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Carbon nanomaterial structures hold significant promise across various industries, necessitating accurate 

and automated classification methods. Conventional approaches rely on handcrafted feature extraction 

techniques, often failing to capture complex spatial patterns inherent in nanostructures. Traditional Machine 

Learning (ML) and basic Deep Learning (DL) models suffer from low generalization and require manual feature 

engineering, making them inefficient for handling diverse and noisy microscopy images of nanostructures. The 

objective is to achieve a highly accurate and automated classification of carbon nanomaterial structures through 

an advanced framework. A novel approach Modified Water Wave-inspired Convolutional Autoencoder with Swin 

Transformer (MWW-CAE-ST), integrates optimization, and classification techniques to address existing 

challenges. A collection of microscopy images of carbon nanomaterials, including diamond particles, and 

nanotubes was used to evaluate the framework. Techniques, such as median filtering and histogram equalization 

(HE) were applied to enhance image quality by reducing noise and normalizing intensity levels. Local Binary 

Patterns (LBP) were employed to extract texture-based features that capture fine-grained details of the 

nanomaterial structures. Features generated by LBP were processed through the CAE for dimensionality 

reduction and refined by the Swin Transformer, which utilizes hierarchical self-attention to classify structures 

effectively. 
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1. INTRODUCTION 
 

Advanced scientific and technological applications 

expect these essential carbon nanomaterial structures 

because their nanoscale carbon atomic arrangements 

present outstanding mechanical, electrical, and thermal 

properties [1]. Carbon nanomaterials consist of five diverse 

structures, which include fullerenes as well as carbon 

nanotubes (CNTs), graphene, nanodiamonds and carbon 

nanofibers. Each has its molecular structure and specific 

properties. The broad application of nanotechnology 

depends on their exceptional strength level combined with 

high electrical conductivity properties and superior thermal 

stability features [2]. The carbon nanomaterial 

classification based on dimensionality is shown in Fig. 1. 

                                                
* Correspondence e-mail: anuragshri76@gmail.com 

Carbon nanomaterials demonstrate flexibility in 

environmental applications for water purification and gas 

absorption processes [3]. At present nanoscience remains 

active and these materials maintain outstanding potential 

to advance both manufacturing sectors and generate 

miniature electronic devices while fueling the 

development of new battery designs and medical 

treatment methods, thus guiding the path of material 

science and engineering into the future [4]. Carbon 

nanomaterial structures encounter multiple obstacles 

during scalability, defect regulation, cost efficiency and 

stability, reproducibility, environmental risks, toxicity 

effects, and integration difficulties. Hence The MWW-

CAE-ST approach seeks to accomplish automatic carbon 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
https://jnep.sumdu.edu.ua/
https://int.sumdu.edu.ua/en
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.21272/jnep.17(3).03026
https://doi.org/10.21272/jnep.17(3).03026
mailto:anuragshri76@gmail.com
https://orcid.org/0000-0002-8189-475X


 

A. SHRIVASTAVA, S. HUNDEKARI ET AL. J. NANO- ELECTRON. PHYS. 17, 03026 (2025) 

 

 

03026-2 

nanomaterial classification at high accuracy through the 

integration of optimization and DL. 
 

 
 

Fig. 1 – Carbon nanomaterial classification based on 

dimensionality 
 

Convolutional Neural Network (CNN)-based ML with 

computer vision for categorizing and identifying Carbon 

Nanotube/Carbon Nanofiber (CNT/CNF) particles present 

in Transmission Electron Microscopy (TEM) images is 

presented in [5]. The classification methodology achieved 

90.9 % accuracy for the 4-class data while dealing with an 

8-class dataset and obtained 84.5 % accuracy. The 

importance of ML technology for nanomaterial design 

through analysis of seven perspectives over quantitative 

analysis was explored in [6]. The scientific understanding 

of nanomaterial design needed valuable data because it 

sustained and accelerated material innovation 

development. 

The DL technology was applied to Raman imaging to 

develop an efficient method for carbon nanotube (CNTs) 

detection and characterization in [7]. The result revealed 

that the adaptability of nanoparticles during 

manufacturing processes evaluated the material quality 

and characteristics while production occurs. Carbon 

nanomaterials, which enable electrochemical point-of-care 

devices that use aptamers to detect cancer, were 

discovered in [8-9]. The result focused on a tamers that 

were directed against potential cancer-related biomarkers. 

