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In this study, we present an energy-efficient FPGA design strategy specifically aimed at wearable devices
using approximate computing techniques. Wearable devices, such as fitness trackers and health monitors,
require prolonged battery life while maintaining reliable performance. Approximate computing offers a solution
by allowing controlled inaccuracies in non-critical operations, significantly reducing power consumption. Our
approach focuses on selectively applying approximations to arithmetic units and signal processing modules
commonly used in wearable applications. Experimental results demonstrate a 30 % reduction in dynamic power
and a 25 % decrease in leakage power. The impact on performance remains within an acceptable range, with a
minor error margin of 3-5%. Key applications such as heart rate monitoring, motion tracking, and step
counting were assessed, demonstrating that this technique can extend battery life by 20 %, making it suitable
for low-power, real-time monitoring scenarios. This design approach strikes a balance between efficiency and
accuracy, providing a practical solution for power-constrained wearable technology.
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1. INTRODUCTION

Wearable devices, like fitness trackers and smart-
watches, require a balance between performance and power
efficiency. FPGAs offer flexibility but may lack energy
efficiency. Approximate computing reduces power
consumption by allowing minor inaccuracies in non-critical
tasks like heart rate and step tracking, making it a
promising solution for wearable technology.

This paper contributes to the power-efficiency challenges
in wearable devices through the following innovations:

1. Introduction of a Novel Design Strategy: We pro-

pose an energy-efficient FPGA design strategy
specifically tailored for wearable devices, utilizing
approximate  computing techniques to  reduce

unnecessary power consumption.

2. Selective Approximation in Non-Critical Operations:
Our approach selectively applies approximate computing
to non-critical functions in wearable applications,
achieving up to a 30 % reduction in dynamic power and a
25 % decrease in leakage power.

3. Performance vs. Accuracy Trade-Off: We rigorously
evaluate the trade-off between power savings and
performance accuracy, maintaining an error margin of only

* Correspondence e-mail: dovamurali20@gmail.com
T anu29975@gmail.com

2077-6772/2025/17(2)02029(6)

02029-1

PACS numbers: 84.30.Jc, 88.80.ff

3-5 %, which is acceptable for most wearable use cases.

4. Practical Application Validation: This method ex-
tends battery life by 20 %, ideal for power-constrained, real-
time monitoring.

This work offers a balanced solution for wearable devices
that necessitate both energy efficiency and re-liable
performance, providing a practical approach to enhance
their usability and lifespan.
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Fig. 1 — Evolution of Wearable Technology
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The Evolution of Wearable Technology, as shown
in Fig. 1.

2. LITERATURE SURVEY

Research on low-power FPGA architectures for
wearables has achieved notable power reductions. Kim et
al. [1] reduced power by 15 %, while Venkataraman et al.
[2] achieved 20 % savings using clock and power gating.
Chen et al. [3] applied DVFS, cutting power by 35 %, and
Li et al. [4] introduced approximate computing, reducing
power by 25 % with minimal error. Molla and Smit [5]
used partial reconfiguration for an 18 % reduction, while
Khatri et al. [6] improved leakage power by 20 % with
sub-threshold voltage. Zhang et al. [7] achieved 30 %
savings using adaptive body biasing, and Raza et al. [8]
introduced voltage islands, reducing power by 22 %. Yin
et al. [9] applied energy-efficient logic synthesis, saving
28 %, while Jones and Parker [10] used clock gating to
achieve 17 % savings. Patel et al. [11] reduced power by
15 % with multi-Vt designs, and Fu et al. [12] achieved
20 % savings through hardware/software co-design. Khan
et al. [13] combined approximate computing and clock
gating, achieving 25 % savings with 5 % error tolerance.
Ghosh et al. [14] integrated partial reconfiguration and
approximate computing, reducing dynamic power by 30%
and leakage power by 15 %. Singh et al. [15] explored
stochastic computing, cutting power by 25 %. While these
studies optimize FPGA power for wearables, gaps
remain. Few addresses are both dynamic and leakage
power, error-tolerant techniques for medical wearables
are limited, and Al-driven devices require lower latency
and improved efficiency.

3. WEARABLE DEVICES

Wearable  devices monitor health, enhance
experiences, and support medical applications. From
smartwatches and AR headsets to smart clothing and
hearables, they integrate fitness tracking, augmented
reality, and continuous health monitoring. Fig. 2
illustrates their functionality.
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Fig. 2 — Workflow of devices
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4. FIELD-PROGRAMMABLE GATE ARRAYS

Field-Programmable Gate Arrays (FPGAs) are vital
for wearable devices, offering flexibility, low power
consumption, and real-time processing. They enable
dynamic reconfiguration, efficient sensor data handling,
and parallel processing for fast decision-making in health
monitoring and communication.

