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Quantum Annealing (QA), particularly with D-Wave systems, presents a transformative solution for
optimizing task allocation in autonomous mobile robots (AMRs) and multi-machine systems within Industry
6.0. Traditional scheduling methods often struggle to efficiently solve NP-hard optimization problems, which
results in inefficient resource utilization, increased idle time, and production delays. Quantum Annealing
overcomes these limitations by formulating task scheduling as a Quadratic Unconstrained Binary Optimi-
zation (QUBO) problem. This allows quantum processors to explore multiple solution paths simultaneously,
significantly speeding up the process of identifying near-optimal allocations. By leveraging the principle of
quantum tunneling, QA is able to escape local minimum and find globally optimal or near-optimal solutions,
ensuring balanced workload distribution among machines and minimizing production bottlenecks. In dy-
namic industrial environments, where real-time adjustments and adaptive scheduling are crucial, QA offers
a significant advantage in continuously optimizing task assignments. This leads to enhanced manufacturing
efficiency, reduced energy consumption, and more streamlined production workflows. As quantum hardware
continues to evolve, the integration of QA-driven optimization with Al, IoT, and robotics will play a pivotal
role in shaping the future of intelligent automation in smart factories, paving the way for higher productivity
and cost-efficiency in manufacturing ecosystems.

Keywords: Quantum Annealing, D-Wave systems, Autonomous mobile robots, Task allocation,
Optimization, Smart factories.
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1. INTRODUCTION globally optimal solutions. Key contributions include
demonstrating QA’s superiority over traditional schedul-
ing, integrating QA with Al-driven systems for real-time
adaptability, and developing a quantum-based model to en-
hance manufacturing efficiency. As Quantum Computing
advances, its integration with IoT and robotics will drive
intelligent manufacturing, improving productivity, re-
source utilization, and cost-efficiency in future smart facto-
ries. A next-generation smart factory equipped with Auton-
omous Mobile Robots (AMRs) and multi-machine systems,
as depicted in Figure 1. The remaining part of the paper is
organized as: The Review of Existing Research in Section
2. In Section 3, Quantum Computing techniques. Autono-
mous Mobile Robot, Multi machine system are in Section 4
and Section 5 respectively. Quantum Algorithm in Section
6 Computational Analysis in Section 7. Finally, the work is
concluded in Section 8.

Industry 6.0 is revolutionizing manufacturing and lo-
gistics by integrating Autonomous Mobile Robots (AMRs)
and multi-machine systems to optimize production. How-
ever, dynamic task allocation remains a challenge, as tra-
ditional scheduling methods struggle with scalability, lead-
ing to inefficiencies. Task allocation in such environments
is NP-hard, requiring advanced techniques for optimal so-
lutions. Quantum Annealing (QA), particularly with D-
Wave systems, offers a promising solution by leveraging
quantum tunneling to explore multiple solutions simulta-
neously. By formulating task scheduling as a Quadratic
Unconstrained Binary Optimization (QUBO) problem, QA
efficiently allocates tasks to AMRs and multi-machine sys-
tems, balancing workloads and minimizing delays. Unlike
classical methods, QA escapes local minimum, ensuring
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Fig 1 — Smart factory in Industry 6.0

2. REVIEW OF EXISTING RESEARCH

Distribution centers and warehouses play a crucial
role in meeting customer demand efficiently [1]. With
the integration of Quantum Computing (QC) in Logistics
4.0, Al and IoT are transforming material flow into
smart warehouses [2]. QC enhances Autonomous Mobile
Robots (AMRs) and multi-machine systems by optimiz-
ing complex tasks such as order picking and batching,
improving time management, reducing risks, and en-
hancing inventory tracking [3-5]. Despite advance-
ments, challenges remain in optimizing path planning
and coordinating AMRs [6]. Quantum algorithms, such
as A*, Rapidly Exploring Random Trees (RRT), and
Fast-Marching Method (FMM) variants, are being
adapted for quantum speedup, improving navigation in
dynamic environments [7]. Additionally, QC offers po-
tential solutions for NP-hard problems like the Travel-
ing Salesman Problem (TSP) and Vehicle Routing Prob-
lem (VRP) [8-10]. Key research gaps include scalability
of quantum algorithms, real-time adaptability, AI-ToT-
QC integration, and quantum-based multi-objective op-
timization. Addressing these challenges will enhance lo-
gistics automation, enabling seamless AMR collabora-
tion in smart warehouses. The routing and job assign-
ment problems discussed are illustrated in Figure 2.
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Fig 2 — Routing and job assignment problems in industry

