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This study investigates the influence of bath temperature on the electrodeposition of cerium oxide (CeOz)
coatings on zinc substrates. The research focuses on how temperature affects the formation, morphology,
composition, and corrosion resistance of the deposited films. To analyze these effects, a combination of scanning
electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical impedance spectroscopy
(EIS), and potentiodynamic polarization was employed. The findings reveal that the most corrosion-resistant
coatings were obtained when the electrodeposition process was conducted at tem-peratures between 20 °C and
30 °C. Increasing the bath temperature led to significant modifications in coat-ing adhesion and surface
morphology, with higher temperatures promoting irregular growth patterns. EDS analysis indicated that as
the temperature increased, the deposited layers exhibited a higher Zn content and a lower Ce content,
suggesting a temperature-dependent variation in the deposition mechanism. Electrochemical tests confirmed
that coatings formed at room temperature provided optimal protection against corrosion, demonstrating
improved barrier properties. These results highlight the importance of temperature control in the
electrodeposition process to enhance the structural integrity and protective performance of CeO2 coatings,
making them suitable for corrosion-resistant applications in various industries.
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1. INTRODUCTION

Cerium oxides have recently gained significant
attention due to their exceptional ability to inhibit
various metals [1], their applications in solid oxide fuel
cells [2], and their wuse as high-temperature
anticorrosion and thermal barriers [3]. CeO2, a key
N-type semiconductor, is notable for its high electrical
conductivity, its remarkable capacity to absorb and
release oxygen, and its robust redox properties [4].
Additionally, CeOgz-based materials are essential in
three-way catalysts for vehicle exhaust purification [5],
and are also involved in processes such as the water-gas
shift reaction [6], and hydrocarbon reforming [7]. This
feature makes CeO2 based materials crucial for
enhancing the performance and longevity of catalysts
[8]. In particular, during heterogeneous catalytic
reactions, they are effective in managing variations in
oxygen concentration, thereby ensuring optimal
catalytic efficiency [9].

There are various methods for synthesizing CeOz
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films, including chemical vapor deposition (CVD) [10],
thermal evaporation [11], and electrochemical
deposition [12]. Among these techniques,
electrodeposition has recently attracted significant
interest due to its affordability and effectiveness [13].
This approach typically employs two main modes:
potentiostatic and galvanostatic [14]. The morphology of
CeO:2 films can be tailored by modifying various
experimental  parameters, including electrolyte
concentration, deposition potential, current density,
deposition time, and bath temperature [12]. Of all these
parameters, temperature plays a particularly critical
role in determining the structure and performance of the
resulting CeOz nanofilms [15].

In this study, we deposited high corrosion-resistant
cerium oxide coatings on a zinc plate using a cerium
nitrate electrolyte. The aim was to investigate the effect
of temperature on the electroplating process, as well as
to analyze the morphology, composition, and
electrochemical behavior of the CeQOz2 coatings.
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2. EXPERIMENTAL PROCEDURE

Cerium oxide films were developed on a zinc
substrate using the electrodeposition technique in
galvanostatic mode. Initially, the zinc substrates were
masked with an acid- and alkali-resistant tape, leaving
only a 10 mm x 10 mm exposed area. The electrolyte
used for cerium film deposition was a 0.01 M solution of
Ce(NO3).6H20. A three-electrode system was employed
for the electrodeposition, and the experiments were
conducted using a Potentiostat/Galvanostat
electrochemical workstation, Solartron SI 1287 model.
The zinc plate served as the working electrode, a
saturated calomel electrode (SCE) as the reference
electrode, and a platinum (Pt) wire as the counter-
electrode. Electrodeposition was carried out at
temperatures of 20, 30, 40, and 50 °C, with a deposition
duration of 20 minutes. The applied current density was
set at — 2 A.dm2. After deposition, the samples were
rinsed with ethanol and stored in desiccators at a
temperature of 22 °C + °C until further analysis.

Electrochemical tests, including open circuit potential
(OCP) measurement, potentiodynamic polarization, and
electrochemical impedance spectroscopy (EIS), were
performed using a potentiostat/galvanostat (OrigaFlex
OGF 500) in a 3.5 wt. % NaCl solution. Before conducting
the polarization curves and EIS tests, the samples were
immersed in the corrosive solution for 30 minutes to
stabilize the system. EIS was performed by applying a
sinusoidal signal of = 10 mV around the OCP, with a
frequency range from 0.01 to 100.000 Hz. The scan rate
for the potentiodynamic polarization curve was 1 mV/s,
and the polarization range covered + 250 mV relative to
the OCP.

The morphology of the CeO:z films was examined
using a scanning electron microscope (SEM, TESCAN-
VEGA3) equipped with an energy-dispersive X-ray
spectroscope (EDS).

