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Due to their significant physical properties, ferromagnetic nanoparticles have a wide range of applica-
tions. In particular, one of the exciting areas of ferromagnetic nanoparticle exploitation is their use in creat-
ing directed transport of substances. This kind of transport is a type of so-called Brownian motors associated
with the existence of the ratchet effect in the out-from-equilibrium unbiased systems. The ratchet effect,
ensuring the appearance of a steady transport in the underlying system, plays a crucial role in different
fields of complex magnetic systems and materials and is the basis for the various applications of nanoparti-
cles, from engineering to medicine. Several different physical principles contribute to the emergence of di-
rectional transport of ferromagnetic nanoparticles, provided that the particles perform not only translational
but rotational motion as well. Probably, the most convenient and flexible way to generate such a directional
transport is to use a special combination of external magnetic fields. Previously, we have proposed to use an
effective mechanism of directed deterministic transport of single-domain ferromagnetic nanoparticles in a
dilute suspension arising from the joint action of the harmonically oscillating gradient magnetic field in the
presence of a time-independent uniform magnetic field. In this work, we continue the indicated course of
research and develop the asymptotic theory of the ferromagnetic nanoparticle drift. Our approach is based
on a set of first-order ordinary differential equations for the rigid dipole model of ferromagnetic nanoparticles
that describe the interconnected time dependencies of the particle coordinate and magnetization angle. We
find the asymptotic solutions of the proposed set of equations in the small and large time regimes. Also, by
applying the matched asymptotic expansions for the special discrete times, we derive analytical expressions
for the average particle coordinate and velocity. Finally, we show that the obtained theoretical dependences
are qualitatively consistent with the numerical results.
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1. INTRODUCTION

Ferromagnetic nanoparticles in a single-domain
state are widely used in many biomedical applications
[1], such as, e.g., magnetic hyperthermia [2, 3], magnetic
cell separation [4, 5], and drug delivery [6, 7]. Usually,
these applications utilize the magnetic and mechanical
dynamics of nanoparticles. If the anisotropy magnetic
field exceeds all external magnetic fields, then the mag-
netization vector can approximately be considered as
‘frozen’ into the particle body. In this rigid dipole model
[8], the magnetization dynamics is defined by the trans-
lational and rotational dynamics of nanoparticles and
thus can be excluded from consideration. This fact essen-
tially simplifies the theoretical analysis of the nanopar-
ticle dynamics in a viscous liquid and often permits ob-
taining analytical results.

Using the rigid dipole approximation, we have per-
formed a comprehensive analysis of the coupled transla-
tional and rotational dynamics of nanoparticles sub-
jected to a time-independent gradient magnetic field and
a constant uniform magnetic field [9]. It has been shown
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that, due to coupling, there exist four regimes of directed
transport of nanoparticles, which depend on their initial
positions. If, as it often happens, the gradient magnetic
field depends on time, then the coupled translational
and rotational dynamics of nanoparticles becomes very
complex and can lead to unexpected results. Specifically,
if the gradient magnetic field changes with time har-
monically, then, in accordance with our expectations, all
nanoparticles perform periodic oscillations [10]. How-
ever, the application of a constant uniform magnetic
field, whose direction is perpendicular to the gradient
one, leads to the directed transport (drift motion) of na-
noparticles [11]. This is a rather unexpected result be-
cause a uniform magnetic field does not produce any
driving force. Our numerical analysis has shown that
this is a dynamic effect under which the translational
oscillations become aperiodic, and the nanoparticles are
shifted during each period of the gradient field along (or
opposite) its direction. This mechanism of directed
transport has recently been analyzed both numerically
and analytically [12].
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In this paper, using the rigid dipole approximation,
we develop an asymptotic theory of directed transport of
ferromagnetic nanoparticles, which permits to derive
analytic formulas for the average particle position and
velocity as functions of discrete time.

2. BASIC ASSUMPTIONS AND EQUATIONS

We consider spherical ferromagnetic nanoparticles of
radius a in dilute suspension, when the dipole-dipole inter-
action between nanoparticles can be neglected. It is as-
sumed that on nanoparticles act the harmonically oscillat-
ing gradient magnetic field

Hy = gxsin(Qt + ¢) e, 1)
and the time-independent uniform magnetic field
H=He, + HJ_ey. (2)

Here, g(= 0) is the gradient of the magnetic field (1), Q
is its frequency, ¢ € [0,7] is its initial phase, H, and
H, (= 0) are the parallel and perpendicular components
of the uniform magnetic field (2), and ey, e,, e, are the
unit vectors along the correspondent axes of the Carte-
sian system of coordinates.