3. QUANTUM COMPUTING
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Quantum Computing is set to transform manufac-
turing by optimizing supply chains, enhancing material
discovery, and improving predictive maintenance. It en-
ables real-time data analysis for efficient logistics, re-
duces waste, and accelerates the development of ad-
vanced materials. Quantum simulations enhance prod-
uct design, minimizing prototyping costs. Additionally,
it aids in predictive maintenance by identifying machin-
ery failures in advance, reducing downtime. Key use
cases include Volkswagen’s quantum-powered traffic
flow optimization, which improves logistics efficiency,
Boeing’s quantum simulations for designing lighter,
stronger aircraft materials, and Daimler’s quantum re-
search for next-generation EV battery materials. QC is
also revolutionizing Autonomous Mobile Robot (AMR)
path planning, ensuring optimal navigation in dynamic
factory environments, and Multi-Machine System
Scheduling, enabling highly efficient production work-
flows by solving complex scheduling problems faster
than classical methods. While challenges like hardware
scalability exist, rapid advancements in quantum tech-
nology promise significant efficiency gains. These details
are included in Figure 3, highlighting QC’s transforma-
tive impact on manufacturing, making it more cost-ef-
fective, sustainable, and innovative.

¢

Fig. 3 — QC in manufacturing industry

4. AUTONOMOUS MOBILE ROBOT

Autonomous mobile robots (AMRs) are revolutioniz-
ing smart manufacturing by enhancing automation,
flexibility, and efficiency in industrial environments.
However, real-time path planning and decision-making
in dynamic and complex factory settings pose significant
computational challenges. Quantum computing offers a
powerful solution by rapidly solving optimization prob-
lems that classical computers struggle with, enabling
AMRs to navigate efficiently, avoid obstacles, and mini-
mize travel time. Quantum algorithms, such as quan-
tum annealing, can optimize AMR path planning by
evaluating multiple routes simultaneously, ensuring the
most efficient trajectory with minimal energy consump-
tion [11-12]. This leads to improved material handling,
reduced downtime, and enhanced productivity in smart
factories. Additionally, quantum computing can opti-
mize multi-robot coordination, preventing bottlenecks
and improving workflow synchronization. By integrat-
ing quantum computing with AMRs, manufacturers can
achieve faster, smarter, and more adaptive automation
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systems, paving the way for the next generation of in-
dustry 6.0, where intelligent robotics and quantum-en-
hanced decision-making drive unprecedented efficiency
and innovation. Autonomous Mobile Robots (AMRs) In-
tegrated with A multi-machine system in the smart
manufacturing industry, utilizing quantum computing
for enhanced efficiency and optimization, are showed in
Figure 4.

Fig. 4 AMR integrated with MMS and QC

5. MULTI MACHINE SYSTEM

In the evolving landscape of smart manufacturing,
multi-machine systems, quantum computing, and Au-
tonomous Mobile Robots (AMRs) are at the forefront of
innovation. A multi-machine system refers to the inte-
gration of several machines working together in a coor-
dinated manner to optimize production processes illus-
trated in Figure 5. These systems enable seamless auto-
mation and data exchange, increasing efficiency and re-
ducing downtime. Quantum computing plays a pivotal
role in solving complex optimization problems, such as
resource allocation and task scheduling, in real-time, far
surpassing the capabilities of classical computing. Fi-
nally, AMRs are autonomous units that transport mate-
rials and components across the production floor, en-
hancing flexibility, safety, and productivity. Together,
these technologies create a dynamic, self-optimizing
manufacturing environment that drives Industry 4.0 ad-
vancements.
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Fig. 5 — Multi machine system in Industry 6.0 [14]
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6. QUANTUM ALGORITHM