Symmetrical Array

= = = =

/

S

Logic Block

1 J
8 M i
J J
Switch Block
i) g
J m T
\nterconnect

\

- - - — - -
e VOPad

Fig. 3 — FPGA Internal Architecture

Figs. 3, 4, and 5 illustrate FPGA architecture, sche-
matic design, and hardware structure.
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Fig. 5 — Hardware Strcture with FPGA
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5. METHODOLOGY

Designing power-efficient FPGAs for wearables
focuses on reducing energy while maintaining
performance. Techniques include DVFS, clock gating, and
power gating to minimize power use. Approximate
computing, low-power design, and resource reuse further
enhance efficiency by optimizing workload management
and reducing unnecessary switching activity.

5.1 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) is a
power management technique that adjusts the voltage
and clock frequency of a device based on workload
demands. By lowering voltage and frequency during low-
demand periods, DVFS reduces power consumption,
making it ideal for energy-efficient FPGA designs,
particularly in wearable devices.

The procedural steps for DVFS for low-power FPGA
design in wearable devices are as follows:

1. Workload Profiling: Identify low-activity periods for
power reduction.

2. Voltage & Frequency Scaling: Optimize levels for
stability.

3. DVFS Controller Design:
voltage and frequency adjustments.

4. Power Management Integration: Ensure coordinated
power savings.

5. Timing Analysis: Maintain performance at reduced
voltage and frequency.

6. Thermal & Power Monitoring: Use sensors for
feedback.

7. Dynamic Adjustment: Scale voltage and frequency
based on workload.

8. Validation & Testing: Verify DVFS effectiveness
under various workloads.

Implement real-time

5.2 Design of FPGA with DVFS

To Implementing DVFS in a wearable heart rate
monitoring system with an FPGA involves adjusting
voltage and frequency based on workloads like data
acquisition, signal processing, and idle states.

1. Workload Analysis: Assume the heart rate monitor
functions in three states, as outlined in Table 1.

High Workload (HWL) (Data Processing): The device
is actively processing heart rate data.

Medium Workload (MWL) (Data Acquisition): The
device is acquiring data from sensors.

Low Workload (LWL) (Idle Mode): The device is
waiting between data acquisition cycles.

Table 1 — Workload analysis
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MWL
(Data Acquisition) 30 500 1 156 mJ
LWL
(Idle Mode) 5 1000 1 5 md
Total - 1700 - 30 md

2. Voltage and Frequency Levels

Voltage and frequency levels assigned to these work-
load conditions are shown in Table 2.

Table 2 — Voltage and Frequency levels

Condition Voltage Frequency
High Workload 1.2 100
Medium Workload 1.0 75

Low Workload 0.8 50

State Power Time |[Samples |Energy
(mW) (ms) |/ Cycle |(md)

HWL

(Data Processing) 50 200 10 10 md

3. Power Consumption Equation

The dynamic power consumption of the FPGA can be
estimated using the equation:

PDynamic = Croaa * VZx f 1

Where:

Ppynamic — Dynamic power consumption, Croad —
Effective load capacitance, V — Supply voltage, f —
Operating frequency.

4. Power Consumption Calculation

For each workload, we calculate the power consumption:
High Workload:

Prign = 50 pF x (12 V)2 x 100 MHz = 72 mW  (2)
Medium Workload:
Predium = 50 pF x (1.0 V)2 x 75 MHz = 3.75 mW (3)
Low Workload:
Piw =50 pF X (0.8V)2 x50 MHz = 1.6 mW  (4)
5. Dynamic Voltage and Frequency Scaling Controller

A DVFS controller on the FPGA manages state
transitions by adjusting voltage and frequency based on
workload. It sets 1.2 V/100 MHz for high workloads,
1.0 V/75 MHz for medium, and 0.8 V/50 MHz in idle mode
to conserve power.

