JOURNAL OF NANO- AND ELECTRONIC PHYSICS
Vol. 17 No 2, 02027(6pp) (2025)

REGULAR ARTICLE

JKYPHAJI HAHO- TA EJIEKTPOHHOI ®I3UKHA
Tom 17 Ne 2, 02027(6cc) (2025)

OPEN ACCESS

Quality Control Model for Electrospun Nanofibers through Image Analysis

B.A. Tingare! * *, S.R. Deshmukh?, R.A. Kapgate3, S.R. Thorat3, P. William4, S.D. Jondhale?, V.D. Dabhade®

L Department of Artificial Intelligence and Data Science, D Y Patil College of Engineering, Akurdi, Pune

2 Department of Computer Engineering, Sanjivani College Engineering, Kopargaon, MH, India
3 Department of Mechatronics Engineering, Sanjivani College of Engineering, Kopargaon, MH, India
4 Department of Information Technology, Sanjivani College of Engineering, Kopargaon, MH, India
5 Department of Computer Engineering, Pravara Rural Engineering College, SPPU, Pune, India
6 MET Institute of Engineering, Nashik, India

(Received 14 February 2025; revised manuscript received 25 April 2025; published online 28 April 2025)

Electrospinning Nanofibers are extensively used in progressive fields such as biomedical engineering for tissue
scaffolds, filtration for air and water, and energy storage, among others, due to their high surface area-to-volume
ratio. Nevertheless, one of the most frequent problems in this area is the inability to exercise strict control over the
quality of a particular production batch, which occasionally results in a stark fluctuation in performance. This
study addresses this issue by proposing the Efficient Slime Mould Algorithm fine-tuned Adaptive Deep Residual
Network (ESMA-ADRN), designed to improve the quality valuation of electrospun nanofibers over advanced
image examination. The dataset employed in this research includes images of electrospun nanofiber images, which
are subjected to preprocessing through a median filter as a denoising technique. The process of feature extraction
has been carried out using Principle Component Analysis (PCA) to determine the most useful feature space for
classification. The results of the proposed ESMA-ADRN models show notable numeric values when compared to
other models that lead to high achievements, such as accuracy maximum of 94.30 %, precision 96.58 %, sensitivity
93.04 %, specificity 93.72 %, and F-score of 94.77%.Future work should continue to compile more scenarios for the
trained model to cover more possibilities and the adjustment and refining of the model parameter for better

performance in many manufacturing situations.

Keywords: Electrospun nanofibers, Quality control, Image analysis, Deep neural network, ESMA-ADRN, PCA.

DOTI: 10.21272/jnep.17(2).02027

1. INTRODUCTION

Electrospinning is a universal and frequently used
method to obtain nanofibers and nanoscaled fiber
structures with ultra-large surface area, small diameter
high mechanical strength, and other related properties.
These attributes qualify electrospun nanofibers for
applications, such as biomedical devices, filtration
materials, tissue template engineering scaffolds, and
sensors among others. However, the quality and
uniformity of nanofibers spun  through the
electrospinning process are highly essential to their
performance in these uses [1]. Thus, the creation of
reliable methods for quality control (QC) is crucial to
control and stabilize the required properties of
electrospun nanofibers during their fabrication [2]. The
conventional approaches in QC are normally based on a
physical and mechanical examination that is normally
lengthy and does not effectively offer details of the
topography of the nanofibers, as seen in the present
study. However, these methods are not enough to
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determine small differences in fiber diameter,
orientation, or surface roughness that can affect the
performance of the nanofiber material [3]. Recent
developments in  high-definition image analysis
techniques have been recognized as potential approaches
to improve the quality of electrospun nanofibers. Through
the use of digital imaging and highly advanced statistical
calculations, researchers can accurately deduce desirable
features of nanofibers with a higher degree of precision
than before [4]. Image analysis is used in the
quantification of the nanofiber structure, such as the
diameter, length, orientation, and distribution of the
nanofibers. Through scanning electron microscopy (SEM)
or optical microscopy and image analyzing software, one
can successfully image and build the profiles of the
nanofiber networks [5]. Such profiles can demonstrate
irregularities in the body of the fiber that are discernible
under conventional testing techniques. Second, it is
possible to combine machine learning and artificial
intelligence to establish an automated system to monitor
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the image of different products in real time to recognize
defects or inconsistencies [6]. The integration of image
analysis methods into the current QC paradigm for
electrospun nanofibers can improve the precision and
uniformity of the nanofiber fabrication process [7].
Incorporating image processing technologies coupled with
quality indices, problems affecting fiber quality can be
anticipated and solved by the manufacturers hence
enhancing the quality of subsequent finished products
[8]. Furthermore, proper QC models based on images
which can provide insight into influencing factors that
affect nanofiber fabrication [9]. It done by observing and
comparing the cross-sectional morphology of nanofibers
processed under different conditions comprising voltage,
flow rate, and solution viscosity [10]. Such knowledge can
result in improved electrospinning techniques that would
allow for the fabrication of nanofibers with desired
characteristics for various applications. In general,
incorporating image analysis in the QC of electrospun
nanofibers is a major improvement in the area of
nanofiber studies and production [11-12]. The objective of
this research is to categorize the quality of electrospun
nanofibers using cloning that incorporates the Efficient
Slime Mould Algorithm fine-tuned Adaptive Deep
Residual Network (ESMA-ADRN). With better network
tuning and optimization with enhanced search
algorithms, the study aims at bettering the accuracy of
the classification model, thereby improving the QC
process in the fabrication of nanofibers.

