z-score 

normalization standardizes characteristic scales and 

mitigates outliers, making each descriptor comparably 

influential. Together, these techniques beautify statistics 

pleasant and model reliability, allowing accurate toxicity 

sample identification. 

 

3.2.1 Handling Missing Values 
 

In the preprocessing phase, addressing lacking values 

is essential to make certain the integrity and reliability of 

the dataset. Missing records can rise up from numerous 

assets, consisting of experimental mistakes, facts access 

troubles, or limitations in size strategies. To handle 

lacking values efficiently, numerous techniques can be 

hired. Imputation is a popular technique wherein missing 

values are substituted with approximated values derived 

from the records handy. Techniques, which include 

median, imply, or mode imputation, are used for 

mathematical capabilities, whilst uncompromising 

functions can be full of the majority of recurrent category. 

 

3.2.2 Z-Score Normalization 
 

The outlier problem is addressed by this statistical 

normalizing method. The feature values are transformed 

using the considered feature's mean and standard 

deviation. Specifically, values for the characteristic under 

consideration are converted using Equation (1) into new 

normalized values. 

https://www.kaggle.com/datasets/apalania/toxicityassessment-meoxnp
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 𝑢′ =
𝑢−µ

𝜎
 (1) 

 

where 𝜎 and µ are the feature's standard deviation and the 

feature's mean value. When using the Z-score 

normalization approach, values that are precisely equal to 

the mean are translated to zero, values above the mean 

are shown as positive numbers, and values below the mean 

are shown as negative numbers. 

 

3.3 Feature Extraction Using PCA 
 

PCA is an essential technique for predicting the 

toxicity of MeOxNP. It transforms the authentic dataset 

into foremost additives that are uncorrelated variables 

ordered by way of variance. This reduces dimensionality 

at the same time as retaining good sized toxicity functions. 

PCA removes noise and redundant records, simplifying the 

dataset and permitting the version to recognition on 

applicable NP traits. It additionally aids in visualization 

of information in decreasing dimensions, decoding complex 

relationships amongst descriptors and their impact on 

toxicity effects. 

 

3.4 Classification Using DPO-RF 
 

The proposed DPO-RF model is appropriate for 

classifying the toxicity of MeOxNP. By combining DPO's 

strong seek capabilities with RF's excessive accuracy in 

handling complicated record styles, this model correctly 

selects and prioritizes relevant features whilst reducing 

the hazard of overfitting. DPO enhances RF's overall 

performance by refining feature choice through adaptive 

exploration and exploitation, supporting a strong and 

optimized type version. This technique aligns to gain 

dependable toxicity predictions, making sure each sturdy 

feature has relevance and excessive version 

interpretability in complex, multi-dimensional datasets. 

 

3.4.1 Random Forest (RF) 
 

RF is well-suited for predicting metal oxide NP toxicity 

due to its robustness in handling complex, high-

dimensional datasets with diverse descriptors. By 

generating multiple uncorrelated decision trees, RF 

mitigates the risk of overfitting, ensuring stable 

predictions across varying samples. Its ensemble 

averaging technique reduces bias and variance, making it 

reliable for toxicity classification tasks. Furthermore, RF’s 

inherent feature selection, by using random subsets, 

enhances model interpretability by identifying the most 

relevant descriptors, ultimately improving prediction 

accuracy and aligning well with the objective of reliable 

toxicity classification. 

RF is an ensemble learning method utilized to generate 

predictive models. To increase prediction accuracy, 

ensemble techniques employ a variety of learning models. 

When using a RF, the method generates a whole forest of 

uncorrelated, random decision trees to find the optimal 

solution. Learning mistakes may often be explained by 

variation and bias. For instance, a large variance indicates 

that the model is only appropriate for a certain dataset 

(i.e., overfitting or instability), while a high bias leads to 

erroneous test findings. The training dataset 𝑌 =
{𝑦1, … . 𝑦𝑚} is given labels𝑋 = {𝑥1, … . 𝑥𝑚}. The training 

dataset is bagged repeatedly and randomly (𝐾 times) and 

then replaced with binary trees fitted to the samples. 

With𝑘 =  {1, ⋯ , 𝐾}, let 𝑦𝑘 and 𝑥𝑘 be the sampled dataset. 

Let 𝑆𝑎 represent the binary tree that was trained about 

𝑦𝑘and 𝑥𝑘. Two methods are available for making 

predictions on the test dataset, 𝑦, following training.  

Calculating the average of each tree's predictions using 

(Equation 2). 
 

 𝑥̃ =
1

𝐾
∑ 𝑆𝑎(𝐾 𝑦̃) (2) 

 

In the case of classification trees, obtaining the 

majority vote.  

 

3.4.2 Dynamic Pelican Optimization (DPO) 
 

DPO is a powerful tool for forecasting the toxicity of 

MO-NPs due to its ability to balance exploration and 

exploitation in complex search spaces. It uses a dynamic 

weighting mechanism to adjust search scales, enhancing 

solution quality and model convergence. This dual-phase 

approach allows DPO to efficiently locate global optima in 

optimization problems, making it an effective solution-

finding tool. 

