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Carbon nanomaterial structures hold significant promise across various industries, necessitating accurate
and automated classification methods. Conventional approaches rely on handcrafted feature extraction
techniques, often failing to capture complex spatial patterns inherent in nanostructures. Traditional Machine
Learning (ML) and basic Deep Learning (DL) models suffer from low generalization and require manual feature
engineering, making them inefficient for handling diverse and noisy microscopy images of nanostructures. The
objective is to achieve a highly accurate and automated classification of carbon nanomaterial structures through
an advanced framework. A novel approach Modified Water Wave-inspired Convolutional Autoencoder with Swin
Transformer (MWW-CAE-ST), integrates optimization, and classification techniques to address existing
challenges. A collection of microscopy images of carbon nanomaterials, including diamond particles, and
nanotubes was used to evaluate the framework. Techniques, such as median filtering and histogram equalization
(HE) were applied to enhance image quality by reducing noise and normalizing intensity levels. Local Binary
Patterns (LBP) were employed to extract texture-based features that capture fine-grained details of the
nanomaterial structures. Features generated by LBP were processed through the CAE for dimensionality
reduction and refined by the Swin Transformer, which utilizes hierarchical self-attention to classify structures
effectively.

Keywords: Carbon nanomaterials, Microscopy image analysis, Modified water wave optimization, Convolutional
autoencoder (CAE), Swin transformer.
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1. INTRODUCTION Carbon nanomaterials demonstrate flexibility in
environmental applications for water purification and gas
absorption processes [3]. At present nanoscience remains
active and these materials maintain outstanding potential
to advance both manufacturing sectors and generate
miniature electronic devices while fueling the
development of new battery designs and medical
treatment methods, thus guiding the path of material
science and engineering into the future [4]. Carbon
nanomaterial structures encounter multiple obstacles

Advanced scientific and technological applications
expect these essential carbon nanomaterial structures
because their nanoscale carbon atomic arrangements
present outstanding mechanical, electrical, and thermal
properties [1]. Carbon nanomaterials consist of five diverse
structures, which include fullerenes as well as carbon
nanotubes (CNTs), graphene, nanodiamonds and carbon
nanofibers. Each has its molecular structure and specific

properties. Thg broad application  of nanot(.echnolo.gy during scalability, defect regulation, cost efficiency and
dgpends on their except%onal Strength level combmed with stability, reproducibility, environmental risks, toxicity
hlgh.e.lectrlcal conductivity properties and superior thermal effects, and integration difficulties. Hence The MWW-
stability features [2]. The carbon nanomaterial

. . ; . Bl R CAE-ST approach seeks to accomplish automatic carbon
classification based on dimensionality is shown in Fig. 1.
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nanomaterial classification at high accuracy through the
integration of optimization and DL.
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Fig. 1 - Carbon nanomaterial classification based on

dimensionality

Convolutional Neural Network (CNN)-based ML with
computer vision for categorizing and identifying Carbon
Nanotube/Carbon Nanofiber (CNT/CNF) particles present
in Transmission Electron Microscopy (TEM) images is
presented in [5]. The classification methodology achieved
90.9 % accuracy for the 4-class data while dealing with an
8-class dataset and obtained 84.5 % accuracy. The
importance of ML technology for nanomaterial design
through analysis of seven perspectives over quantitative
analysis was explored in [6]. The scientific understanding
of nanomaterial design needed valuable data because it
sustained and accelerated material innovation
development.

The DL technology was applied to Raman imaging to
develop an efficient method for carbon nanotube (CNTSs)
detection and characterization in [7]. The result revealed
that the adaptability of nanoparticles during
manufacturing processes evaluated the material quality
and characteristics while production occurs. Carbon
nanomaterials, which enable electrochemical point-of-care
devices that use aptamers to detect cancer, were
discovered in [8-9]. The result focused on a tamers that
were directed against potential cancer-related biomarkers.
The investigation stressed both the prospects of
connecting bio-sensing devices with Internet of Things
(I0T) platforms.