The investigation stressed both the prospects of 

connecting bio-sensing devices with Internet of Things 

(IoT) platforms. 

A combined approach based on ML to forecast the 

thermal conductivities of Polymeric Nanocomposites 

(PNCs) was discussed in [10-11]. It improved the hybrid 

intelligence algorithm for predictions, which resulted in 

superior performance compared to standard neural 

networks. ML together with meta-analysis to develop 

predictive models that determined protein corona 

structure and cellular recognition patterns of 

Nanoparticles in [12]. The approach served as helpful in 

predicting the functional properties of the protein corona 

that determined cellular recognition because it enabled 

the direction of NP synthesis and application. DL 

techniques help to identify metal nanoparticles on highly 

orientated pyrolytic graphite through automated analysis 

of Scanning Tunneling Microscopy (STM) images as 

described in [13].  

 

2. METHODOLOGY 
 

At the beginning of the investigation, the microscopic 

images of carbon nanomaterials including diamond 

particles and nanotubes were collected. The procedure 

requires the application of median filtering and HE 

techniques to microscopy images for noise reduction 

purposes along with intensity normalization steps. The 

LBP method first extracts texture attributes before 

passing them through CAE to reduce data dimensions. ST 

performs feature refinement alongside MWW, which 

optimizes hyper parameters to boost accuracy together 

with operational effectiveness. 

 

2.1 Dataset 
 

The training and testing of the automated 

classification system occur through images obtained from 

microscopy. The Diamond Particles and Carbon Nanotube 

Images dataset contains TEM images that show 

nanomaterials through diamond particles and carbon 

nanotubes. The dataset functions as a vital exploration 

tool for improvements in nanotechnology together with 

microscopy image analysis and computational material 

science. 

 

2.2 Data Pre-Processing 
 

Pre-processing improves image quality while removing 

noise, normalizing intensity values and extracting 

significant texture characteristics suitable for 

classification. Image clarity enhancement came through 

median filtering for noise removal together with HE for 

intensity normalization during data pre-processing. 

 

2.2.1 Median Filtering 
 

It cleans image noise to defend nanomaterial edges so 

feature extraction can be carried out precisely. A non-

linear filter called a median filter regulates the median of 

the set of pixels that are inside the filter mask. The 

statistical median of each pixel's M  N neighborhood is 

used to swap it. Because the median value is derived from 

the neighborhood pixel, edge blurring and image detail 

loss are conserved because it is more robust to outliers and 

does not afford a new accurate pixel value. Sharp 

regularity structures are conserved. As the gap size 

increases, the median filter's capacity to decrease noise 

rises as well. The median filter formula is given in 

Equation 1. 
 

 𝑒(𝑤, 𝑧) = {ℎ(𝑡, 𝑠)} (1) 
 

Where 𝑇𝑊𝑍 signifies the 𝑀 × 𝑁 sub-image window's 

coordinates. 
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2.2.2 HE 
 

The method improves imaging clarity since it 

regularizes intensity distribution, allowing observing 

nanomaterial structures. Examine a digital image that 

has greyscale principles between [0, 𝐾 − 1] , Probability 

Circulation Equation (2) can be used to estimate the 

image's function:  
 

 𝑂(𝑞𝑙) =
𝑚𝑙

𝑀
    𝑙 = 0, … . . , 𝐾 − 1 (2) 

 

Where  𝑚𝑙 is the sum of pixels and 𝑞𝑙 is the 𝑙th old level of 

the image's pixels with the old level𝑞𝑙 . 
Another process for calculating the Cumulative 

Distribution Function (CDF) is as follows in equation 3. 
 

𝐷(𝑞𝑙) = ∑𝑗=𝑙
𝑗=0 𝑂(𝑞𝑗)     𝑙 = 0, … . , 𝐾 − 1, 0 ≤ 𝐷(𝑞𝑙) ≤ 1    (3) 

 

Using equation (3), HE alters the input image's old level 𝑇𝑙 

to old level𝑞𝑙. Thus, equation 4 as follows. 
 