We also assume that nanoparticles are single-domain
and the anisotropy magnetic field in them is so strong that
the magnetization vector M = M(t) (|]M| = M = const) can
be considered as ‘frozen’ into their bodies. This so-called
rigid dipole model is widely used, e.g., for studying the
role of the magnetic dipolar interaction and thermal
fluctuations in the nanoparticle dynamics [13-17]. If the
size of nanoparticles is rather large (a = 50 nm), then
thermal fluctuations of the magnetization direction are
small and the dynamics of M can be considered in the
deterministic approximation. In this case, taking the in-
itial magnetization M, = M(0) in the xy plane, the mag-
netization vector M can be represented in the form

M= M(cos pe, t+sing ey), 3

where ¢ = @(t) is the magnetization angle (angle be-
tween the vectors e, and M). Introducing the particle an-
gular velocity w = w(t), we make sure that in the rigid
dipole approximation the kinematic equation

d —
SM=wxM (4)

(the sign X denotes the vector product) must hold. From
(3) and (4) it follows that @ = w,e, (the nanoparticle ro-
tates about the axis z) and w, = dg/dt.

Next, neglecting the inertial effects and assuming
that the Reynolds rotational and translational numbers
are small [18], from the torque and force balance equa-
tions we, respectively, obtain
Z—‘f = Z—:’/ [H, cosg — Hysing — gR, sin @ sin(Qt + ¢)]. (5)
( is the dynamic viscosity of liquid, V = (4/3)ma?® is the
nanoparticle volume) and

dRy _ 2Mga?

@ = oy 0S¢ sin(Qt + ¢) (6)

(Ry = R,(t) is the x-coordinate of the particle center).
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Finally, introducing the dimensionless time t = Qt, par-
ticle coordinate r, = 1,,(t) = R,/a and frequencies

_ MH,
~ ena’

_ MH,

Mga
= ena Vi =y
nQ

Vg = \Y
9 ena’ L

(M

Egs. (5) and (6) can be reduced to a set of the dimension-
less equations for ¢ and r, [11]

@ =v,cos@—vsing —v,r,singsin(t +¢), (8)
Ty = (4/3)vy cos @ sin(t + ¢) 9)

where the overdot denotes the derivative with respect to
the dimensionless time 7. Despite the seeming simplicity
of these equations, they are difficult to solve not only an-
alytically, but also numerically. The reason is that Egs.
(8) and (9) are stiff [19], i.e., certain numerical methods
for their solution become numerically unstable with time
(because |r(7)| infinitely grows and ¢(7) tends to the
step function as T - o, see below).

Equations (8) and (9), supplemented be the initial
conditions

(P(O) =@ € [OvT[]v Txo = rx(o) € (_OOJ Oo) (10)

describe the coupled rotational and translational mo-
tions of nanoparticles in a viscous liquid subjected to the
harmonically oscillating gradient magnetic field in the
presence of a constant uniform magnetic field. In Refs.
[9-12] we studied numerically and analytically the dy-
namical properties of nanoparticles on rather short time
intervals. Here, we use these equations, the discrete-
time approximation and matched asymptotic expansions
at short and large times to derive the average particle
coordinate and velocity for arbitrary times.

3. ASYMPTOTIC THEORY OF DIRECTED
TRANSPORT

3.1 Nanoparticle Dynamics near the Origin

Let us first consider the nanoparticle dynamics near
the origin (where the gradient field equals zero, i.e., x =
0) under the conditions

Vg K1, v~y > 1, nl < (v +vﬁ)1/2/vg. (11)

According to the results of Ref. [12] generalized to v, #
0, in this case the nanoparticle dynamics is character-
ized by two regimes, fast and slow. The first one occurs
at 0 < 7 < 1y <K 1 and the second at 7 = 7, where the
transient time 7. is defined as

Y—po
7 (v24vp) 2 sinw-0o) (12)
with
Y = arccos —(Vi:’”ﬁ 77 (13)

As follows from Eqgs. (8) and (9), the nanoparticle dy-
namics at 7 € (0, Ty) is described by formulas