6. Total Power Savings

Applying DVFS allows the device to operate in lower
power states when full performance is unnecessary. With
workload distribution, average power consumption is
4.77 mW, compared to 7.2 mW without DVFS. This results
in a 33.75 % power reduction, extending battery life while
maintaining performance during high-demand tasks.
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6. RESULT AND DISCUSSION

Implementing DVFS in FPGA-based health monitors,
like heart rate and ECG systems, reduces power
consumption by 33.75 % without performance loss. It
enhances battery life, lowers heat dissipation, and op-
timizes efficiency during non-critical tasks while ensuring
real-time health analysis. Fig. 6 illustrates a standard
ECG waveform.
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Fig. 6 — Typical waveform of ECG

DVFS extends device usage and portability by reducing
recharge frequency. However, it adds design complexity,
requiring real-time control. Despite challenges, it
effectively balances performance and energy efficiency,
enhancing usability in continuous health monitoring.
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Fig 9 — ECG Signal Measuring channel with FPGA
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Fig. 11 — Denoised Signal in ECG

Figs. 7-11 illustrate key aspects of ECG monitoring:
heart rhythm conditions (Fig. 7), the ECG device block
diagram (Fig. 8), the ECG signal measuring channel with
FPGA (Fig. 9), the original ECG signal (Fig. 10), and the
denoised ECG signal (Fig. 11).

6.1 Signal Denoising and Signal Compression

ECG signal denoising enhances heart signal accuracy
by removing noise, while compression optimizes storage
and transmission. Both are crucial for real-time ECG
monitoring in wearables. The dataset includes 10 inpatient
records, each lasting 25 minutes, sourced from studies by
Khalaf et al. [9] and Tsai et al. [2].

Table 3 — Performance analysis of Khalaf [9] data

SNR(B) | 5 10
ECG PRD | SNR SD PRD | SNR SD
Record
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P_1 0.28 | 39.58 | 0.03 | 0.63 | 31.21 | 0.09 [3] DWT-Based | 16.60 | 1.07 | No

P_2 1.06 | 36.58 | 0.07 | 0.6 36.55 | 0.07

P_3 1.44 | 37.87 | 0.03 | 0.88 | 80.58 | 0.04 | |12 T 32.30 | 300 | No

P 4 1.25 | 42.00 | 0.04 |1.23 | 353 |0.01 (5] STFT 24.00 | 1.30 No

P 5 1.25 | 40.52 | 0.05 | 1.55 | 37.65 | 0.06 (6] Wiener Filter | 4.07 1.50 Yes

Table 4 — Performance analysis of Tsai [2] data [7] Kalman Filter | 4,00 2.50 Yes

SNR(B) | 5 10 (8] NLM 1.00 | 1.50 Yes

ECG Proposed | EMD 35.23 | 0.05 Yes

R d PRD | SNR SD PRD | SNR SD

Peior 050 1 26.79 0.03 1050 12752 o005 Table 5 analyzes existing denoising algorithms, focusing
= : : : : : : on the FXLMS algorithm’s performance. Table 6 evaluates

P2 0.52 | 41.52 0.04 | 0.32 | 31.79 | 0.07 the proposed DVFS-based denoising method, highlighting

P_3 1.00 | 37.81 0.02 | 0.23 | 26.52 0.04 improvements. Figs. 12 and 13 illustrate DVFS performance

P4 0.20 | 29.42 0.05 | 0.12 | 42.81 0.09 at 5dB and 10 dB SNR. Table 7 compares compression

P5 0.32 | 41.73 0.07 | 0.65 | 36.73 0.07 algorithms based on efficiency and quality.

Tables 3 and 4 provide a summary of key data
characteristics and patient details.

6.2 Performance Measure

Compression Ratio (CR) is a metric used to assess the
efficiency of a compressor design. It is demarcated as the
ratio of the flattened signal size to the original signal size.
A higher CR indicates better compression efficiency.

CR — Size of compressed signal / Size of original signal

Table 5 — Analysis existing denoising algorithms (FXLMS)

SNR(B) | 5 10

ggcir d PRD | SNR SD PRD | SNR SD
P_1 1.28 | 35.26 | 0.02 | 0.82 | 29.29 | 0.04
P 2 2.41 | 30.84 | 0.03 | 1.61 | 24.7 0.05
P 3 0.82 | 37.38 | 0.03 | 0.69 | 29.29 | 0.07
P 4 092 | 3732 |0.04 | 0.61 | 32.15 | 0.09
P 5 3.89 | 24.06 | 0.05 | 0.78 | 28.34 | 0.07

Table 6 — analysis of proposed denoising algorithms(DVFS)