 𝑇𝑙 = (𝐾 − 1) × 𝐷(𝑞𝑙) (4) 
 

The standard HE method can be used to estimate the 

variations in old level 𝑇𝑙  in equation 5. 
 

 ∆𝑇𝑙 = (𝐾 − 1) × 𝑂(𝑞𝑙) (5) 
 

Equation (5) specifies that the input image at old level 𝑞𝑙 

is directly connected to the distance between 𝑇𝑙 and 𝑇𝑙 + 1. 
Due to the quantization process and briefing aspects of 

equation (3), unwanted effects of the standard HE approach 

be formed.  

The image was processed through the median filter 

and HE is shown in Fig. 2. 
 

 
 

Fig. 2 – Visual representation of image processed through Median 

Filter and HE 

 

2.3 LBP 
 

Texture elements within carbon nanomaterials get 

noticed. The image extraction through LBP is shown in 

Fig. 3. 

 

2.4 MWW-CAE-ST 
 

MWW-CAE-ST serves as a combination of optimization 

algorithms along with feature extraction and classification 

methods dedicated to carbon nanomaterial images. MWW 

optimizes hyperparameter settings and determines the 

most suitable features to achieve better efficiency. The 

CAE reduces system dimension while conserving 

significant textures within its framework. Feature 

representation along with classification accuracy receives 

enhancement from hierarchical self-attention through ST. 

Such a combined analytical process offers optimal 

performance together with high processing speed and 

extended scalability capabilities in nanostructure 

analysis. 
 

 
 

Fig. 3 – Visual representation of image extraction through LBP 

 

2.5 ST 
 

ST represents the naming scheme for carbon 

nanomaterial structures because it uses hierarchical self-

attention mechanisms to classify. The ST is one of the most 

significant enhancements made to the Vision Transformer 

design. In deeper layers of the model, the image patches are 

combined to create hierarchical feature maps. The 

computational cost is linear concerning the size of the input 

image. It engages in self-attention within each local window, 

which explains this behavior. As a result, it can be considered 

a broad framework for managing tasks involving object 

identification or image classification. The old vision 

transformers compute attention to overall points in the input 

image at a quadratically high cost and provide latticed 

feature maps with only one level of resolution. Swin 

Transformer-based image processing flow is shown in Fig. 4. 
 

 
 

Fig. 4 – Swin transformer-based image processing flow 
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Transformer Swin Each level of this ST architecture is 

made out of a group of blocks. These blocks consist of 

feedforward neural networks and several layers of 

attention. The ST is divided into four stages, each of which 

consists of an ST block and Linear Embedding, as well as 

a Patch Partition. Patch merging over applies the ST block 

in the final three steps. Each of these description 

components can be found below. As envisioned in this 

investigation, the suggested architecture uses a 

combination of enhancers and STs to provide sufficient 

information to determine whether images have undergone 

even the slightest alteration: that are categorized as fake 

and deviate from the state with any degree of certainty. 

 

2.6 CAE 
 

The CAE-ST tool pulls out, shortens, and sorts texture 

features, which leads to the exact recognition of carbon 

nanomaterial structures. Convolutional layers make up 

CAEs, which are unverified dimensionality reduction 

algorithms that can produce compacted image 

representations. CAEs are used predominantly to remove 

robust features, reduce and compress the input dimension 

size, and eradicate noise while recollecting all relevant 

information. The use of convolutional layers is the main 

difference between convolutional AE and standard AE. It 

is significant to note that these layers are notable for the 

attractive skill of learning interior demonstration of image 

data and extracting knowledge. The decoder, is in charge 

of reconstructing the compacted latent representation so 

that the last image is as equal to the original as possible. 

The architecture of a CAE is shown in Fig. 5. 
 

 
 

Fig. 5 – Architecture of a convolutional autoencoder (CAE) 

 

3. RESULT 
 

In the present investigation, Windows 11 is selected for 

implementation, having an Intel i5 7th Gen processor and 

16 GB RAM installed in the computer. Automated 

classification of carbon nanomaterial structures and 

optimization will be conducted using Python 3.10.1 and a 

DL technique known as “MWW-CAE-ST”. These 

evaluations find their use in the assessment of the 

algorithm through accuracy and F1 Score. 