1/2 .
P=¢ot [(Vi + Vﬁ) sin(y — @) —
— VgTxo SIN Qg sin @]t (14)

and
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T = Txo + (4/3)vg cOs @ singp 7. (15)

In contrast, if T = 74, then Egs. (8) and (9) in the main
approximation yield

VgV . .
©=0® —ry v2g+:ﬁ [sin(z + @) —sin(ty + d)] (16)
L
and
O 2vZv?
T =Ty + Tx0 3(\&:}\,%3/2 (T - Ttr)- (17)

Here, the constants ¢(® and rx(o) can be found from (14)
and (15) as @ = ¢(r,,) and rx(o) = 1,.(1¢). It should also
be emphasized that the right-hand sides of Egs.
(14)—(17) are approximated (e.g., in (17) we do not show
small periodic terms).

Next, we will be interested in the behavior of 7, at
discrete times t,, = 2nn + T, where n = 1,2,...,N and N
is the maximal number, such that the representation
(17) still holds. To derive the formula for r,(2n), we first
introduce the nanoparticle average velocity 7, on the n-
th period of the gradient magnetic field as

By = [ (2mn + 1) — 12T - 2m + 7)) (18)
Since 7, < 1, the dimensionless particle coordinate
1,(21n + Ty.) can be written in the form

e (2mn), n=12..,N

1 (2mn + =
X( /A Ttr) { rx(Ttr) ~ er/ n= 0’

" (19)
This result permits us redefine the average velocity (18)
as follows:

b, = % [r,(27n) — 1, (27 — 210)]. (20)

Generalizing results derived in [12] to the case with
v # 0, we obtain

2vivi
3(v +vi)3/2

Uy, = 1 (27N — 27) 21)

Using (21) together with the definition (20), for the na-
noparticle coordinate 1, (27n) one gets

4mvivi ) ©22)

3(vi+vh/2

r,(2mn) = r,(2wn — 2m) (1 +
or

TN 23)

1, (2mNn) = 1y (1 + W

Thus, the particle coordinate grows with n in accordance
with the power law.

3.2 Nanoparticle Dynamics far from the Origin

For nanoparticles far from the origin the conditions
(11) should be replaced by

1/2
Vg <1, v~y > 1, 5l = (v +vE) / /vg. (24)

According to equations (8) and (9), in this case cos ¢ as a
function of a variable 7 tends to the following periodic
step function
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2
1—(—=
Vgrxo+vi)

VL )2, T—¢ <T<2m—p,(25)

VgTxo=Vi

0<t<m—9¢,

cosp ==t —1+(

- ()
Varrotvi) 2t — ¢ <1 < 2m.

Here, the signs ‘4’ and ‘—’ in the symbol ‘+’ correspond
to 1y > 0 and 1y < 0, respectively. For such nanoparti-
cles the average velocity

— 2

T = —2 lim fZZZ]\IIV_Zn cos @ sin(t + ¢) dt (26)

3T N->oo

can be represented as
_ 2vg (2 )
Voo = %fo " cos g sin(t + ¢) dt. 27

Substituting (25) into (27) and performing the integra-
tion assuming that v,|ry| > |vy|, one obtains

5=+ 200 [1 _ (—)2] 28)

3 VgTxo

This result shows that if |r| is rather large (or time 7 is
so large that |, (7)| = (Vi + Vﬁ)l/z /Vvg), then the nanopar-
ticles move with a constant average velocity. Therefore,

the nanoparticle coordinates r,(27n) at discrete times
T, = 27n are given by

1, (2mn) = 1, (2nL) + 210, (n — L), (29)

where n =L,L +1,.. and |r,(2rL)| = (V3 + vﬁ)l/z/vg.

3.3 Matched Asymptotic Analysis

To find the nanoparticle coordinates for arbitrary
discrete times, we will use the asymptotic formulas (23)
and (29), which describe the behavior of r,(27n) for n <
N and n = L, respectively. The matched asymptotic anal-
ysis [19] allows us to do this in the simplest way. For this
we assume that there is a such number N of the gradient
field periods that the average nanoparticle velocity vy
coincides with the limiting velocity 7, (i.e., N = L). Using
(20), (23), and (28), the condition ¥y = 7., which we con-
sider as the equation for determining N, can be rewritten
in the form

( 4mvivi )N_l _ 4(v3 +v})3/? (30)

3("1*“’%)3/2 T[Vg"i'rx(ﬂ ’