3. RESULTS AND DISCUSSION
3.1 Elaboration of Cerium Oxide Films

The deposition of cerium oxide on the cathode surface
from a nitrate medium can be explained by a two-step
electrochemical mechanism as follows [1, 2]:

e Electrochemical step (base electrogeneration at
the cathode surface):

02 + 2H20 + 4e- — 40H- (1)
2H20 + 2e~ — Ha(g) + 20H~ (2)

e  Chemical step (deposit formation) :
4 Ce3* + Oz+ 40H™ + 2 H20 — 4 Ce(OH)2*2  (3)

Ce(OH)2*2+ 2 OH™ — CeOz + 2H20 4)

The electrochemical reactions (Egs. 1 and 2) lead to
a local increase in pH at the cathode surface, a process
known as electrogeneration of base [3]. As the OH-
concentration rises to the required level for the chemical
reactions (Egs. 3 and 4), cerium oxide forms and deposits
on the cathode. The evolution of hydrogen during this
process can lead to a unique porous structure and
preferential crystal growth in a specific direction [4].
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3.2 Characterisation of Cerium Oxide Films

(d

Fig. 1 — SEM micrographs (50 pm) of zinc samples coated at
different temperature in 0.01 M Cerium (III) solution: (a) 20 °C,
(b) 30 °C, (c) 40 °C, and (d) 50 °C.
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Table 1 — EDS analysis of cerium conversion coatings obtained
after different immersion temperatures

Temperature | Weight % Weight% Weight%
(9] of Zn of Ce of O
20 15.06 54.57 30.37
30 24.10 51.67 24.24
40 31.41 32.62 35.96
50 51.54 12.97 35.48
, zZn - -
(@
g o Z‘l'\ Ce Zn
| )
) (©
Ce Zn
(d)

Fig. 2 — EDS analysis of zinc samples coated at different
immersion temperature in 0.01 M Ce(III) solution: (a) 20 °C,
(b) 30 °C, (c) 40 °C, and (d) 50 °C

The surface characterization of cerium coatings on zinc
revealed a significant influence of deposition temperature
on morphology and composition. SEM analysis (Fig. 1)
showed that at 20 °C and 30 °C, the surface appeared
uniform with small dispersed particles, promoting better
coverage and adhesion, while at 40 °C and 50 °C, coarser
structures and defects emerged, likely due to excessive
growth or partial dissolution. Higher temperatures
accelerated secondary reactions, compromising coating
quality. EDX analysis (Fig. 2, Table 1) indicated that
cerium content was highest at 20 °C (54.57 wt %) and
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decreased with increasing temperature (12.97 wt % at
50 °C), while zinc exposure increased, suggesting a decline
in coating density. Oxygen levels remained relatively stable
(24.24 %-35.96 %), likely due to oxidation or intrinsic oxide
content. Structurally, low-temperature coatings (20 °C)
were thicker and more uniform, providing better surface
coverage, whereas higher temperatures led to more porous,
thinner deposits, potentially altering electrodeposition or
precipitation mechanisms. In terms of corrosion protection,
lower temperatures favored dense and homogeneous
coatings, while higher temperatures (50 °C) resulted in
increased zinc exposure, reducing the protective barrier’s
effectiveness. Overall, 20 °C appears optimal for achieving
thick, dense cerium oxide coatings essential for corrosion
protection applications.

3.3 Corrosion Behaviour of Cerium Oxide Films
Deposited

—T=20°C
14 |=———T=30°C
—T=40°C

T =50°C
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Fig. 3 - DPotentiodynamic polarization curves of
electrodeposited coatings in 3,5 % NaCl solution. The coatings
were prepared from 0.01 M Ce(IIl) solution at different
temperatures

Table 2 — Polarization parameters of electrodeposited coatings
in 3.5 % NaCl solution

Temperature Ecorr Rp Lcorr
(°C) (mV) (Q-cm?) (mA-cm-2)
20 —1047.7 953.33 0.0058
30 —1066.5 513.99 0.0131
40 —1048.2 379.63 0.0169
50 —1038.7 261.05 0.0361

Fig. 3 displays the polarization curves for zinc
electrodes featuring cerium oxide coatings immersed for
20 minutes in a cerium bath at various temperatures
and the corresponding corrosion parameters, which can
be found in Table 2. Notably, the results indicate that as
the temperature is raised from 20 to 50 °C, both Icorr
(corrosion current) and the corrosion rate of the coated
samples increase. The cerium oxide coatings prepared at
20 °C and 30 °C exhibit the highest polarization
resistances and the lowest corrosion current densities.
This can be attributed to the compact structure of the
coating at these temperatures.