2. RELATED WORKS

Nanotechnology is  widely  studied  because
nanomaterials possess enhanced chemical, physical, and
environmental properties. Electrospinning was a complex
technique used to fabricate ultrafine microfibers and
membranes with different properties. These fibers could
be used for various functions, including tissue healing,
drug delivery, and enzyme confinement. A study [13]
investigated the impacts of process variables on
nanofiber properties and discovered that the ideal focus,
molecular mass, and conductance result in identical,
smooth, and thinner nanofibers. Environmental
circumstances have an impact on the dimension and
caliber of nanofibers. Electrospinning was a process for
generating polymer non-woven frameworks out of nano
and microfibers that proved useful in biological sectors.

3. MATERIALS AND METHODS

The complete procedure for initiating a QC model of
electrospun nanofibers is described. These are the
dataset and some of the preprocessing steps followed by
applying a median filter that aims at removing noise
while time maintaining edges and feature extraction
through PCA. Further, the proposed method ESMA-
ADRN model with advanced optimization to increase the
model precision and perform the high-quality analysis of
the nanofiber images.
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3.1 Dataset

The primary dataset comprises SEM images
specifically collected to assess and analyze the quality of
electrospun nanofibers. This dataset is crucial for
developing a robust QC model that leverages image
analysis techniques to evaluate nanofiber characteristics
effectively. The dataset includes 200 SEM images
showcasing a diverse range of electrospun nanofibers,
providing a comprehensive overview of various quality
parameters such as fiber diameter, uniformity, and
morphological features (table 1). The images vary in size,
ranging from 512 x 512 pixels to 2048 x 2048 pixels,
allowing for high-resolution analysis and detailed
examination of fiber structures. Each image is annotated
with key quality indicators, including the measured fiber
diameter (ranging from 100 nm to 1 pm), alignment
characteristics, and the presence of defects like beads or
irregularities. This structured dataset not only facilitates
the training and validation of the QC model but also
enhances the correctness of the image analysis.

Table 1 — Dataset Description

Image | Image Fiber Quality
ID Size Diameter Indicators
(pixels) (nm)
1 512 x 512 120 Uniform, No
Defects
2 1024 x | 150 Slightly
1024 Irregular, Beads
3 2048 x | 200 Uniform, No
2048 Defects
4 1024 x 768 | 80 Irregular, Beads
Present
5 1536 x | 250 Uniform, No
1536 Defects
6 800 x 800 100 Slightly
Irregular
7 1280 x 720 | 300 Uniform, No
Defects
8 640 x 480 180 Irregular, Beads
Present
200 2048 x | 150 Uniform, No
1536 Defects

3.2 Preprocessing using Median Filter

The median filter is a non-linear filtering technique
that computes the median of the pixel values in a
specified filter mask. Each pixel in the image is processed
and replaced by the statistical median of its NxM
neighborhood. This method is particularly effective in
preserving edge sharpness and high-frequency details, as
the median value is derived from surrounding pixels,
making it robust to outliers. Unlike linear filters, the
median filter does not create unrealistic pixel values,
thus minimizing issues, like edge blurring and loss of
image detail. The median filter is well-suited for
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removing salt-and-pepper noise from images. Its
effectiveness in noise reduction increases with larger
window sizes, allowing for better median estimation from
a broader set of neighboring pixels. The equation (1) for
the median filter is represented as follows:

median{h(t,s)}

(t,s) e Twz @

e(w,z) =

Where Twz denotes the coordinates of the sub-image

window of size M x N. By applying the median filter in

the QC model, and enhance the clarity and accuracy of

the images of electrospun nanofibers, thereby improving
the subsequent analysis and optimization processes.

