
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ 

Vol. 17 No 2, 02027(6pp) (2025) Том 17 № 2, 02027(6cc) (2025) 

 

 

2077-6772/2025/17(2)02027(6) 02027-1 https://jnep.sumdu.edu.ua 
 

  2025 The Author(s). Journal of Nano- and Electronic Physics published by Sumy State University. This article is 

distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.  
 

Cite this article as: B.A. Tingare et al., J. Nano- Electron. Phys. 17 No 2, 02027 (2025) https://doi.org/10.21272/jnep.17(2).02027 
 

REGULAR ARTICLE  
 

Quality Control Model for Electrospun Nanofibers through Image Analysis 
 

B.A. Tingare1 * , S.R. Deshmukh2, R.A. Kapgate3, S.R. Thorat3, P. William4, S.D. Jondhale5, V.D. Dabhade6 
 

1 Department of Artificial Intelligence and Data Science, D Y Patil College of Engineering, Akurdi, Pune 
2 Department of Computer Engineering, Sanjivani College Engineering, Kopargaon, MH, India 

3 Department of Mechatronics Engineering, Sanjivani College of Engineering, Kopargaon, MH, India 
4 Department of Information Technology, Sanjivani College of Engineering, Kopargaon, MH, India 

5 Department of Computer Engineering, Pravara Rural Engineering College, SPPU, Pune, India 
6 MET Institute of Engineering, Nashik, India 

 
(Received 14 February 2025; revised manuscript received 25 April 2025; published online 28 April 2025) 

 
Electrospinning Nanofibers are extensively used in progressive fields such as biomedical engineering for tissue 

scaffolds, filtration for air and water, and energy storage, among others, due to their high surface area-to-volume 

ratio. Nevertheless, one of the most frequent problems in this area is the inability to exercise strict control over the 

quality of a particular production batch, which occasionally results in a stark fluctuation in performance. This 

study addresses this issue by proposing the Efficient Slime Mould Algorithm fine-tuned Adaptive Deep Residual 

Network (ESMA-ADRN), designed to improve the quality valuation of electrospun nanofibers over advanced 

image examination. The dataset employed in this research includes images of electrospun nanofiber images, which 

are subjected to preprocessing through a median filter as a denoising technique. The process of feature extraction 

has been carried out using Principle Component Analysis (PCA) to determine the most useful feature space for 

classification. The results of the proposed ESMA-ADRN models show notable numeric values when compared to 

other models that lead to high achievements, such as accuracy maximum of 94.30 %, precision 96.58 %, sensitivity 

93.04 %, specificity 93.72 %, and F-score of 94.77%.Future work should continue to compile more scenarios for the 

trained model to cover more possibilities and the adjustment and refining of the model parameter for better 

performance in many manufacturing situations. 
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1. INTRODUCTION 
 

Electrospinning is a universal and frequently used 

method to obtain nanofibers and nanoscaled fiber 

structures with ultra-large surface area, small diameter 

high mechanical strength, and other related properties. 

These attributes qualify electrospun nanofibers for 

applications, such as biomedical devices, filtration 

materials, tissue template engineering scaffolds, and 

sensors among others. However, the quality and 

uniformity of nanofibers spun through the 

electrospinning process are highly essential to their 

performance in these uses [1]. Thus, the creation of 

reliable methods for quality control (QC) is crucial to 

control and stabilize the required properties of 

electrospun nanofibers during their fabrication [2]. The 

conventional approaches in QC are normally based on a 

physical and mechanical examination that is normally 

lengthy and does not effectively offer details of the 

topography of the nanofibers, as seen in the present 

study. However, these methods are not enough to 

determine small differences in fiber diameter, 

orientation, or surface roughness that can affect the 

performance of the nanofiber material [3]. Recent 

developments in high-definition image analysis 

techniques have been recognized as potential approaches 

to improve the quality of electrospun nanofibers. Through 

the use of digital imaging and highly advanced statistical 

calculations, researchers can accurately deduce desirable 

features of nanofibers with a higher degree of precision 

than before [4]. Image analysis is used in the 

quantification of the nanofiber structure, such as the 

diameter, length, orientation, and distribution of the 

nanofibers. Through scanning electron microscopy (SEM) 