Since in the left-hand side of this equation the second
term within the brackets is small compared to 1 and its
right-hand side exceeds 1 [see (24)], Eq. (30) yields

In (4(vi+vf)3/2> 31)

”ngi [Txol

N = 3(Vi+:ﬁ)23/2

4mvgvy
Finally, using (23), (29) and (31), for the nanoparticle co-
ordinates at discrete times t,, = 2nn we find

amvivi " _
o (1 +73(Vi+vﬁ)3/z) , =1l g0

() 2{
1(2nN) + 2n0,,(n—N), n=N+1,...
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To verify this analytical result, we solve the basic
Egs. (8) and (9) numerically. We consider the SmCog na-
noparticles [21] suspended in water at room tempera-
ture (293 K) and characterized by the following parame-
ters: M = 1.36 x 103 emucm™3,7 =1.00 X 1072Pand a =
3x102nm =3 x 1075 cm. It is also assumed that the
gradient magnetic field (1) is defined by the parameters
g=10%20ecm™, O =4x10%rads™!, ¢ =m/2 rad, and
the uniform magnetic field has two equal components
with H; = H, = 10 Oe. For this case, the dimensionless
parameters in Egs. (8) and (9) are given by v, ~ 1.67 X
107* and v, = v; = 5.56 X 102. Choosing the initial angle
to be ¢y =m/3 rad, from (13) and (12) we find ¢ =
m/4 rad and 7, = 3.15 x 10™*, respectively. Finally, to
estimate the time-step At and the time domain (0, Tyax)
for these parameters, we should take into account that
Eqgs. (8) and (9) are stiff. This means that At must be so
small (compared to the gradient field period 2m) that the
solutions of these equations remain numerically stable
on the whole time domain. On the other side, AT must
not be too small in order to make the simulation time
restricted by a few hours. According to (31), in the con-
sidered case we have

N ~ 135 x 10*In (M)

ITxol

(33)

Therefore, 7,,x must satisfy the condition 7,4 = 27N.
In Fig. 1, we show by the blue line the theoretical de-
pendence (32) of the particle coordinate r,.(7,,) on the dis-
crete time 7, = 2nn for the system parameters intro-
duced above and |ryo| = 102. As it follows from (33), in
this cases N = 6.46 X 10* (ty ~ 4.06 x 10°). Next, using
the definition (20) of the average transport velocity on
the n-th period of the gradient magnetic field and for-
mula (32) for the nanoparticle coordinate, one gets

n—1

4mvivi ) ’ (34)

3(VE+v3)3/2

T332

_ 2vEVi 1y (

forn=1,..,N and %, = ¥, for n = N + 1. The numerical
results for 1,.(7,) and 7, obtained by the numerical solu-
tion of Egs. (8) and (9), are shown in Figs. 1 by the red
circle symbols. As seen, the theoretical and numerical
results are in a qualitative agreement with each other.
Some difference between these results at large dimen-
sionless times appears because for 7,, was used only the
main term of the asymptotic expansion.
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4. CONCLUSIONS

We have proposed an asymptotic theory of directed
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ing gradient magnetic field and uniform magnetic field
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field, or at small and large discrete times, respectively.
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AcuMnTOoTHYHA TEOPid CIPAMOBAHOIO TPAHCIIOPTY 3BAKEHUX (PePOMATHITHNX HAHOYACTHUHOK
C.I. dernucos?, T.B. JIrotuiiz, M.M. Mocrkanenro?, A.T. JIroruii2, 10.C. Buctpuk!