Quantum algorithms, particularly quantum anneal-
ing, offer a powerful approach to optimizing Autonomous
Mobile Robot (AMR) path planning. By leveraging quan-
tum superposition and tunneling, these algorithms eval-
uate multiple possible routes simultaneously, rapidly
identifying the most efficient trajectory. This enables
AMRs to navigate complex environments while minimiz-
ing travel time and energy consumption. Unlike classi-
cal methods, which rely on sequential computations and
may struggle with high-dimensional optimization, quan-
tum annealing provides near-instantaneous solutions to
intricate path-planning problems. As quantum compu-
ting advances, integrating such techniques into AMR
navigation can significantly enhance efficiency, reduce
operational costs, and improve autonomous decision-
making in dynamic environments.

6.1 Quantum Annealing

Quantum annealing (QA), pioneered by Kadowaki and
Nishimori (1998), optimizes complex problems using
quantum tunneling to escape local minima. D-Wave Sys-
tems has commercialized QA, enabling efficient AMR
path planning by evaluating multiple routes simultane-
ously. Procedural steps in Quantum Annealing:

1. Problem Formulation — Define the path planning
problem as a QUBO or Ising model.

2. Mapping to Quantum System — Represent problem
variables as quantum bits (qubits).

3. Initialization — Prepare the system in a superposi-
tion state to explore all solutions.

4. Quantum Tunneling and Annealing — Use a Hamil-
tonian function to transition toward the optimal state.
5. Solution Extraction — Measure the final qubit states
to determine the optimal AMR path.

6.2 Implementation of Algorithm

Initial implementation of the algorithm using the
QUBO model with two Autonomous Mobile Robots
(AMRs) navigating towards four machines (M1 to M4)
while optimizing their paths (Figure 6).

Fig. 6 - QUBO Model with AMRs

Step 1. Objective Function (Minimize Path Length)

Hpatn = 26, j)epach Aij Xij 1
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Where dij represents the cost (distance or energy) asso-
ciated with moving to (i, j).

Step 2 The AMR Must Be at Exactly One Position per
Step.

2
Hposition = 2e(TijyXije — 1) (2
Ensure the AMR is at exactly one location at each time
step t.
Step 3. The AMR Must Follow a Valid Path.
Hypaqiia = Xe D p(1 = xije) (1= Xije41) 3

Ensure the AMR moves only to adjacent positions.
Step 4. Final QUBO form

Hiotar = MHparn + A2Hposirion + AsHyaiia (4)

Where 1, 4,, A3 are weight parameters to balance objec-
tives and constraints.
Step 5. Problems variables as quantum bits

Hiotar = AHparn + A2Hposirion + AsHmachine  (5)

Where Hnachines

Hinachines = ZmeM(l = qm) (6)

Step 6. System in super position state.

Step 7. Hamiltonian function to transition.

During annealing, the system transitions from Hini-
tial to Hproblem by adjusting the parameter s(¢):

H(t) = (1 — s)Hiniriar + SHprobiem (7)

As s — 1 quantum fluctuations diminish, and the sys-
tem collapses into the optimal AMR paths that minimize
travel time and energy while satisfying all constraints.

Step 8. Measure the final qubit states to determine
the optimal AMR path.

Each position on the grid-based map is assigned a bi-
nary qubit:

qij = 1(AMR at positio (i, ), q;;= 0 (AMR not at(i, j)) (8)

For two AMRs, separate qubit sets q{} and qﬁ- track

their respective positions.
Example measured state for an AMR path:

{00 - 1,00 > 20 ->M ->@B1H->6 (9

indicating the AMR moves from start to M1, then to the
goal (G) to M4 and the example problem consists of five
jobs, each requiring thirteen operations, which must be
processed on four machines (M1, M2, M3, and M4). Ad-
ditionally, two Autonomous Mobile Robots (AMRs) in 4
Smart Manufacturing Environments are responsible for
transporting materials between machines and are
shown in below Figure 7.

Utilizing the Quantum Annealing algorithm, the to-
tal travel time for the AMRs is optimized to 80 units.
This setup is based on the example problem presented
in Bilge and Ulusoy (1995), as shown in Table 1, demon-
strating the effectiveness of quantum-inspired schedul-
ing and path optimization in complex manufacturing en-
vironments.