or optical microscopy and image analyzing software, one 

can successfully image and build the profiles of the 

nanofiber networks [5]. Such profiles can demonstrate 

irregularities in the body of the fiber that are discernible 

under conventional testing techniques. Second, it is 

possible to combine machine learning and artificial 

intelligence to establish an automated system to monitor 
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the image of different products in real time to recognize 

defects or inconsistencies [6]. The integration of image 

analysis methods into the current QC paradigm for 

electrospun nanofibers can improve the precision and 

uniformity of the nanofiber fabrication process [7]. 

Incorporating image processing technologies coupled with 

quality indices, problems affecting fiber quality can be 

anticipated and solved by the manufacturers hence 

enhancing the quality of subsequent finished products 

[8]. Furthermore, proper QC models based on images 

which can provide insight into influencing factors that 

affect nanofiber fabrication [9]. It done by observing and 

comparing the cross-sectional morphology of nanofibers 

processed under different conditions comprising voltage, 

flow rate, and solution viscosity [10]. Such knowledge can 

result in improved electrospinning techniques that would 

allow for the fabrication of nanofibers with desired 

characteristics for various applications. In general, 

incorporating image analysis in the QC of electrospun 

nanofibers is a major improvement in the area of 

nanofiber studies and production [11-12]. The objective of 

this research is to categorize the quality of electrospun 

nanofibers using cloning that incorporates the Efficient 

Slime Mould Algorithm fine-tuned Adaptive Deep 

Residual Network (ESMA-ADRN). With better network 

tuning and optimization with enhanced search 

algorithms, the study aims at bettering the accuracy of 

the classification model, thereby improving the QC 

process in the fabrication of nanofibers. 

 

2. RELATED WORKS 
 

Nanotechnology is widely studied because 

nanomaterials possess enhanced chemical, physical, and 

environmental properties. Electrospinning was a complex 

technique used to fabricate ultrafine microfibers and 

membranes with different properties. These fibers could 

be used for various functions, including tissue healing, 

drug delivery, and enzyme confinement. A study [13] 

investigated the impacts of process variables on 

nanofiber properties and discovered that the ideal focus, 

molecular mass, and conductance result in identical, 

smooth, and thinner nanofibers. Environmental 

circumstances have an impact on the dimension and 

caliber of nanofibers. Electrospinning was a process for 

generating polymer non-woven frameworks out of nano 

and microfibers that proved useful in biological sectors. 

 

3.  MATERIALS AND METHODS  
 

The complete procedure for initiating a QC model of 

electrospun nanofibers is described. These are the 

dataset and some of the preprocessing steps followed by 

applying a median filter that aims at removing noise 

while time maintaining edges and feature extraction 

through PCA. Further, the proposed method ESMA-

ADRN model with advanced optimization to increase the 

model precision and perform the high-quality analysis of 

the nanofiber images. 

 

3.1 Dataset 
 

The primary dataset comprises SEM images 

specifically collected to assess and analyze the quality of 

electrospun nanofibers. This dataset is crucial for 

developing a robust QC model that leverages image 

analysis techniques to evaluate nanofiber characteristics 

effectively. The dataset includes 200 SEM images 

showcasing a diverse range of electrospun nanofibers, 

providing a comprehensive overview of various quality 

parameters such as fiber diameter, uniformity, and 

morphological features (table 1). The images vary in size, 

ranging from 512 x 512 pixels to 2048 x 2048 pixels, 

allowing for high-resolution analysis and detailed 

examination of fiber structures. Each image is annotated 

with key quality indicators, including the measured fiber 

diameter (ranging from 100 nm to 1 µm), alignment 

characteristics, and the presence of defects like beads or 

irregularities. This structured dataset not only facilitates 

the training and validation of the QC model but also 

enhances the correctness of the image analysis. 
 

