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To predict the dielectric behavior of nano-epoxy composites, sophisticated machine learning algorithms were
suggested. Dielectric characteristics were precisely estimated to maximize the use of the nano-epoxy composite
in electronics. Using Al models and data on their electrical properties, the objective is to predict the dielectric
behavior of nano-epoxy materials. To achieve consistent feature contributions, the dataset was preprocessed
using min-max normalization, which normalized the range of input characteristics. Therefore, present the Fine-
tuned Squirrel Search Algorithm-driven Malleable AdaBoost model (FSS-MAdaBoost), which combines
MAdaBoost with the FSS. This hybrid model may overcome the typical drawbacks of improved prediction
accuracy and the successful handling of complicated and nonlinear connections between features. The suggested
model is compared to an existing model. The performance was evaluated using RMSE (0.018) and MAE (0.01)
measures. According to the foregoing results, the FSS-MAdaBoost-based model outperforms previous approaches
with much lower values of RMSE and MAE, indicating superior predictions and dependability. The results
indicated promising directions for dielectric property forecasting using the FSS-MAdaBoost model for nano-epoxy
materials, providing valuable insights that material scientists and engineers can use to optimize material design,
thereby improving electronic applications.
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1. INTRODUCTION

The increased mechanical and electrical features of
nanoscale reinforcement in epoxy resin were the focal point
of interest among diverse fields of application, starting from
electronics and electrical insulation. Such properties of the
material comprise dielectric behavior-permittivity, dielectric
strength, and loss tangent [1]. Thus, in the context of electric
insulation-related applications, energy storage, and high-
voltage ambiance, the above-mentioned properties represent
materials' performance and reliability. Nano-epoxy materials
have complex dielectric characteristics, as the relationship
between epoxy matrix and nanofillers engaged is highly
sensitive to many parameters such as nanoparticle size,
concentration, and dispersion [2]. The overwhelming
requirements of experimental testing make classical methods
for calculating dielectric characteristics consume much more
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time and money. One interesting method of dielectric
behavior forecast in terms of material electrical
characteristics was artificial intelligence (AI) [3]. With such a
dataset, Al may find patterns and connections amid dielectric
responses for nano-epoxy compositions. It gives insight into
how to develop and improve nano-epoxy materials to be used
in high-performance applications for advanced electronics,
helps predict the material's efficiency, and reduces the need
for lengthy testing [4]. The epoxy resin material had dielectric
properties significantly improved due to nanoscale particles
and, thus, considerably increased its prospects for use in
modern electrical and electronic devices. Low dielectric loss,
and specific characteristics of the many types of nano-epoxy
materials are particularly relevant to microelectronic devices,
high-voltage insulators, and power storage technologies [5-6].
Due to the complexity, a single conventional experimental
approach fails to completely capture the underlying
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relationships that form the basis of dielectric behavior; hence,
it is more restricted by cost and time factors [7]. Artificial
intelligence has been standard as an effective solution to
model complex relationships in material science in recent
years. Al, through machine learning and deep learning
techniques, predicts the electronic properties-based dielectric
behavior of nano-epoxy composites, thus providing a very
promising tool against conventional testing limitations [8].

2. RELATED WORK

The effects of artificial nanoparticles on undoped epoxy
composites were examined, with a focus on their potential
use in dielectric materials. Nano epoxy composites were
usually synthesized and characterized experimentally
using costly and time-consuming techniques. To address
the difficulty, evaluate the machine learning (ML) models,
gradient boosting, XGBoost, decision trees, random
forests, and additional trees. Those models were used to
forecast the frequency-dependent dielectric coefficients in
these composite over various nanofiller changes [9].

Combining 3D-connected AF with Al,05; microparticles
results in a high heat conductivity and significant increase
[10]. The composites possible for temperature
transmission submissions in microelectronics was
suggested by its reduced CTE when compared to the
majority of epoxy-based composites.