J. NANO- ELECTRON. PHYS. 17, 03020 (2025)
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Fig. 7 — Smart manufacturing environment

Table 1 — Optimized AMRs path through QA

O.No | M.-No | AMR | PL | VRT | POCT | ET | LT
0_1 1 1 L/U 0 0 0 6
0_10 4 2 L/U 0 0 0 |12
0_12 3 1 1 6 0 18 | 28
0_4 1 2 4 12 0 18 | 24
0_7 3 1 3 28 0 36 | 46
0_11 2 2 1 24 18 34 | 42
0_13 1 1 3 46 31 46 | 54
0_5 3 2 2 42 42 48 | 56
0_2 2 1 1 54 12 54 | 60
0_8 4 2 3 56 55 56 | 62
0.9 1 2 4 62 65 65 | 75
0_6 2 1 2 60 62 66 | 72
0_3 4 1 2 72 72 72 | 80

7. COMPUTATIONAL ANALYSIS

The FMS job shop scenario considered in this study
is derived from Bilge and Ulusoy [1995][15]. The 40 test
problems outlined in their work have been addressed us-
ing the QA approach. The results obtained, including the
travel time (TT) of AMRs and the operational completion
time (OCT) of 10 jobs across four smart manufacturing
environments, are presented in Table 2. These results
are compared with the Fuzzy Heuristic Algorithm pro-
posed by Kanakavalli et al. [13], referred to as Fuzzy.
The operational completion times for different layouts
using Quantum Annealing (QA) and Fuzzy methods re-
veal significant energy savings when employing QA. For
Layout-1, the operational completion time with QA is
1284, while with Fuzzy, it is 2196, leading to an energy
saving of 41.54%. Similarly, Layout-2 has a QA time of
1057 and a Fuzzy time of 1899, resulting in an energy
saving of 44.33 %. In Layout-3, the QA method achieves
completion in 1122 compared to 1920 with Fuzzy, yield-
ing a 41.56 % energy saving. Finally, Layout-4 demon-
strates the highest energy saving at 44.84 %, with QA
completing operations in 1403, whereas Fuzzy takes
2543. Overall, the energy saving across all layouts is cal-
culated to be 43.21 %, indicating that QA significantly
enhances energy efficiency compared to the Fuzzy
method. These findings highlight the effectiveness of QA
in reducing both operational time and energy consump-
tion, making it a superior approach for optimization. The
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travel times for different layouts using Quantum An-
nealing (QA) and Fuzzy methods also demonstrate nota-
ble energy savings when utilizing QA. For Layout-1, the
travel time with QA is 1206, while with Fuzzy, it is 2196,
leading to an energy saving of 45.09 %. Similarly, Lay-
out-2 has a QA time of 948 and a Fuzzy time of 1786,
resulting in an energy saving of 46.94 %. In Layout-3,
the QA method achieves completion in 1017 compared to
1808 with Fuzzy, yielding a 43.75 % energy saving. Fi-
nally, Layout-4 demonstrates the highest energy saving
at 46.60 %, with QA completing travel in 1298, whereas
Fuzzy takes 2430. The overall energy saving across all
layouts is calculated to be approximately 45.10 %, re-
flecting the substantial efficiency gains of the QA
method in reducing travel time and energy consumption.
These findings reinforce the effectiveness of QA in en-
hancing performance and optimizing energy use for Au-
tonomous Mobile Robots (AMRSs) across different layout
configurations.