Table 1 – Dataset Description 
 

Image 

ID 

Image 

Size 

(pixels) 

Fiber 

Diameter 

(nm) 

Quality 

Indicators 

1 512 x 512 120 Uniform, No 

Defects 

2 1024 x 

1024 

150 Slightly 

Irregular, Beads 

3 2048 x 

2048 

200 Uniform, No 

Defects 

4 1024 x 768 80 Irregular, Beads 

Present 

5 1536 x 

1536 

250 Uniform, No 

Defects 

6 800 x 800 100 Slightly 

Irregular 

7 1280 x 720 300 Uniform, No 

Defects 

8 640 x 480 180 Irregular, Beads 

Present 

... ... ... ... 

200 2048 x 

1536 

150 Uniform, No 

Defects 

 

3.2 Preprocessing using Median Filter 
 

The median filter is a non-linear filtering technique 

that computes the median of the pixel values in a 

specified filter mask. Each pixel in the image is processed 

and replaced by the statistical median of its N×M 

neighborhood. This method is particularly effective in 

preserving edge sharpness and high-frequency details, as 

the median value is derived from surrounding pixels, 

making it robust to outliers. Unlike linear filters, the 

median filter does not create unrealistic pixel values, 

thus minimizing issues, like edge blurring and loss of 

image detail. The median filter is well-suited for 
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removing salt-and-pepper noise from images. Its 

effectiveness in noise reduction increases with larger 

window sizes, allowing for better median estimation from 

a broader set of neighboring pixels. The equation (1) for 

the median filter is represented as follows: 
 

 𝑒(𝑤, 𝑧) =
𝑚𝑒𝑑𝑖𝑎𝑛{ℎ(𝑡, 𝑠)}

(𝑡, 𝑠) ∈ 𝑇𝑤𝑧
 (1) 

 

Where Twz denotes the coordinates of the sub-image 

window of size M  N. By applying the median filter in 

the QC model, and enhance the clarity and accuracy of 

the images of electrospun nanofibers, thereby improving 

the subsequent analysis and optimization processes. 

 

3.3 Feature Extraction Using Principal 

Component Analysis (PCA) 
 

The fundamental concept of PCA is to linearly 

transform environmental data collected in the study into 

a low-dimensional subspace, maximizing the alteration in 

the dataset. This results in an uncorrelated basis set that 

illuminates the relationships between various 

electrospun nanofiber images. In this condition, reflect L 

clarifications from the image data characterized in n-

dimensional space. Compute the mean vector μ of 

observations using the Eq. (2). 
 

 𝜇 =
1

𝑙
∑ 𝑤𝑗

𝑙
𝑗=1  (2) 

 

Use the following Eq. (3) to estimate the matrix of 

covariance T for the provided data: 
 

 𝑇 =
1

𝑙
∑ (𝑤𝑗 − 𝜇)𝑙

𝑗=1 (𝑤𝑗 − 𝜇)
𝑆
 (3) 

 

Ascertain the eigenvalues of the matrix, plus their 

associated eigenvectors. Use this Eq. (4-6) the essential 

componentsz from the original variables: 
 

 𝑧1 = 𝑏11𝑤1 + 𝑏12𝑤2 + ⋯ + 𝑏1𝑙𝑤𝑙 (4) 
 

 𝑧2 = 𝑏21𝑤1 + 𝑏22𝑤2 + ⋯ + 𝑏2𝑙𝑤𝑙 (5) 
 

 𝑧𝑥 = 𝑏𝑙1𝑤1 + 𝑏𝑙2𝑤2 + ⋯ + 𝑏𝑙𝑙𝑤𝑙 (6) 
 

With these limit points, PCA is guaranteed to sustain 

the essential features necessary to understand the 

quality of electrospun nanofiber image analysis. 