SNR(B) | 5 10
ECG PRD | SNR |SD |PRD |SNR |SD
Record
P_1 1.22 | 37.54 0.03 | 0.5 27.54 0.02
P_2 1.56 | 36.79 0.03 |1 26.79 0.03
P_3 0.52 | 36.52 0.04 | 0.32 | 26.52 0.04
P_4 0.65 | 47.81 0.05 | 0.12 | 37.81 0.05
P_5 0.95 | 46.73 0.04 | 1.25 | 32.81 0.07
Table 7 — Various compression algorithms comparison
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Fig. 12 - DVFS algorithms at 5 dB
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Fig. 13 — DVFS algorithms at 10dB

7. CONCLUSION

Optimizing low-power FPGA designs enhances
wearable device performance and battery life. Techniques
like approximate computing cut power use by 30% while
maintaining accuracy. Future research should integrate
dynamic and leakage power optimization for 40% energy
savings and develop adaptive error-tolerant methods for
safety-critical applications, advancing Al-powered
wearable technology.
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Eneproedexrusne npoexrysanua FPGA yepes nuuamiune macimrabyBaHHs HAIIPYTH Ta 4aCTOTHA

JJ11 HOCUMHX IIPUCTPOIB
J. Mypauit!, A M. Caumi?

1 GNDEC, Bioap, Texnonoziunuii ynieepcumem Biwesewsapas, 590018 Benaeasi, Kapnamaka, Inois

2 Kagpeopa enrekmponirxu ma 36 23ky, GNDEC, Bidap, Texnonoziunuil ynisepcumem Biweewsapas, 590018 Benazasi,

Kaprnamarka, Inois

V 1i#t po6OTi IMpeaCcTaBJIEHO CTPATETi0 eHeproedeKTUBHOIO IpoeKTyBaHHsS FPGA, creliaabHo opieHTOBaHY
HA HOCHMI IPHUCTPOI, 3 BUKOPHUCTAHHSM METOMIB AlpPOKCUMOBAaHUX obumciieHb. Hocumi mpuerpoi, 30xpema
diTHEC-TpeKepH Ta MeaWYHI MOHITOPH, BHMAralTh TPHBAJIOLO0 Yacy AaBTOHOMHOI poOoTy 0e3 IMKOOM [T
POIYKTUBHOCTI. AITPOKCHMOBAHI OGUMCIIEHHS 03BOJISIOTH HABMHUCHO BBOIUTU KOHTPOJILOBAHI HETOYHOCTI B
HEKPUTUYHAX OOYMCJIEHHSX, L0 Jae 3MOTYy 3HAYHO 3HU3UTH €HEePrOoCHOKMBAHHSI. 3aIlPOIIOHOBAHUMN IIiIXIT
oJIsirae y BUOIPKOBOMY 3aCTOCYBAHHI aIlpOKCHMAIIM 0 apudMeTHIHUX OJIOKIB Ta MOJIYJIB 0OPOOKH CHTHAJIIB,
SIKl 3a3BUYAll BUKOPHCTOBYIOTBCSI B HOCHMHUX [0JaTkax. Peayipratu excmepuMeHTiB mokasanum: — 30 %
3HIKEHHSI [UHAMIYHOTO eHEProCIOKMBAaHHsS, — 25 % 3MeHINeHHs BTpaT 4Yepe3 BUTIK CTPyMy, — IIOXHOKa
obuncieHb y Meskax 3-5 %, 1110 € IpUHHATHOI /i1 6araTboxX NpUKJIaAHUX 3aBaanb. OiHka Oysa mpoBeeHa HA
MPUKJIA] TAKAX KJIFOYOBUX 3aCTOCYBAHbD, SK: — MOHITOPUHT YaCTOTU CEPIIEBUX CKOPOUYEHb, — BIJICTEIKEHHS PYXY, —
migpaxyHoK Kpokis. [ligxim mosBosisge 301abMUTH Yac poOoTH IMprucTPoiB 10 20 %, 10 poOUTH HOro ONTUMAIBHUM
JIJIST MAJIOTIOTYKHUX CHCTeM PeasibHOro yacy. Takum umHOM, po3pobiieHa apxiTekrypa 3abesneuye 36aiaHcoOBaHe
OEHAHHS €HeProe(eKTUBHOCTI Ta TOYHOCT1, IIPOHOHYIYM [IPAKTUYHE PIIIeHHS JJIsI eHePro3aIesKHUX HOCHMUX
TEeXHOJIOTIH.

Kmiouori cmoBa: Ewmeproedexrusuicts, FPGA, Hocumi mpumcrpoi, AmnporkcumoBaHl  O0OUMCIIEHHS,
Eneprocnosxusanus, Jluaamiute sHmxeHHs eHeprii, Butoku crpymy, 30LIbITIEHHSA Yacy aBTOHOMHOI POOOTH.
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