The fabrication offe; 0, , Nife,0, and Cofe,0,
nanoparticles as well as their nanoparticle-doped epoxy
composites were examined [11]. Several methods were used
to examine the nano-composites structural, optical, and
dielectric characteristics. The superficial morphology was
inspected using field emission electron microscopy (FESEM),
and the occurrence of several compounds was confirmed
using electron deflection spectroscopy (EDS). The chemistry
and surface functioning were examined using Fourier
transform infrared spectroscopy (FTIR), though the
structural features remained ascertained using XRD.

The microwave dielectric reduction spectroscopy of
epoxy resin composites doped with TiO. + ZnO and
bisphenol-A resin. The structural properties were found
using X-ray diffraction and ultrasonic dispersion methods
[12]. The results bring new insights into the structural
characteristics and polarization processes of those
composite substances.

3. METHODOLOGY

The method uses a preprocessed dataset for nano-
epoxy materials and the properties of normalization,
including min-max normalization for consistency. A
technique dubbed FSS-MAdaBoost has been presented,
which combines the FSS-MAdaBoost in the hopes of
increasing prediction accuracy. The application in error
metrics using RMSE and MAE is less than any previously
acquired approach, indicating that it accurately edicts
dielectric characteristics for material optimization
applications.
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3.1 Data Collection

The collection includes a variety of nano-epoxy
material parameters. The characteristics of various epoxy
resin types, nanoparticles, and their concentrations are to
show how they affect dielectric behavior. Various samples
with properties that vary, including the type of epoxy
resin, the types and concentrations of nanoparticles,
conductivity, permittivity, polarizability, curing
temperature, the dielectric constant, and the loss tangent.
This is also essential in predicting how nano-epoxy
materials would behave as dielectrics. With such
information, it is then possible to predict the optimization
required for these nano-epoxy materials for such cutting-
edge applications by considering the link established
between the kind and concentration of nanoparticles and
their total electrical characteristics.

Min-Max

3.2 Data Pre-processing Using

Normalization

For predicting the dielectric behavior of nano-epoxy
materials using Al-based electronic property analysis,
Min-Max normalization is used as a data preparation
approach. Signal levels are balanced between 0 and 1,
eliminating uneven distribution or inconsistency in data.
As a result, this normalization produces improved results
in dielectric property forecasts for dependable electronic
applications utilizing nano-epoxy materials. The initial
data is transformed linearly using min-max
normalization. Normalization of values occurs within the
designated range. To translate the u value of an attribute
B from [ming, maxg] to[newminB,neWmaxB], use the
following equation (1):

’ u-ming

u =

maxg-ming (newmi"B’neWmaxB) + newmin, (1)

Where u' represents the new value in the specified
range. Min-Max normalization ensures all values fall
inside a specific range.
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3.3 Fine-tuned Squirrel Search Algorithm-driven
Malleable AdaBoost model (FSS-MAdaBoost)

To present a hybrid model Fine-tuned Squirrel Search
Algorithm-driven Malleable AdaBoost (FSS-MAdaBoost),
which improves the predicted accuracy of dielectric
behavior in nano-epoxy materials. The FSS-MAdaBoost
model combines MAdaBoost with the FSS, enabling for
fine-tuning of model parameters and adaptation to
complicated, non-linear correlations in the data. The
hybrid technique meets the goal by resolving the
constraints of conventional machine learning approaches,
resulting in an adaptable and resilient solution that
greatly decreases prediction errors. The suggested FSS-
MAdaBoost improves performance by precisely capturing
the dielectric characteristics required for use in material
science and electronics.

3.3.1 Malleable AdaBoost

The malleable AdaBoost is utilized here to improve the
flexibility and accuracy of dielectric behavior prediction of
nano-epoxy material. Dynamic optimization is achieved by
modifying AdaBoost's fitting model such that it captures
minor electrical features with great accuracy to
dependable dielectric predictions. Adaptive boost is an
iterative technique that creates a single strong classifier
by combining many weak classifiers. This algorithm's
main concept is to train several feeble classifiers for the
same and the term in equation (3) is bigger than that in
equation (2) since gs_i(wj)is greater than 0. It is a major
error to misclassify samples that have already been
appropriately categorized. Therefore, the next classifier
should pay more attention to these data and assign this
example a greater weight. The weight adjustment
technique might help the subsequent weak classifier pay
more attention to samples that are changed from positive
to negative by the present built classifier, lowering the
likelihood that they would be incorrectly categorized.