 

3.4 Classification of Electrospun Nanofiber 

Quality through the Efficient Slime Mould 

Algorithm Fine-tuned Adaptive Deep Residual 

Network (ESMA-ADRN) 
 

The proposed hybrid ESMA-ADRN model integrates 

the optimized ESMA with an ADRN to increase the 

electrospun nanofibers' QC performance. This approach 

enhances the performance and quality of optimization 

because it includes more elaborate exploration strategies 

as well as layer information storage. 

 

3.5 Adaptive Deep Residual Network (ADRN) 

 

They develop the concepts in Deep Residual Network 

(DRN) to enhance information retention during the 

transfer between layers, ultimately aiming for higher 

accuracy. To achieve this to improve the architecture of 

the DRN and apply to QC in electrospun nanofibers. The 

network operates as follows: Let the input be denoted as 

w. The first layer processes this input, fitting the 

functione (w). Then, combine the outputs by adding them 

together, resulting in Eq. (7). 
 

 ℎ(𝑤)  =  𝑒(𝑤)  +  𝑤 (7) 
 

The second layer takes h(w) as input and maps it to 

(h(w)). In the next step, again add the output of the 

first layer e(w), to the output of the second layer, it 

yielding Eq. (8). 
 

 𝐺(𝑤)  =  𝑔(𝑒(𝑤)  +  𝑤)  +  𝑒(𝑤) (8) 
 

As seen from the above Eq. (8), it breaks the process 

of approximating the joint function G(w) into 

approximating two simpler functions of g. If both of these 

simple mappings are implemented, the layers will 

function more efficiently, making them easier to 

integrate. Therefore, it can lower the chance of error in 

fitting these two mappings and ultimately lower the total 

error chance. Fig. 1 represents the architecture of ADRN. 
 

 
 

Fig. 1 – ADRN Architecture 

 

3.6 Efficient Slime Mould Algorithm (ESMA) 
 

The standard Slime Mould Algorithm (SMA) is an 

easy-to-use technique for tackling a variety of 

optimization issues. However, SMA can get caught in 

regional optima and show inadequate converging speeds, 

especially in complicated tasks like multilayer thresholds 

for segmenting images. To ESMA searches and enhance 

exploration and exploitation, they suggest an ESMA to 

improve optimizing efficiency. The enhancements in 

ESMA focus on two key methods. First, they incorporate 

Levy flight to augment the exploration ability of SMA. 

This technique allows for more diverse search patterns, 

improving the algorithm's capability to explore the 

solution space more thoroughly and escape local optima. 
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The Levy Flight can be mathematically represented as 

follows in Eq. (9): 
 

 𝑊(𝑠 + 1) = {

𝑞2 × (𝑉𝐴 − 𝐾𝐴) − 𝐾𝐴, 𝑞1 < 𝑦

𝑊𝑎 +  𝜈𝑎 × (𝑋 × 𝑊𝐵 − 𝑊𝐴) × 𝐿𝑒𝑣𝑦, 𝑞3

𝜐𝐷 × 𝑊𝑗 , 𝑞3 ≥ 𝑜
< (9) 

 

By integrating these improvements, ESMA aims to 

achieve more effective optimization process, ultimately 

enhancing the performance of the DRN for the QC of 

electrospun nanofibers. Additionally, quasi-opposition-

based training is used to increase the ESMA's exploit 

capabilities and establish an improved ratio of explore 

and exploit. This approach enhances the algorithm’s 

ability to refine solutions effectively while navigating the 

solution space. Fig. 2 illustrates the flowchart of the 

ESMA. These visual representations detail the step-by-

step process of ESMA, 
 

 
 

Fig. 2 – ESMA flowchart 

 