3.3 Feature Extraction
Component Analysis (PCA)

Using Principal

The fundamental concept of PCA is to linearly
transform environmental data collected in the study into
a low-dimensional subspace, maximizing the alteration in
the dataset. This results in an uncorrelated basis set that
illuminates the relationships between  various
electrospun nanofiber images. In this condition, reflect L
clarifications from the image data characterized in n-
dimensional space. Compute the mean vector p of
observations using the Eq. (2).

1
=7 }:1 Wj @)

Use the following Eq. (3) to estimate the matrix of
covariance 7 for the provided data:

T=38hea(wy =) (W —1)° ®)

Ascertain the eigenvalues of the matrix, plus their
associated eigenvectors. Use this Eq. (4-6) the essential
componentsz from the original variables:

7y = byywy + bpw, + -+ bywy (4)
Zy = by1wy + byawy + -+ bywy (%)
Zy = byywy + bpw, + -+ byw, (6)

With these limit points, PCA is guaranteed to sustain
the essential features necessary to understand the
quality of electrospun nanofiber image analysis.

3.4 Classification of Electrospun Nanofiber
Quality through the Efficient Slime Mould
Algorithm Fine-tuned Adaptive Deep Residual
Network (ESMA-ADRN)

The proposed hybrid ESMA-ADRN model integrates
the optimized ESMA with an ADRN to increase the
electrospun nanofibers' QC performance. This approach
enhances the performance and quality of optimization
because it includes more elaborate exploration strategies
as well as layer information storage.

3.5 Adaptive Deep Residual Network (ADRN)
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They develop the concepts in Deep Residual Network
(DRN) to enhance information retention during the
transfer between layers, ultimately aiming for higher
accuracy. To achieve this to improve the architecture of
the DRN and apply to QC in electrospun nanofibers. The
network operates as follows: Let the input be denoted as
w. The first layer processes this input, fitting the
functione (w). Then, combine the outputs by adding them
together, resulting in Eq. (7).

h(w) = e(w) + w (7

The second layer takes h(w) as input and maps it to
(h(w)). In the next step, again add the output of the
first layer e(w), to the output of the second layer, it
yielding Eq. (8).

Gw) = gle(w) + w) + e(w) ®

As seen from the above Eq. (8), it breaks the process
of approximating the joint function G(w) into
approximating two simpler functions of g. If both of these
simple mappings are implemented, the layers will
function more efficiently, making them easier to
integrate. Therefore, it can lower the chance of error in
fitting these two mappings and ultimately lower the total
error chance. Fig. 1 represents the architecture of ADRN.

Low Resolution High Resolution

Fig. 1 — ADRN Architecture

3.6 Efficient Slime Mould Algorithm (ESMA)

The standard Slime Mould Algorithm (SMA) is an
easy-to-use technique for tackling a variety of
optimization issues. However, SMA can get caught in
regional optima and show inadequate converging speeds,
especially in complicated tasks like multilayer thresholds
for segmenting images. To ESMA searches and enhance
exploration and exploitation, they suggest an ESMA to
improve optimizing efficiency. The enhancements in
ESMA focus on two key methods. First, they incorporate
Levy flight to augment the exploration ability of SMA.
This technique allows for more diverse search patterns,
improving the algorithm's capability to explore the
solution space more thoroughly and escape local optima.
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The Levy Flight can be mathematically represented as
follows in Eq. (9):

g, X (VA—KA)—KA,q, <y
WE+1) =W, + vax (X X Wy —W,) X Levy,q; < (9)
vD X W;,q3 = 0