Cs(j) EXP(_as'ngs(Wj))

Cs41 (/) = sum (C) 2
 _ Cs(s) exp(-asz;gs(w;) +BzjEs—1 (W))gs-1(w))
o) = 22l b tion))

( )1[—37‘7‘
cs(rmesiosti))
Cs1() = ( ) 4

sum(C)

If a section is misclassified more than once, equation (4)
will be utilized as the weight updating equation instead of
equation (2). The threshold of inaccuracy counts, or err, is the
error rate of the previous round classifier on the model set; in
other words, the penalty term takes effect when the counts of
persistent misclassifications of a model surpass the
threshold. In equation (2), f ~a5.295(Wj)ig greater than 1 and
1—aq, Z]-gs(wj)is in the range (0, 1), and z]-gs(wj) < 0. Thus,

1—err

( f—as,ijs(Wj)) " is more than ll__e;r-

The enhanced method gives greater consideration to
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the classifier's error rate and the frequency of incorrect
classifications in the second instance. This updated
technique of enhanced weight suppresses weight
distortion and decreases the expanding variety of model
mass identified by the earlier round of feeble classifiers.
The classifier trained in the prior curve properly
categorized the sample; however, in this round it classified
it wrongly. The samples were erroneously categorized in
both this round and the prior round by the classifier that
was trained.

Let z; represent the correct classification of apiece
model j, gs_l(wj) represent the earlier classification
outcome, gs(wj) represents the outcome in this round, ft
(xi) represents the mass of the present -classifier,
andE;_, (wj) + e (wj). The test weight update equation for
the conventional approach is equation (2). The proponent
is bigger than 0 and the model mass is raised if a sample
is misclassified, meaning that z;g; (wj) < 0. The first
instance of misclassification is handled by the enhanced
algorithm using equation (3). Since 8 > 0 in equation (3),
z; gs(wj) is smaller than 0. In other situations, the
conventional weight update approach will continue to be
applied. With w; and zstanding for a mark that
corresponds to each sample and the position in the sample
space, T ={(W,,Z,), W,,Z;) ... Wy, Zy)}. The amount of
samples taking part in the training is M.

Set the initial weight of vector C, which represents the
mass of the individual sample in the training information.
The same weight, 1 over M, is assigned to each sample. For
training, the weak learning process gl was employed.
Following preparation, the error rate was determined
using equation (5). M., is the number of models that were
misclassified.

Merr
e=—" 6))

Determine the weak learning algorithm's weight.
Vector a represents the mass of the feeble learner
algorithm, which is determined by the mistake amount in
equation (6),

1, (1-¢
a = Eln (T) (6)

Each sample weight should be updated. Equation (2) is
the weight update calculation in the initial instance of
misclassification explored in section. Equation (4) will be
used if the second instance of misclassification occurs.
After adjusting the sample weight based on each training
outcome and the most current total classification's
accuracy, this method uses the new data to train the next
weak classifier. As the last choice classifier, Adaboost
determines the precision of the current poor classifiers and
merges them into a malleable classifier. When certain
requirements are fulfilled, the iterative process comes to
an end. The aforementioned analyses demonstrate that as
Adaboost iteration progresses, the weight of mistake
samples will rise. This phenomenon seeks to focus the
classifier's focus on wrongly classified data. The classifier's
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overall performance will surely be impacted if this issue is
allowed to grow indefinitely. This study pays attention to
the mass adjustment techniques of the two categorization
situations listed below to mitigate this issue; every weak
classifier's weight and output are determined following t-
round learning. Equation (7) displays the algorithm's
ultimate result.