A combined approach based on ML to forecast the
thermal conductivities of Polymeric Nanocomposites
(PNCs) was discussed in [10-11]. It improved the hybrid
intelligence algorithm for predictions, which resulted in
superior performance compared to standard neural
networks. ML together with meta-analysis to develop
predictive models that determined protein corona
structure and cellular recognition patterns of
Nanoparticles in [12]. The approach served as helpful in
predicting the functional properties of the protein corona
that determined cellular recognition because it enabled
the direction of NP synthesis and application. DL
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techniques help to identify metal nanoparticles on highly
orientated pyrolytic graphite through automated analysis
of Scanning Tunneling Microscopy (STM) images as
described in [13].

2. METHODOLOGY

At the beginning of the investigation, the microscopic
images of carbon nanomaterials including diamond
particles and nanotubes were collected. The procedure
requires the application of median filtering and HE
techniques to microscopy images for noise reduction
purposes along with intensity normalization steps. The
LBP method first extracts texture attributes before
passing them through CAE to reduce data dimensions. ST
performs feature refinement alongside MWW, which
optimizes hyper parameters to boost accuracy together
with operational effectiveness.

2.1 Dataset

The training and testing of the automated
classification system occur through images obtained from
microscopy. The Diamond Particles and Carbon Nanotube
Images dataset contains TEM images that show
nanomaterials through diamond particles and carbon
nanotubes. The dataset functions as a vital exploration
tool for improvements in nanotechnology together with
microscopy image analysis and computational material
science.

2.2 Data Pre-Processing

Pre-processing improves image quality while removing
noise, normalizing intensity values and extracting
significant  texture characteristics  suitable for
classification. Image clarity enhancement came through
median filtering for noise removal together with HE for
intensity normalization during data pre-processing.

2.2.1 Median Filtering

It cleans image noise to defend nanomaterial edges so
feature extraction can be carried out precisely. A non-
linear filter called a median filter regulates the median of
the set of pixels that are inside the filter mask. The
statistical median of each pixel's M x N neighborhood is
used to swap it. Because the median value is derived from
the neighborhood pixel, edge blurring and image detail
loss are conserved because it is more robust to outliers and
does not afford a new accurate pixel value. Sharp
regularity structures are conserved. As the gap size
increases, the median filter's capacity to decrease noise
rises as well. The median filter formula is given in
Equation 1.

e(w,z) = {h(t,s)} (1)

Where Ty, signifies the M XN sub-image window's
coordinates.
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2.2.2 HE

The method improves imaging clarity since it
regularizes intensity distribution, allowing observing
nanomaterial structures. Examine a digital image that
has greyscale principles between [0,K — 1], Probability
Circulation Equation (2) can be used to estimate the
image's function:

m

0(@) ="t 1=0,...,K—1 @)

Where m; is the sum of pixels and q; is the [th old level of
the image's pixels with the old levelg; .

Another process for calculating the Cumulative
Distribution Function (CDF) is as follows in equation 3.

D(g) =312, 0(g) 1=0,...K-1,0<D(g)<1 (3

Using equation (3), HE alters the input image's old level T;
to old levelq;. Thus, equation 4 as follows.

Ty = (K—1)xD(q) 4)

The standard HE method can be used to estimate the
variations in old level T; in equation 5.

AT, = (K —1) x 0(q0) ®)

Equation (5) specifies that the input image at old level g;
is directly connected to the distance between T, and T; + 1.
Due to the quantization process and briefing aspects of
equation (3), unwanted effects of the standard HE approach
be formed.

The image was processed through the median filter
and HE is shown in Fig. 2.

Ongnalimage Median Fitered Image Histogram Equaized image

Fig. 2 - Visual representation of image processed through Median
Filter and HE

2.3 LBP

Texture elements within carbon nanomaterials get
noticed. The image extraction through LBP is shown in
Fig. 3.

2.4 MWW-CAE-ST

MWW-CAE-ST serves as a combination of optimization
algorithms along with feature extraction and classification
methods dedicated to carbon nanomaterial images. MWW
optimizes hyperparameter settings and determines the
most suitable features to achieve better efficiency. The
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CAE reduces system dimension while conserving
significant textures within its framework. Feature
representation along with classification accuracy receives
enhancement from hierarchical self-attention through ST.
Such a combined analytical process offers optimal
performance together with high processing speed and
extended scalability capabilities in nanostructure
analysis.