1 Incmumym npukxnaonoi gisuxu HAH Yipainu, 40000 Cymu, Yrpaina
2 Cymcvruil depocasrutl yrisepcumem, 40007 Cymu, Yrpaina

3aBasgKy CBOIM BAKJIUBUM (PISMYHUM BJIACTHBOCTSIM (PePOMATHITHI HAHOYACTUHKHU MAIOTh JIyKe IIIHPOKe
3acrocyBauHs. Oco0JIMBO IIKABUM € BUKOPUCTAHHS (DePOMATHITHIX HAHOYACTUHOK JIJISI CTBOPEHHSI CIIPSIMO-
BAHOTO TPAHCIOPTY pevyoBuH. Lleit Bu TpAaHCIIOPTY € PIZHOBUIOM TaK 3BAHUX OPOYHIBCHKUX MOTOPIB, II0B s13a-
HUX 3 ICHyBaHHSAM e(eKTy XpalloBHKa B He3MIIeHNX HepIBHOBAKHUX cucreMax. Jlamuit edperr 3abesmedye
OBy CTAJIOTO TPAHCIIOPTY B JOCIIKYBAHIN CHCTEMI, BiIrpae sHAYHY POJIb y PISHUX 00JIACTAX CKJIAJHUX
MATHITHHUX CHCTEM 1 MaTepiaJiiB, a TAKOXK € OCHOBOIO JJIs PIZHOMAHITHHUX 3aCTOCYBAHb HAHOYACTUHOK — Bif
TexHIKN 10 MeguuuHu. Jlexiabka pisHUX (QI3SUYHUK IPUHIINIIB CIPUSIOTH BUHUKHEHHIO CIIPSIMOBAHOIO Tpa-
HCIIOPTY PepOMATHITHUX HAHOYACTHHOK 38 YMOBH, 1110 YACTUHKH 31MCHIOIOTH HE TIJIBKY MOCTYIIAJIBHUMA, ajie
# obeprasabHUM pyX. IMOBIpHO, HAM3PYUHININM 1 HANTHYYKIIIMM CIOCOO0M TeHepallii TaKoro CIIpsiMOBAHOTO
TPAHCIIOPTY € BUKOPHUCTAHHSA CIIEIIlaIbHOI KOMOIHAIIIl 30BHINIHIX MATHITHHUX IT0JIB. Y HOMIEePeIHIX JOCIIKeH-
HSX MU 3aIIPOIIOHYBAJIM BUKOPUCTOBYBATH e)eKTUBHUI MeXaHi3M CIIPSIMOBAHOTO JIeTePMIHOBAHOT'O TPAHCIIO-
PTY OJHOIOMEHHUX (pePOMATHITHIX HAHOYACTUHOK Y PO3PLIPKEeHI cycIieHall, 1110 BUHIKAa€e BHACIIIOK CIILIBHOL
il TapMOHIAHO OCIIAIIOIYOr0 I'PaIieHTHOr0 MATHITHOIO II0JIA 34 HAABHOCTI HE3aJIEKHOTO BiIl Yacy OJHOPIMA-
HOT'O MATHITHOTO HOJIs. Y I po0OTi MU IIPOIOBIKYEMO 3a3HadYeHe JOCTIIKeHHS 1 pPO3BUBAEMO ACHUMIITOTHYIHY
Teopito apetidy depomartiTHIX HaHOUYACTHHOK. Har miixix 6asdyersest Ha HAO0Opi qudepeHITiaIbHUX PIBHIHD
TEePIIOro MOPSAKY JJIsi MOJEJI1 3JKOPCTKOTO AU (pepOMAarHITHUX HAHOYACTHHOK, SIK1 OIIMCYIOTH YacoBl 3aje-
SKHOCT1 KOOPJIMHATH YACTUHKU Ta KyTa HaMardideHocrti. Po3p’ss3amo cucremy 6a30BUX PIBHSIHB, 10 OIIUCYIOTh
obeprajbHAM Ta IMOCTYIAIBHUI PYyXU HAHOYACTUHOK, SK1 3HAXOATHCS B OKOJIL II0YATKY KOOPAWHAT 1 3HA-
JIEHO IX aCHUMIITOTHYHY MOBeMiHKYy. HalbumsxeHu po3B’si30K OTPUMAHO 1 B IPYroMy TPAHUYHOMY BUIIAIKY,
KOJIM YACTUHKU 3HAXOHATHCS IaJIeKO BiJ| IOYATKY KOOPAMHAT. BUKOPHUCTOBYIOUM y3rO[:KeHUN ACUMIITOTHAY-
HAM aHAaJI3, BU3HAYEHO YACOBI 3AJIEMKHOCT] KOOPAUHATH YACTUHKH 1 11 cepeIHbOl IIIBUIKOCTI, AKI AKICHO y3ro-
J3KYIOTBCSA 3 YMCEJIbHUMU Pe3yJIbTATAMU.

Kmouori ciosa: @epomaruiTHi HaHOYACTHHKYU, Po3Beneni cycmensii, ['pajienTHe Ta OJHOpIIHE MATHITHI
nonsa, Tpancnamiitaa Ta obepranbHa guHamika, CIpAMOBaHUM TPAHCIOPT, Y3TOAMKEHUN ACHMIITOTHYHUMA
aHaJTi3.
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