Table 2 — Optimized AMRs path through QA

Travel Time Operationa} Completion
Time
J.No % %
FUZZY | QA Devi FUZZY | QA Devi
4 2 226 86 162.79 | 232 94 146.81
92 242 96 152.08 | 249 105 137.14
4.3 228 91 150.55 | 234 99 136.36
1.2 170 68 150.00 | 188 82 129.27
1.1 190 78 143.59 | 208 96 116.67
9.3 244 101 141.58 | 251 107 134.58
9 4 288 120 140.00 | 295 126 134.13
9.1 266 111 139.64 | 273 117 | 133.33
14 210 90 133.33 | 228 108 111.11
1.3 172 74 132.43 | 190 86 120.93
5 2 141 61 131.15 | 156 73 113.70
4 4 293 127 130.71 | 299 135 121.48
5_3 141 67 110.45 | 156 76 105.26
3.2 168 81 107.41 | 178 97 83.51
5_1 159 77 106.49 | 174 89 95.51
3.3 166 81 104.94 | 176 102 | 72.55
5 4 178 87 104.60 | 193 97 98.97
10_4 | 338 175 93.14 353 184 91.85
3_1 201 105 91.43 211 120 75.83
10_1 | 300 158 | 89.87 315 171 | 84.21
3.4 215 115 | 86.96 225 130 | 73.08
10_2 | 259 139 | 86.33 274 152 | 80.26
4. 1 262 144 81.94 268 122 119.67
10_3 | 265 146 81.51 280 157 78.34
6_1 220 128 71.88 233 137 70.07
6_4 230 138 66.67 243 148 64.19
2 4 178 112 | 58.93 190 124 | 53.23
2.2 115 74 55.41 127 86 47.67
2.1 158 102 54.90 170 114 49.12
6_2 162 106 52.83 175 114 53.51
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The comparison of travel time between Fuzzy and
Quantum Annealing (QA) methods reveals significant
differences in optimization efficiency. For five test cases
with maximum deviation, QA consistently outperforms
Fuzzy by reducing travel time and ensuring better path
optimization. Conversely, for five cases with minimum
deviation, both methods exhibit comparable perfor-
mance, though QA maintains a slight advantage in con-
sistency. These results highlight QA’s effectiveness in
handling complex path-planning scenarios with higher
deviations while maintaining efficiency in stable condi-
tions. The detailed comparison is illustrated in Figure 8.
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Fig. 8 — Comparision of travel time maximum and minimum

8. CONCLUSIONS

Results clearly highlight the significant advantages
of using Quantum Annealing (QA) over the Fuzzy
method in both operational completion and travel times
for Autonomous Mobile Robots (AMRs). Across all lay-
outs, QA consistently provides substantial energy sav-
ings, ranging from 41.54 % to 46.94 %. The overall en-
ergy saving across all layouts is approximately 43.21 %
for operational completion times and 45.10 % for travel
times. These findings underscore the potential of QA to
improve both time efficiency and energy optimization,
making it a superior approach for enhancing the perfor-
mance and sustainability of AMRs in various opera-
tional environments.

7. S.M. LaValle, J.J. Kuffner, B. Donald, Algorithmic Comput.
Robot. New Dir. 5, 293 (2001).

8. S.M. LaValle, https://www.cs.tan.
edu/~xliang/Courses/CS4710-21S/Papers/06%20RRT.pdf.

9. P. Cheng, S.M. LaValle, Proceedings of the 2002 IEEE In-
ternational Conference on Robotics and Automation 1, 267
(2002).

10. N. Rawlinson, M. Sambridge, Explor. Geophys. 36, 341

03020-5


https://doi.org/10.1007/s11573-015-0789-x
https://doi.org/10.1016/j.cor.2008.02.010
https://doi.org/10.1007/s10845-016-1248-4
https://doi.org/10.1155/2013/246578
https://doi.org/10.1016/j.ejor.2017.09.002
https://doi.org/10.1016/j.ejor.2017.09.002
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1109/ROBOT.2002.1013372
https://doi.org/10.1109/ROBOT.2002.1013372
https://doi.org/10.1071/EG05341

N. JAYASRI, P. VIDYULLATHA ET AL. JJ. NANO- ELECTRON. PHYS. 17, 03020 (2025)

(2005). 14. C.M. Hsu, K.Y. Chen, M.C. Chen, Comput. Industry 56,
11. N. Gademann, S. Van de Velde, IIE Trans. 37, 63 (2005). No 2, 169 (2005).
12. L.M. Cortina, et al., J. Occup. Health Psychol. 6, 64 (2001). 15. K.V. Subbaiah, et al., Int. J. Phys. Sci. 4 No 2, 139 (2009).
13. P. Kanakavalli, V. Vommi, N. Medikondu, Manag. Sci. Lett.