 

Pelican Optimization 

The PO is a novel stochastic optimization technique 

that draws inspiration from nature. It is renowned for its 

exceptional capacity to investigate and utilize the search 

space to find the global optimum. Recently, there has been 

a lot of interest in swarm-inspired algorithms, and the PO 

is particularly impacted by pelican behavior and foraging 

strategy. When hunting in the wild, pelicans frequently 

work together and take a multi-step method. Once they 

have identified where their prey is, they make a 

coordinated descent and then spread their wings. By 

forcing their prey to surface and migrate into shallower 

waters, the pelicans can catch their meal more easily. 

 

Initialization 

The PO is a population-based algorithm, initializing all 

pelican group members at random at the start of the 

optimization process using Equation (3). The population 

size, number of problematic variables, intervals, inferior 

and superior boundaries are represented by 𝑊𝑗,𝑖. 
 

 𝑊𝑗,𝑖 = 𝐾𝐴𝑖 + 𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵𝑖 − 𝐿𝐵𝑖)𝑗 = 1,2, … 𝑀 (3) 

 

Phase 1 (Exploration) 

This phase involves pelicans searching for food sources, 

similar to pelicans hunting prey. The PO's ability to 

produce the prey's position at random improves its 

exploration skills. The objective function for the 𝑖th pelican 

candidate solution's new location is given in Equation (4), 

where 𝑂𝑖 is the prey's location and 𝑊𝑗,𝑖
𝑂1 is the jth pelican's 
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most recent position. The 𝐽 parameter greatly influences 

the PO's capacity to explore and methodically search the 

search space (Equation 5). 
 

 𝑊𝑗,𝑖
𝑂1 = {

𝑊𝑗,𝑖 + 𝑟𝑎𝑛𝑑. (𝑂𝑖 − 𝐽. 𝑊𝑗,𝑖), 𝐸𝑂 < 𝐸𝑗;

𝑊𝑗,𝑖 − 𝑟𝑎𝑛𝑑. (𝑂𝑖 − 𝐽. 𝑊𝑗,𝑖)𝑒𝑙𝑠𝑒
 (4) 

 

 𝑊𝑗 = {
𝑊𝑗

𝑂1 , 𝐸𝑗
𝑂1 < 𝐸𝑗;

𝑊𝑗 , 𝑒𝑙𝑠𝑒
 (5) 

 

Phase 2 (Exploitation) 

Pelicans use their wings to drag fish upwards, 

collecting them in their neck pouch. This strategy 

increases fish catch in a designated area. The proposed PO 

improves convergence towards advantageous locations, 

increasing efficiency in local search and exploitation. The 

mathematical expression for this mimicking behavior is 

given in Equation (6), where 𝑠 is the current iteration, 𝑠𝑀𝑎𝑥 

is the maximum number of iterations, 𝑄 is a constant, and 

𝑊𝑗,𝑖
𝑂2 is the jth pelican's most recent position.  

 

 𝑊𝑗,𝑖
𝑂2 = 𝑊𝑗,𝑖 + 𝑄. (1 −

𝑠

𝑠𝑀𝑎𝑥
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑊𝑗,𝑖 (6) 

 

The following Equation (7) then specifies how the 

result is modified in light of the new position. 
 

 𝑊𝑗 = {
𝑊𝑗

𝑂2, 𝐸𝑗
𝑂2 < 𝐸𝑗;

𝑊𝑗 , 𝑒𝑙𝑠𝑒
 (7) 

 

Consequently, in accordance with Phase 2, 𝐸𝑗
𝑂2is the 

value of this objective function, and 𝑊𝑗
𝑂2 is the 𝑗th pelican's 

most recent position. 

 

3.5 System Configuration 
 

The proposed method was implemented on a system 

with 16 GB of RAM and a 64-bit operating system to 

handle large datasets efficiently. Key libraries include 

NumPy for numerical operations, Pandas for data 

manipulation, Scikit-learn for ML, and Matplotlib for 

visualization, ensuring robust performance in forecasting 

the toxicity of metal oxide NPs. 

 

3.6 Output Phase 
 

This phase presents the classification performance 

metrics of the proposed method, highlighting its 

effectiveness in distinguishing between toxic and non-toxic 

metal oxide NPs. Table 1 summarizes the percentages of 

metrics for both target classes. 
 

Table 1 – Performance of proposed classification 
 

Target 

classes 

Accuracy 

(%) 

Precision 

(%) 

Recall  

(%) 

F1-

Score 

(%) 

Specifi

city 

(%) 

Toxicity 98.2 97.8 98.2 98.3 97.5 

Non-

toxicity 
98.5 98.6 98.5 98.4 98.9 

 

 

4. RESULT AND DISCUSSION 
 

Relevant performance metrics, including recall, 

precision, F1-score, accuracy, and specificity, are covered 

in this section, demonstrating the proposed method's 

effectiveness in classifying metal oxide NPs based on 

toxicity. 