3.4 EIS Measurement

Fig. 4 presents Nyquist plots at open circuit potential
(OCP) for cerium conversion coatings obtained by
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applying a current density of — 2 A/dm2 in a cerium bath
at different temperatures. The actual capacitances were
then calculated from the respective CPE parameters. In
the equivalent circuit shown in Fig. 5, Rs represents the
electrolyte resistance; CPEc and RC correspond to the
coating capacitance and resistance, respectively; CPEa
represents the electrochemical double-layer capacitance
at the metal/electrolyte interface; and Ret is the metal's
charge transfer resistance [5]. The experimental results
are presented in Table 3 for zinc coated with cerium at
various operating temperatures. It is evident that higher
temperatures lead to a reduction in corrosion resistance.
This decrease is linked to the increased dissolution rate
of zinc at elevated temperatures in the cerium bath. As
the corrosion rate rises, fewer active sites remain
available on the zinc surface for cerium oxide deposition.
which confirms the result of polarization.
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Fig. 4 — Nyquist plots curves of electrodeposited coatings in
3.5 % NaCl solution. The coatings were prepared from 0.01 M
Ce(III) solution at different temperatures

Rs CPEcoat

Fig. 5 — Equivalent circuits compatible with the experimental
impedance data in Figure 4

Table 3 — Fitting results of EIS data for coated substrate in 0.5 M NaCl solution

Temperature Rs CPEc.10-3 ni R CPEa.10-6 ne Ret
(9] (w-cm?) (wl-cm2-sn) (w-c?) (@~ 1.cm2-s") (w-cm?)
20 11.90 0.0194 0.76 346.6 0.104 0.87 407.12
30 11.77 0.0819 0.87 208.3 7.779 0.89 263.60
40 10.65 0.1304 0.80 132.7 8.959 0.41 162.3
50 9.319 0.1723 0.88 115.3 24.295 0.76 159.4

4. CONCLUSION

The electrodeposition of cerium oxide thin films at
varying bath temperatures demonstrated a significant
impact on the structural and electrochemical properties
of the coatings. The study revealed that room-
temperature deposition yielded a uniform, dense, and
crack-free CeO: layer with a characteristic matte yellow
appearance. Notably, the cerium content in the coatings
decreased with increasing bath temperature, affecting
their composition and protective properties.
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Briue remneparypu BaHHU HA MOP(0JIOTio, CKJIAd 1 KOPO3iliHY CTIHKICTH MOKPUTTIB
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Y oMy TOCITIIPKEHH] JOCTIKY€EThCS BILUIMB TEMIIEPATYPHU BAaHHU HA eJIEKTPOOCAJKEHHS IOKPUTTIB 3
orxcuay 1epio (CeOz) Ha nmHKOBMX mimrgankax. JocimimkeHHsT 30cepeKeH0 HAa TOMY, SIK TeMIleparypa
BILTHBae Ha OPMyBaHHs, MOPQOJIOTio, CKJIA] 1 CTIMKICTh 10 KOpo3ii HaHeceHUX IUIiBOK. JIJIsa aHamidy mux
edekTiB Oysia 3acTocoBaHA KOMOIHAINA CKAHyIOUOl eJIeKTpoHHOI Mikpockomii (SEM), eHeprommcrepciitaol
crrekrpockorii (EDS), emexrpoxiMiunol immemancHol cnexTpockorrii (EIS) 1 moTeHitioquHaMiusol moisspuaarii.
Pesynbraté mokasyoTh, 0 HAMOLIBIN CTIAKI [0 KOPO3il IOKPHUTTA OyJad OTPUMAHI, KOJH IIPOIEC
€JIEKTPOOCAIKeHHS IIpoBoauBea mpu Temieparypax Big 20 °C mo 30 °C. [ligsuineHHS TeMIepaTypu BAHHHA
IpHU3BEJIO [0 3HAYHUX 3MIH B airesii MOKPHUTTA Ta MOpQOJorii MMOBEepXHI, IPH ILOMY OLIBII BHCOKL
TeMIepaTypy CIPUAIA HepiBHOMIpHUM MomesisMm pocty. Amamia EDS mnokasas, mo 31 30liblIeHHSAM
TeMIIepaTypH HaHeCeH] Mapy JeMOHCTPYIOTh BHINMI BMicT Zn 1 Huzkuuit Bmict Ce, 110 CBIAYUTSE IIPO 3aJIeIKHY
BIJ] TEMIIEpATypH 3MIHY MeXaHi3My ocasKeHHs. EIeKTpoxiMIYHl BUIPOOyBaHHS IIATBEPINIIH, 10 IIOKPUTTS,
cdopMoBaHi Py KIMHATHIN TeMIlepaTypi, 3a0e3neduyoTs ONTHMAIBPHAN 3aXUCT Bl KOPO3il, JeMOHCTPYIOYH
mokpaieni 0ap’epui BiacruBocti. 1li pe3ysibraty MiIKpPeCsIOOTH BAKJIUBICTH KOHTPOJIIO TEMIIEPATYPH B
mpolieci eJIeKTPOOCAPKeHHsT JJIs IIJBUINEHHS CTPYKTYPHOI ITITICHOCTI Ta 3aXUCHUX XapaKTePUCTHE
nokputrrie CeOz, mo podUTH IX NPUIATHUMHK [JIS KOPO3IMHOCTIMKMX 34CTOCYBaHb y DPISHUX TaJLy3sax
TIPOMMUCJIOBOCTI.

Knrouoei ciosa: Touka mmiska CeOz, Enexrpoocamrenus, EIS, Koposii, Temmeparypa.
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