This model proves effective in carbon nanomaterial 

classification through its final accuracy score. The MWW-

CAE-ST successfully extracts crucial features followed by 

their refinement process to achieve robust classification of 

various microscopy images. The framework proves 

suitable for automatic nanomaterial identification tasks, 

because it demonstrates both high accuracy and versatility 

in classification. The training and validation accuracy for 

the model is shown in Fig. 6. 
 

 
 

Fig. 6 – Training vs. Validation performance: accuracy and loss 

trends 

 

3.1 Accuracy 
 

Classification performance of carbon nanomaterial 

structures obtained from microscopy images through the 

accuracy. It defines the percentage of instances properly 

classified among the total number of samples. The 

proposed MWW-CAE-ST model surpassed the custom 

network with 92.3 % accuracy while achieving 77.1 % 

accuracy. It shows that higher accuracy makes a robust, 

efficient, and reliable solution for carbon nanomaterial 

classification. Table 1 and Fig. 7 represent the comparison 

of accuracy between models. 
 

 
 

Fig. 7 – Comparative analysis of accuracy and F1-score between 

custom network and MWW-CAE-ST 
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3.2 F1 Score 
 

It evaluates classification results with equal 

importance for precision ratings together with recall 

metrics. The F1-Score parameter combines precision with 

recall, since these values matter most for data that 

contains uneven distribution. The custom network 

achieved a 76 % F1-Score but MWW-CAE-ST produced a 

96 % F1-Score, which indicates that the latter method 

delivers superior predictive abilities. 

 

4. CONCLUSION 
 

Carbon nanomaterial structures include nanoscale 

materials that involve nanotubes along with Nano spheres 

and Nano fibers, which possess distinctive mechanical and 

electrical features. The dataset contains images of 

diamond particles and nanotubes among carbon 

nanomaterials. LBP serves as the extraction method that 

detects detailed texture information to produce effective 

nanomaterial structure representations for classification 

purposes. The MWW-CAE-ST model demonstrates 

superior performance compared to the traditional model 

because it delivers 92.3% accuracy combined with a 96% 

F1-score and achieves improved classification and 

generalization together with enhanced feature extraction. 

The proposed model maintains high accuracy, but exists 

with some implementation challenges. Future exploration 

should address three main challenges, it should simplify 

computational demands, improve resistance to various 

imaging environmental changes, and explore self-

supervised learning to improve generalization abilities. 
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Структури вуглецевих наноматеріалів мають значні перспективи в різних галузях промисловості, що 

вимагає точних та автоматизованих методів класифікації. Традиційні підходи спираються на ручні методи 

вилучення ознак, які часто не в змозі вловлювати складні просторові закономірності, властиві 

наноструктурам. Традиційні моделі машинного навчання (ML) та базового глибокого навчання (DL) мають 

низький рівень узагальнення та вимагають ручної розробки ознак, що робить їх неефективними для 

обробки різноманітних та шумних мікроскопічних зображень наноструктур. Метою є досягнення 

високоточної та автоматизованої класифікації структур вуглецевих наноматеріалів за допомогою 

вдосконаленої структури. Новий підхід, натхненний модифікованими водяними хвилями, згортковим 
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автоенкодером із трансформатором Swin (MWW-CAE-ST), інтегрує методи оптимізації та класифікації для 

вирішення існуючих проблем. Для оцінки структури було використано колекцію мікроскопічних зображень 

вуглецевих наноматеріалів, включаючи алмазні частинки та нанотрубки. Для покращення якості 

зображення шляхом зменшення шуму та нормалізації рівнів інтенсивності було застосовано такі методи, 

як медіанна фільтрація та вирівнювання гістограми (HE). Для вилучення текстурних ознак, які фіксують 

дрібнозернисті деталі структур наноматеріалів, було використано локальні бінарні шаблони (LBP). Ознаки, 

згенеровані LBP, були оброблені за допомогою CAE для зменшення розмірності та уточнені за допомогою 

Swin Transformer, який використовує ієрархічну самоувагу для ефективної класифікації структур. 
 

Ключові слова: Вуглецеві наноматеріали, Аналіз мікроскопічних зображень, Оптимізація модифікованої 

водної хвилі, Згортковий автоенкодер (CAE), Трансформатор Swin. 