4. RESULT AND DISCUSSION 
 

The experiment of a Windows 10  64 operating 

systems with an Intel(R) Core(TM) i5-3320M CPU at 2.60 

GHz with 8.00 GB of RAM provided quite a stable 

hardware base. The software environment was created 

using Python 3.11.9 and it helped in the easier 

construction of the model. The performance of the proposed 

ESMA-ADRN model to classify quality and defective 

electrospun nanofibers. These are accuracy, precision, 

sensitivity, specificity, F-score, and error, such as the 

Mean Absolute Error (MAE) and the Root Mean Square 

Error (RMSE). Thus, evaluating these metrics between the 

different model configurations allows to evaluate ESMA-

ADRN's effectiveness in enhancing QC by reducing 

classification errors and increasing predictive 

effectiveness. These findings provide an extended 

understanding of the model's ability to identify defects and 

the potential for enhancing its performance. 

 

4.1 ROC Curve 
 

Fig. 3 curve represents the classification performance of 

the ESMA-ADRN model in identifying defects or quality 

issues in electrospun nanofibers based on image data. The x-

axis represents the false positive rate, representing the 

percentage of incorrectly classified negative samples (quality 

fibers misclassified as defective) relative to all actual 

negatives. The y-axis represents the true positive rate, or 

the model's accuracy in correctly identifying defective fibers 

among all actual defect samples. The curve shows the 

efficiency of ESMA-ADRN as the classification threshold 

varies. The dotted line signifies a random classifier with an 

AUC of 0.5 for baseline comparison. The area under the 

curve (AUC) for ESMA-ADRN is 0.93, meaning the model 

has a good capability to distinguish between quality and 

defective fibers. An AUC of 0.93 reflects the model’s 

moderate to strong predictive accuracy, suggesting that 

ESMA-ADRN effectively supports QC by reliably detecting 

imperfections in electrospun nanofiber images. 
 

 
 

Fig. 3 – ROC curves and the associated AUC values of ESMA-ADRN 

 

4.2 Accuracy 
 

Measuring the accuracy of a model provides a broad 

evaluation of the model predict instances, where TP 

signifies true positives while TN stands for true negatives. 

According to the results, the model achieves the highest 

accuracy of 94.30% indicating that it classifies 

approximately 94 out of every 100 instances as ADR. This 

high accuracy shows that the model works well at the 

margin between positive and negative classes, which is 

useful when it comes to the issue of QC for electrospun 

nanofibers. The other models, including ESMA-ADRN100 

and ESMA-ADRN80, also exhibit satisfactory accuracy 

measurements of 93.82 %and 93.40%, respectively, which 

asserts a reputable performance for all categories.   

 

4.3 Precision 
 

The positive predictive value, or the positive yield, 

evaluates the optimism, or the probability, that a positive 

result is correct. The contact detection accuracy rate is 

calculated as the ratio of true contacts to the total of true 

and false contacts. ESMA-ADR3N100, 80 estimates achieve 

the best precision of 96.58% meaning that almost all 

samples classified as positive by this model are indeed 

positive. Such high precision demonstrates the model's 

potential to separate true positive cases from false positives 



 

QUALITY CONTROL MODEL FOR ELECTROSPUN NANOFIBERS… J. NANO- ELECTRON. PHYS. 17, 02027 (2025) 

 

 

02027-5 

to minimize false alarms. Other examples including ESMA-

ADRN100 and ESMA-ADRN100, 40 also possess the high 

precision value of 96.27% and 95.42% respectively. 

 

4.4 Sensitivity 
 

Sensitivity, also known as recall, will estimate the 

likelihood of the model in distinguishing between true 

positive items. As for the results, the model ESMA-

ADR3N100, 80 showed the highest sensitivity of 0.93 while 

assessing a real proportion of positive cases in the general 

amount of positive samples. High sensitivity is important 

for cases where false negative results mean a positive case 

is missed with potentially grave repercussions. In the same 

context, another two models, namely ESMA-ADRN100 and 

ESMA-ADRN80, score high sensitivity at 92.34% and 

91.78% respectively.  