 

4.1 Accuracy 
 

The accuracy (Equation 12) metrics for the proposed 

method indicate excellent performance in distinguishing 

between toxic and non-toxic classes of metal oxide NPs. 

The method achieved an accuracy of 98.2 % for the toxicity 

class and 98.5 % for the non-toxicity class. This high level 

of accuracy suggests that the model is effectively 

classifying instances, demonstrating its potential utility in 

real-world applications for toxicity assessment, where 

accurate predictions are crucial for safety and efficacy 

evaluations (Figure 2). 
 

 
 

Fig. 2 – Accuracy performance of the proposed method 

 

4.2 Precision and Recall 
 

This parameter provides deeper insights into the 

performance. An accuracy of 97.8 % for the toxicity class 

indicates that the procedure is 97.8 % accurate for 

classifying toxicity. The recall signifies that the model 

classify 98.2 % of actual toxic instances. For non-toxicity, 

the precision is 98.6 %, meaning that almost all non-toxic 

predictions are accurate, while the recall is 98.5 %, 

indicating a high capability of detecting non-toxic 

instances. These metrics reflect the model’s reliability in 

both minimizing false positives and maximizing true 

positives, which is crucial for ensuring that toxic NPs are 

correctly identified. Figure 3 (a) shows the performance of 

the proposed method with metric precision and Figure 3 

(b) shows for recall. 

 

4.3 F1-Score and Specificity 
 

The F1-Score (Fig. 4(a)) is a harmonic mean of recall and 

precision, providing a single metric to assess the performance 

of the model on toxicity and non-toxicity classes.  
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Fig. 3 – Performance of proposed method (a) precision and (b) 

recall 
 

The F1-Score of 98.3 % for toxicity and 98.4 % for non-

toxicity indicates a well-balanced model with excellent 

overall performance. Specificity measures the proportion 

of true negatives accurately identified by the model. The 

specificity (Fig. 4(b)) for toxicity is 97.5 %, while for non-

toxicity, it is 98.9 %. This represents that the model is very 

effective at identifying non-toxic NPs, with slightly lower 

performance for toxic ones, but indeed within acceptable 

ranges. Together, these metrics reinforce the robustness of 

the proposed method in accurately predicting toxicity 

while minimizing misclassifications. 

 

5. CONCLUSION 
 

This study successfully developed a novel AI-based model 

for classifying the toxicity of MeOxNP, utilizing the 

Dynamic Pelican Optimizer finetuned Random Forest  

 
 

Fig. 4 – Performance of proposed method (a) F1-Score and (b) 

Specificity 
 

(DPO-RF) approach. The model demonstrated high  

accuracy rates of 98.2 % for toxic and 98.5 % for non-toxic 

classes and interpretability, highlighting the importance 

of physicochemical properties in toxicity assessment. The 

findings contribute to enhanced risk assessment of NPs in 

various applications, supporting safer and more effective 

usage. Future research could expand the dataset to 

include additional NP types and explore alternative ML 

techniques to further improve classification performance 

and generalizability across different toxicological contexts. 

Limitations include the dataset's focus on specific metal 

oxide NPs and potential biases in the collected data. 

Future work should aim to incorporate a broader range of 

NPs and explore advanced ML techniques to enhance 

model robustness and applicability in diverse settings. 
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Наночастинки оксидів металів (MeOxNP) привертають дедалі більшу увагу в останні кілька років через 

їх різноманітне застосування в електроніці, медицині та відновленні навколишнього середовища. Однак 

їхня потенційна токсичність створює значні перешкоди для безпечного використання. Тому ця стаття 

спрямована на розробку нової моделі на основі штучного інтелекту (ШІ) для ефективної класифікації 

токсичності MeOxNP з використанням методу точно налаштованого випадкового лісу (DPO-RF) динамічного 

оптимізатора Pelican. Була підготовлена база даних з урахуванням різних типів наночастинок (НЧ), таких 

як Al2O3, CuO, Fe2O3, TiO2 та ZnO, а також найважливіших ключових фізико-хімічних характеристик. Ця 

модель супроводжується попередньою обробкою з використанням обробки відсутніх значень з імпутацією та 

стандартизацією шляхом застосування нормалізації Z-оцінки. Ознаки були вилучені за допомогою аналізу 

головних компонентів (PCA), зменшуючи розмірність, зберігаючи при цьому життєво важливу інформацію, 

пов'язану з токсичністю в цій моделі. Застосована модель на основі DPO-RF покращила вибір ознак цієї 

моделі, одночасно досягаючи підвищеної точності завдяки адаптивному дослідженню цієї моделі. 

Результати відображають дійсну класифікацію MeOxNP як токсичної або нетоксичної, що передбачає 

загальну точність близько 98,2 % для класів токсичності та відповідний коефіцієнт точності близько 98,5 % 

для класів нетоксичності, що має деякі важливі наслідки для оцінки потенційних ризиків під час 

використання відповідного застосування нанотехнологій. 
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