Processed Image LBP Image

Fig. 3 — Visual representation of image extraction through LBP

2.5 ST

ST represents the naming scheme for carbon
nanomaterial structures because it uses hierarchical self-
attention mechanisms to classify. The ST is one of the most
significant enhancements made to the Vision Transformer
design. In deeper layers of the model, the image patches are
combined to create hierarchical feature maps. The
computational cost is linear concerning the size of the input
image. It engages in self-attention within each local window,
which explains this behavior. As a result, it can be considered
a broad framework for managing tasks involving object
identification or image classification. The old vision
transformers compute attention to overall points in the input
image at a quadratically high cost and provide latticed
feature maps with only one level of resolution. Swin
Transformer-based image processing flow is shown in Fig. 4.
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Fig. 4 — Swin transformer-based image processing flow
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Transformer Swin Each level of this ST architecture is
made out of a group of blocks. These blocks consist of
feedforward neural networks and several layers of
attention. The ST is divided into four stages, each of which
consists of an ST block and Linear Embedding, as well as
a Patch Partition. Patch merging over applies the ST block
in the final three steps. Each of these description
components can be found below. As envisioned in this
investigation, the suggested architecture wuses a
combination of enhancers and STs to provide sufficient
information to determine whether images have undergone
even the slightest alteration: that are categorized as fake
and deviate from the state with any degree of certainty.

2.6 CAE

The CAE-ST tool pulls out, shortens, and sorts texture
features, which leads to the exact recognition of carbon
nanomaterial structures. Convolutional layers make up
CAEs, which are unverified dimensionality reduction
algorithms that can produce compacted image
representations. CAEs are used predominantly to remove
robust features, reduce and compress the input dimension
size, and eradicate noise while recollecting all relevant
information. The use of convolutional layers is the main
difference between convolutional AE and standard AE. It
is significant to note that these layers are notable for the
attractive skill of learning interior demonstration of image
data and extracting knowledge. The decoder, is in charge
of reconstructing the compacted latent representation so
that the last image is as equal to the original as possible.
The architecture of a CAE is shown in Fig. 5.

w F(w) z
Encoder
. 5 Compressed
Input image | Convolutional T Representation
Network s
Decoder
C(z) Convolutional
Network
w Reconstructed Image

Fig. 5 — Architecture of a convolutional autoencoder (CAE)

3. RESULT

In the present investigation, Windows 11 is selected for
implementation, having an Intel i5 7th Gen processor and
16 GB RAM installed in the computer. Automated
classification of carbon nanomaterial structures and
optimization will be conducted using Python 3.10.1 and a
DL technique known as “MWW-CAE-ST”. These
evaluations find their use in the assessment of the
algorithm through accuracy and F1 Score.
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This model proves effective in carbon nanomaterial
classification through its final accuracy score. The MWW-
CAE-ST successfully extracts crucial features followed by
their refinement process to achieve robust classification of
various microscopy images. The framework proves
suitable for automatic nanomaterial identification tasks,
because it demonstrates both high accuracy and versatility
in classification. The training and validation accuracy for
the model is shown in Fig. 6.

Training vs Validation Loss

— Training Loss.
Valdation Loss

Fig. 6 — Training vs. Validation performance: accuracy and loss
trends

3.1 Accuracy

Classification performance of carbon nanomaterial
structures obtained from microscopy images through the
accuracy. It defines the percentage of instances properly
classified among the total number of samples. The
proposed MWW-CAE-ST model surpassed the custom
network with 92.3 % accuracy while achieving 77.1 %
accuracy. It shows that higher accuracy makes a robust,
efficient, and reliable solution for carbon nanomaterial
classification. Table 1 and Fig. 7 represent the comparison
of accuracy between models.

[CARE N

Fig. 7 - Comparative analysis of accuracy and F1-score between
custom network and MWW-CAE-ST

03026-4



AUTOMATED CLASSIFICATION OF CARBON NANOMATERIAL STRUCTURES...