 

4.5 Specificity 
 

It measures the extent to which models achieve 

precision on negative instances. It is defined as true 

negative over the total of true negative and all false 

positives. The percentage calculated in the model by using 

ESMA-ADRN100 is 93.12%, which is satisfactory in terms 

of the mechanism that has been developed to recognize 

negative cases. High specificity has major relevance 

mainly when the cost of taking an action positively on the 

false negative cases is higher. Other models, include 

ESMA-ADRN80 and ESMA-ADRN100, 40 which have 

close specificities of 92.58% and 91.45% respectively.  

By comparing and contrasting the ESMA-ADRN 

models the performance of various parameters shows 

substantial progress in making the proposed ESMA-ADRN 

best suited for improving the QC of Electrospun 

nanofibers. The ESMA-ADR3N100, 80 model, gives the 

best result with 94.30% accuracy in the test dataset with 

the perfect division of positive and negative instances. The 

sensitivity and specificity measures are equal to 93.04% 

and 93.72% respectively, demonstrating a balanced 

performance of ESMA-ADRN. Also, the F-score of 94.77% 

proves acceptable if there is a high cost of both false 

negatives and false positives. Finally, as to the predictive 

accuracy, the MAE is 0.050 and the RMSE is 0.162, 

proving that the model is very close to the 'actual' outcome. 

Taken together, the above metrics tend to support the 

ESMA-ADRN framework as a means of improving the QC 

processes in the manufacture of electrospun nanofibers. 

 

5. CONCLUSION 
 

The major aim of this study was to design a reliable 

QC model of electrospun nanofibers through image 

analysis. It is critical to establish the credibility of the 

nanofiber scheme, crucial in the healthcare, filtration, as 

well as textile industries. The enhancements constituted 

in the proposed method, the ESMA-ADRN, higher 

precision in the quality assessments through 

methodological modulations in deep learning pertinent to 

image identification. The significant results of the ESMA-

ADRN models can reaffirm, that, this approach can be 

efficient; the highest accuracy of 94.30% and precision of 

96.58% is attained using the ESMA-ADR3N100, 80 

model. This score of sensitivity 93.04% and specificity 

93.72% reiterates the success of the model in picking out 

true positives while avoiding false positive results. In 

addition to the F – score of 94.77 %, the MAE and RMSE 

values of 0.050 and 0.162 respectively, lead to conclude 

that the predictions of the model are very close to the real 

values.  The dataset used for training lacks diversity in 

nanofiber types and defect patterns, which may limit the 

generalizability of our proposed ESMA-ADRN model. 
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Електровідцентровані нанофібри широко використовуються в інноваційних галузях, зокрема в 

біомедичній інженерії для каркасів тканин, фільтрації повітря та води, акумулюванні енергії тощо, 

завдяки високому співвідношенню площі поверхні до об’єму. Однак, серед основних проблем є відсутність 

точного контролю якості під час виробництва, що призводить до значних варіацій у властивостях та 

продуктивності матеріалу. У цій роботі запропоновано вирішення цієї проблеми шляхом розробки моделі 

ESMA-ADRN (Efficient Slime Mould Algorithm — оптимізована адаптивна глибока залишкова 

нейромережа) для оцінки якості нанофібрових структур на основі аналізу зображень. Для дослідження 

використовувався датасет зображень електровідцентрованих нанофібр, які проходили попередню обробку 

методом медіанного фільтрування для зменшення шуму. Виділення ознак проводилось за допомогою 

методу головних компонент (PCA) для вибору найбільш інформативного простору ознак. Результати 

моделі ESMA-ADRN перевершили інші моделі за всіма показниками, зокрема: – Точність (accuracy): 

94,30%; – Прецизійність (precision): 96,58%; – Чутливість (sensitivity): 93,04%; – Специфічність (specificity): 

93,72%; – F-мірa: 94,77%. У перспективі подальші дослідження повинні охоплювати більше виробничих 

сценаріїв, а також передбачати тонке налаштування параметрів моделі для підвищення її ефективності у 

різних умовах виробництва. 
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