8 No 12, 1319 (2018).

IIinxoqu KBaHTOBHX OOYHCIIEHD JO ABTOHOMHNX MOOLJIBHUX POOOTIB Ta
OaraTOMAIMIMHHUX CHCTEM: IIOIJIS] HA ABTOMATHU3AIII0 MPOEKTYBAHHS
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KpanToswuit Bimnan (QA), ocobmuso 3 cuctemamu D-Wave, miporiorye TpascdopMaliiiiie pillleHHS JJI OII-
THMI3allil PO3MOaiIy 3aBIaHb B ABTOHOMHUX MoOLIbHUX poboTax (AMR) Ta GararoMalmHHMX CUCTEMAax B pa-
mkax Iagyerpii 6.0. Tpaguiiiini MeToqu IIAHYBAHHS YACTO MAIOTh TPYIHOIN 3 e(DeKTUBHUM BUPIIICHHIM
NP-crnagaux 3amad onTuMiasaliii, 110 IpU3BOSUTE 10 Heed)eKTHBHOTO BUKOPUCTAHHS PECypPCiB, 301IbIIIEHHS
Jacy IIPOCTOI0 TA 3aTPUMOK BUPOOHUIITBA. KBaHTOBMI Bimmas mosiae 1l 0OMesxeHHs, (DOPMYJIIOIOUN TIIaHY-
BaHHSA 3aBIAHb SIK 3a1a4y KBaJApaTU4HOI 0e3obMmesxeroi GinapHoi ontumisarii (QUBO). Ie nossosisie kBauTO-
BUM IIPOIIECOPAM OJHOYACHO JOCTIIKYBATH KIJIbKA ILJIAXIB PIIeHHs, 3HAYHO IPUIIBUIIIYIOYN IIPOIEC BU-
3HAUEeHHs Malske ONTUMAJIBHUX PO3IOILIIB. BUKOPHUCTORYI0UM IPUHITUAII KBAHTOBOIO TyHEJOBaHHA, QA 31a-
THUH YHUKHYTH JIOKAJIBHOTO MIHIMYyMy Ta 3HANTH IVI00aJIbHO OITHMAJIBHI 400 Maliske ONITUMAJIBHI PIlIeHHS,
3abesneuyoun 30aIaHCOBAHUI PO3IIOLI POOOUOro HABAHTAMKEHHSI MIK MaIIWMHAMK T4 MIHIMI3YOUM BY3BK1
MiCIIsl y BUPOOHUIITBIL. Y JUHAMIYHUX IIPOMUCJIOBUX CEPEIOBUIIAX, JIe KOPUTYBAHHS B PEIKUMI PEaIbHOTO 4acy
Ta aJaluTUBHE IJIAHYBAHHS € KPUTUYHO BAKJIUBUMU, QA IIPOIOHye 3HAYHY IIepeBary B IOCTIHHIM onrTuMi3a-
il po3nofiny 3aBnansb. Lle mpraBoauTh /10 MiABUINEHHS €()eKTUBHOCTI BUPOOHUIITBA, SHUMKEHHS CIIOMKUBAHHS
eHeprii Ta OlJIBII ONTUMI30BAHUX POOOUNX IIPoIieciB BUPOOHUIITBA. OCKIIBKY KBAHTOBE 00JIaIHAHHSA IIPOI0B-
SKy€ PO3BUBATHCH, IHTEIPAL[iA OIITUMI3AaIlil HA OCHOBI KOHTPOJIIO SKOCTI 31 IITYYHUM iHTeJIeKTOM, I[HTepHeTOM
pedveii Ta pobOTOTEXHIKOIO BiIirpaBaTUMe KJIOU0BY POJIb ¥ (DOPMYBAHHI MaOyTHBOTO 1HTEJIEKTYAJIbHOI aBTO-
MaTtuaalii Ha posyMHuX (adprKax, MPOKJIANAIYN IJIAX 0 MiABUINEHHSA IPOAYKTUBHOCTI Ta €KOHOMIUHOI
e)eKTUBHOCTI Y BUPOOHUUYMX €KOCUCTEMAX.
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