G(W) = sign (Xj=, a;9;(W)) (M

4. RESULT

Results were obtained from trials with the Python 3.11
software. The investigation was conducted using a laptop
running Windows 10 with an Intel i7 CPU and 32 GB of
RAM. The feature significance ratings for the several
elements affecting the dielectric behavior of nano-epoxy
materials are shown in Fig. 2. The most crucial component
of the model is permittivity, which increases prediction
accuracy by 0.40. Similarly, the relevance score of
characteristics is increased by 0.20, 0.15, and 0.15,
respectively, by nanoparticle type, conductivity, and
curing temperature. These characteristics are crucial for
making precise predictions, therefore they fit in nicely
with the study's goal of enhancing dielectric property
prediction.

Nanoparticle |
concentration

using |
Temperature

Condutivity -

Nano particles - |

Features

Permitivity - |

T T T T T T T T
000 005 0.40 015 020 025 030 035 0.40
Importance Score

Fig. 2 — Forecasting nano-epoxy material dielectric behavior

A visual comparison between anticipated and actual
values is provided by the anticipated vs. Actual Dielectric
Constant plot, Fig. 3 which is used to assess how well the
model predicts the dielectric behavior of nano-epoxy
materials. The model's projected dielectric constants for
different nano-epoxy samples are shown by the blue dots,
and complete prediction alignment is shown by the red
line. High prediction accuracy is shown by points around
this line, which directly supports the goal of creating a
precise. Al-driven model for dielectric property
forecasting. Considerable departures from the line
indicate regions where more model improvement may
improve prediction accuracy, hence enhancing the model's
dependability in real-world scenarios.

Comparison between the proposed method Fine-tuned
squirrel search algorithm-driven malleable AdaBoost
(FSS-MAdaBoost) with existing methods Random Forest
(RF), Decision Tree (DT), and Extra Trees (ET) [13]
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Fig. 3 — Plotting the predicted and actual dielectric constants to
assess model performance

Table 1 — Quantitative outcomes of the suggested methods

Method MAE RMSE
RF [17] 0.021 0.035
DT [17] 0.023 0.032
ET [17] 0.013 0.022
FSS-MAdaBoost 0.01 0.018
[Proposed]

is lower than the proposed method. Compared the existing
methods with the MAE, and RMSE parameters. Table 1
shows the Quantitative outcomes of the suggested
methods

5. DISCUSSION

Optimizing the use of nano-epoxy materials in
electrical applications requires precise prediction of their
characteristics, such as their dielectric behavior.
Capacitors and insulators may be designed as efficiently
as possible using high-precision predictions of these
characteristics. To forecast the dielectric characteristics, a
few of the current machine-learning techniques, including
RF, DT, and ET, were examined. With an RMSE of 0.035
and an MAE of 0.021, the RF model was operating at a
respectable but subpar level for the complex nonlinear
connections involved in the material characteristics. DT
indeed experienced issues with greater errors, particularly
with more diversified datasets, with an RMSE of 0.032 and
an MAE of 0.023. ET performed better than DT at 0.022
RMSE and 0.013 MAE, as in the previous trial, but it was
yet unable to reduce errors to the level necessary for a
high-accuracy prediction.

6. CONCLUSION

To obtain a distinct FSS-MAdaBoost model to predict
the dielectric behavior of nano-epoxy material accurately,
combining the provisions of adaptive boosting along with
fine-tuned Squirrel Search. It has also been tested on
crucial metrics like MAE and RMSE. Compared to existing
prediction-related methods like RF, DT, and ET, the
proposed model surfaces as the best fit. FSS-MAdaBoost
with the lowest RMSE (0.018) and MAE (0.01)
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demonstrates the least minimal error minimization
compared to the other models. In addition, the RMSE and
MAE values of the latter were higher. It displays a failure
to predict the dielectric behavior of nano-epoxy material.
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€JIEKTPOHHUX BJIACTHBOCTEM HA OCHOBI IUTYYHOIrO iHTEJIEKTY

Vaibhav D. Dabhade?, Bhagyashree Ashok Tingare2, Sandip R. Thorat3, R.A. Kapgate?,
Tarun Dhar Diwan?®, Laxmikant S Dhamande3, P. William®