By integrating these improvements, ESMA aims to
achieve more effective optimization process, ultimately
enhancing the performance of the DRN for the QC of
electrospun nanofibers. Additionally, quasi-opposition-
based training is used to increase the ESMA's exploit
capabilities and establish an improved ratio of explore
and exploit. This approach enhances the algorithm’s
ability to refine solutions effectively while navigating the
solution space. Fig. 2 illustrates the flowchart of the
ESMA. These visual representations detail the step-by-
step process of ESMA,

Set location of
slime mould YES ‘
’ Upgrade location
Estimate fitness Verify if Verify if
| of all slime mould Estiseutepd a <y 'hrww::)qua'lun —'< I

l

Upgrade location | YES _
Through Equation BT Upgrade o,va,ud
@ q; <o
I hof
Upgrade location

through Equation
8)

NO
Choose optimal
location though “‘"("s" O o
greedy approach
T

Fig. 2 — ESMA flowchart

Upgrade location
through QOBL.

4. RESULT AND DISCUSSION

The experiment of a Windows 10 x 64 operating
systems with an Intel(R) Core(TM) 15-3320M CPU at 2.60
GHz with 8.00 GB of RAM provided quite a stable
hardware base. The software environment was created
using Python 3.11.9 and it helped in the easier
construction of the model. The performance of the proposed
ESMA-ADRN model to classify quality and defective
electrospun nanofibers. These are accuracy, precision,
sensitivity, specificity, F-score, and error, such as the
Mean Absolute Error (MAE) and the Root Mean Square
Error (RMSE). Thus, evaluating these metrics between the
different model configurations allows to evaluate ESMA-
ADRN's effectiveness in enhancing QC by reducing
classification errors and increasing predictive
effectiveness. These findings provide an extended
understanding of the model's ability to identify defects and
the potential for enhancing its performance.

4.1 ROC Curve

Fig. 3 curve represents the classification performance of
the ESMA-ADRN model in identifying defects or quality
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issues in electrospun nanofibers based on image data. The x-
axis represents the false positive rate, representing the
percentage of incorrectly classified negative samples (quality
fibers misclassified as defective) relative to all actual
negatives. The y-axis represents the true positive rate, or
the model's accuracy in correctly identifying defective fibers
among all actual defect samples. The curve shows the
efficiency of ESMA-ADRN as the classification threshold
varies. The dotted line signifies a random classifier with an
AUC of 0.5 for baseline comparison. The area under the
curve (AUC) for ESMA-ADRN is 0.93, meaning the model
has a good capability to distinguish between quality and
defective fibers. An AUC of 0.93 reflects the model’s
moderate to strong predictive accuracy, suggesting that
ESMA-ADRN effectively supports QC by reliably detecting
imperfections in electrospun nanofiber images.

1.0

0.8 s

0.6 J R

True Positive Rate

0.2 | O

o ESMA-ADRN

0.0 = v T T -
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
Fig. 3 —ROC curves and the associated AUC values of ESMA-ADRN

4.2 Accuracy

Measuring the accuracy of a model provides a broad
evaluation of the model predict instances, where TP
signifies true positives while TN stands for true negatives.
According to the results, the model achieves the highest
accuracy of 94.30% indicating that it classifies
approximately 94 out of every 100 instances as ADR. This
high accuracy shows that the model works well at the
margin between positive and negative classes, which 1is
useful when it comes to the issue of QC for electrospun
nanofibers. The other models, including ESMA-ADRN100
and ESMA-ADRNS8O, also exhibit satisfactory accuracy
measurements of 93.82 %and 93.40%, respectively, which
asserts a reputable performance for all categories.

4.3 Precision

The positive predictive value, or the positive yield,
evaluates the optimism, or the probability, that a positive
result i1s correct. The contact detection accuracy rate is
calculated as the ratio of true contacts to the total of true
and false contacts. ESMA-ADR3N100, 80 estimates achieve
the best precision of 96.58% meaning that almost all
samples classified as positive by this model are indeed
positive. Such high precision demonstrates the model's
potential to separate true positive cases from false positives
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to minimize false alarms. Other examples including ESMA-
ADRN100 and ESMA-ADRN100, 40 also possess the high
precision value of 96.27% and 95.42% respectively.