3.2 F1 Score

It evaluates classification results with equal
importance for precision ratings together with recall
metrics. The F1-Score parameter combines precision with
recall, since these values matter most for data that
contains uneven distribution. The custom network
achieved a 76 % F1-Score but MWW-CAE-ST produced a
96 % F1-Score, which indicates that the latter method
delivers superior predictive abilities.

4. CONCLUSION

Carbon nanomaterial structures include nanoscale
materials that involve nanotubes along with Nano spheres
and Nano fibers, which possess distinctive mechanical and
electrical features. The dataset contains images of
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CTpyKTypH ByIJIEIIeBHX HAHOMATEPIAJIiB MAIOTh 3HAYHI IMEPCIIEKTUBH B PISHUX TaJIy3sX IIPOMECJIOBOCTI, IO
BHAMArae TOYHUX Ta aBTOMATU30BAHUX METOIB Kyacudikarrii. Tpamuiiiifyi mi X0y CIupaoThCsa Ha PYYHI MEeTOINA
BHJIyYEHHSI O3HAK, SKI YacTO He B 3MO03l BJIOBJIIOBATA CKJIQIHI IIPOCTOPOBI 3aKOHOMIPHOCTI, BJIACTHBIL
HaHOCTPYKTYypaMm. Tpanuiriitai moess MammuHoro Hadauus (ML) ta 6asoBoro rimmbokoro masuauusa (DL) marors
HU3BKHUU DPIBEHDb y3araJIbHEHHs Ta BHMAraioTh PYYHOI PO3POOKM O3HAK, IO POOUTH iX HeeeKTUBHUMU JIJIS
00pOOKM PpIZHOMAHITHHX Ta IIYMHHX MIKPOCKOIIIYHUX 300paskeHb HAHOCTPYKTYp. MeToon € I0CATHEeHHS
BHCOKOTOYHOI Ta aBTOMATHU30BAHOI KJIACH(IKAII CTPYKTYp BYIJIEIIEBHUX HAHOMATEpIaiB 3a JIOIOMOIOI0
BIOCKOHAJIEHOI CTPYKTypu. HoBuii mifxin, HATXHEHHHI MOIM(MIKOBAHMMU BOOAHUMU XBUJIAMHU, 3FOPTKOBAM
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aBTOeHKOepoM 13 TparcdopmaTopom Swin (MWW-CAE-ST), inrerpye meroau ornrrumisartii ta Kiaacudikarii miist
BUPIIIEHH 1ICHYI0UNX 1pobsieM. J[J1st omiHKY CTpYKRTYpH 0YJT0 BHKOPUCTAHO KOJIEKITII0 MIKPOCKOIIYHUX 300paskeHb
BYTJIEIIEBUX HAHOMATEpiasiB, BRJIOYAIOYNA aJIMa3Hl YACTUHKKA Ta HAHOTPYOKHW. Jliaa moxpaimmeHHS sSKOCTL
300parkeHHs IIJISXOM 3MEHIIEeHHs IIIyMy Ta HOPMAJIi3allli PiBHIB IHTEHCHBHOCTI 0YJI0 3aCTOCOBAHO TAKi METOIH,
AK MemiaHHa (iabrpariisa Ta supiBHoBaHHA rictorpavu (HE). [l BusIyyeHHA TeKCTYPHUX 03HAK, AKI (PIKCYIOTH
Ipi0HO3EePHUCTI JeTasIl CTPYKTYP HaHOMAaTepiaiB, 0yJI0 BUKOPHUCTAHO JIOKaIbHI OiHapHi mabsmonu (LBP). Osuakn,
arenepoBaui LBP, 0ysm 00po6iieni 3a mormomoroio CAE st aMeHITeHHST pO3MIpHOCTI Ta YTOYHEHI 3a JIOIIOMOT0I0
Swin Transformer, IKuil BUKOPUCTOBYE i€epapXiuHy CAMOYBAry MJisi e)eKTUBHOI KIacudiKallii CTpyKTyp.

Kmiouosi ciosa: Byrireresi manomarepiayim, AHAII3 MIKPOCKOIIYHUX 300paskennb, Omrrumisairis Moaud)iKoBaHOL
BoHOI xBuJIl, 3roprrosuit aBroerkoaep (CAE), Tpaucdopmarop Swin.
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