1 MET Institute of Engineering, Nashik, MH, India

2 Department of Artificial Intelligence and Data Science, D Y Patil College of Engineering, Akurdi, Pune, India

3 Department of Mechanical Engineering, Sanjivani College of Engineering, Kopargaon, MH, India
4 Department of Mechatronics Engineering, Sanjivani College of Engineering, Kopargaon, MH, India
5 Controller of Examination (COE), Atal Bihari Vajpayee University, Bilaspur, India
6 Department of Information Technology, Sanjivani College of Engineering, Kopargaon, MH, India

JIJ1s1 TPOrHO3yBAHHS Ti€JIEKTPUYHOI TOBEIHKY HAHOEIIOKCHATHUX KOMIIO3UTIB 0yJI0 3aIIPOIIOHOBAHO CKJIAJHL
AJITOPUTMHU MAIMWHHOTO HaBYaHHA. J1eJIeKTprYHI XapaKTePUCTUKM OyJIM TOYHO OI[IHEeHI IS MaKCHMI3arfl
BUKOPUWCTAHHS HAHOEITOKCUIHOTO KOMITO3UTY B €JIEKTPOHIIN. BHUKOPHCTOBYIOUM MOZEJII IITYYHOTO 1HTEJIEKTY Ta
JIaHl PO IXHI €JIeKTPUYHI BJIACTHBOCTI, METOI € MPOrHO3YBAHHS JIeJeKTPUYHOI MOBEIIHKYA HAHOEITOKCHIHUX
Marepiamis. JJa JOCATHEHHS y3TOIMKEHOr0 BHECKY XapaKTEePUCTUK HAOIp JaHUX OyB IMOIepeaHbO 00pOOIeHHI 3a
JIOTIOMOTO0 HOPMAaJTi3alfii min-max, SKa HOpMAaJIi3yBaja [ialna3oH BXIIHUX XapaKTepucTuk. Tomy mpejcraBieHa
momesib Malleable AdaBoost, keposama anmropurmom momyky oinkn (FSS-MAdaBoost), ska moegaye MAdaBoost
3 FSS. 11z ribpugaa Momesb MosKe IIOJ0JIATH TUIIOBI HEJOIIKH MOKPAIIEHOI TOYHOCTI IIPOTHO3YBAHHS Ta YCITIIITHOL
00pOOKHK CKJIQIHUX TA HEJIIHIMHUX 3B'A3KIB MidK XapaKTePHCTAUKAMN. 3aIpOIIOHOBAHA MOMIEJb IIOPIBHIOETHCA 3
icayoouo mMomesutio. [IpogykrusHicTh OyJia olmiHeHa 3a moromorol BuMmipioBanb RMSE (0,018) ta MAE (0,01).
3rigHo 3 BUIE3a3HAYEHUMH pPeadyJIbTaTaMu, Moaesb Ha ocHoBl FSS-MAdaBoost mepesepiirye momepemHi miaxoau
31 s3HauHo Hmkvynmy 3HadeHHAMH RMSE ta MAE, 1m0 ¢BigunTs 11po Kparil IporHo3u ta HagidHIcTh. Pedynbratu
BKA3aJIM Ha IIEPCIIEKTHUBHI HAIIPSMKY IIPOTHO3YBAHHS JT1eJIEKTPUYHUX BJIACTUBOCTEN 3a jomomoroo moxemi FSS-
MAdaBoost st HaHOEIOKCHAHUX MaTepiasiB, HAJAYM I[IHHY 1H(MOPMAIl0, SIKy BYEeHI-MATepiaso3HABIN Ta
1HKEeHEepU MOKYTh BUKOPUCTOBYBATH JIJISI OIITUMI3allii Au3aiiHy MaTepiajiiB, TAM CAMUM ITOKPAIILYI0UH eJIEKTPOHHI
3aCTOCYBAHHS.

Kmiouori ciooBa: [lienexrpuuna moBeminka, Hawmoemorcummi wmarepiasu, I[lryuuwmit imrtesmexr, Momesi
MamnrHHoro HasuyaHHsa, FSS-MAdaBoost.
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