4.4 Sensitivity

Sensitivity, also known as recall, will estimate the
likelihood of the model in distinguishing between true
positive items. As for the results, the model ESMA-
ADR3N100, 80 showed the highest sensitivity of 0.93 while
assessing a real proportion of positive cases in the general
amount of positive samples. High sensitivity is important
for cases where false negative results mean a positive case
is missed with potentially grave repercussions. In the same
context, another two models, namely ESMA-ADRN100 and
ESMA-ADRNRS8O, score high sensitivity at 92.34% and
91.78% respectively.

4.5 Specificity

It measures the extent to which models achieve
precision on negative instances. It is defined as true
negative over the total of true negative and all false
positives. The percentage calculated in the model by using
ESMA-ADRN100 is 93.12%, which is satisfactory in terms
of the mechanism that has been developed to recognize
negative cases. High specificity has major relevance
mainly when the cost of taking an action positively on the
false negative cases is higher. Other models, include
ESMA-ADRNS80O and ESMA-ADRN100, 40 which have
close specificities of 92.58% and 91.45% respectively.

By comparing and contrasting the ESMA-ADRN
models the performance of various parameters shows
substantial progress in making the proposed ESMA-ADRN
best suited for improving the QC of Electrospun
nanofibers. The ESMA-ADR3N100, 80 model, gives the
best result with 94.30% accuracy in the test dataset with
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EnexrposiniienrpoBani HaHOMIOPH MHPOKO BHKOPUCTOBYIOTHCS B IHHOBAINNWHUX Trajly3saX, 30KpeMa B
OloMemuuHil iHKeHepil I KapKaciB TKAHWH, (IIbTpAIlil IIOBITPSA Ta BOOW, AKyMYJIIOBAHHI eHeprii ToIIo,
3aBJISIKM BHCOKOMY CITIBBIJHOIIEHHIO ILJIONII ITOBEPXHI /10 06’ emy. OgHak, cepel] OCHOBHUX IPOOJIEM € BiCYTHICTH
TOYHOI0 KOHTPOJIIO SIKOCTL IIJI 4ac BHUPOOHHIITBA, IO IPU3BOAUTEL JI0 3HAYHUX Baplallii y BJIACTHBOCTSAX Ta
IIPOIYKTUBHOCTI MaTepiany. Y Il poGoTi 3aIpOIIOHOBAHO BUPIMIEHHS ITiel TPOoOJIeMH IIJIAXOM PO3POOKH MOIeJIl
ESMA-ADRN (Efficient Slime Mould Algorithm — onrumizoBana afanTUBHA TINIMOOKA —3aJIMIIKOBA
HelpoMepeska) A OIIHKY SKOCTI HaHO(IOPOBUX CTPYKTYp HAa OCHOBI aHasidy 3o00paskeHb. Jlis mociimskeHHs
BHUKOPHUCTOBYBABCA JIATACET 300paskeHb eJIEKTPOBIIIIEHTPOBAHUX HAHOMIOP, SIK1 IMIPOXOIUJIN TIOIIEPEIHI0 00POOKY
MeTOIOM MeaiaHHOTO (UIBTPYBAaHHS [JIsI 3MEHIIEHHs IIyMy. BumieHHs 03HAK NIPOBOJUJIOCH 3a JOIIOMOIOK0
mertoxy rosoBHuX kommoHeHT (PCA) misi BuGopy HaMOLIbIN iH(QOPMATHBHOIO MIPOCTOPY O3HAK. PedyibraTh
monmeni ESMA-ADRN mnepesepmmim iHmn mofesi 3a BciMa IIOKAa3HMKaMu, 30Kpema: — ToumicTs (accuracy):
94,30%; — [Iperuasitiaicts (precision): 96,58%; — Yyrimeicts (sensitivity): 93,04%; — CrrenudpivnicTs (specificity):
93,72%; — F-mipa: 94,77%. ¥V mepcleKTuBi IIOJAJIBIIN JOCTIIKeHHS IIOBUHHI OXOILIIOBATH O1JIbIlle BHPOOHHUMX
CIIeHAPIIB, a TAKOXK HepeadavYaTh TOHKe HAJIAIITYBAHHS IapaMeTpiB MOJIeJIl IJIA MiIBUINeHHA 11 eDeKTUBHOCTI y
PI3HHX YMOBAX BHPOOHUIITBA.

Kmiouosi ciosa: Enexrposignenrpoani Hanodgiopu, Korrposas skocri, AHasia 300pasens, ['muboka HeApoHHA
mepeska, ESMA-ADRN, PCA.
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