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The article investigates photonic crystal fibers (PCFs) with triangular and kagome structures for use in
fiber optic gyroscopes (FOGs). The advantages of PCFs in enhancing FOG performance are substantiated,
highlighting their unique features, such as high sensitivity, low optical losses, and resistance to tempera-
ture fluctuations. Mechanisms of energy localization through photonic bandgaps and single-mode opera-
tion are discussed to improve measurement accuracy. Numerical calculations of dispersion characteristics
and eigenmodes of PCFs were performed using the plane wave expansion method in the MIT Photonic
Bands software. The modal properties of various PCF designs were analyzed, focusing on the impact of hol-
low core diameter on spectral characteristics. It is demonstrated that the optimal ratio of geometric pa-
rameters ensures effective energy localization in the hollow core and minimizes losses.Special attention is
given to PCFs with kagome lattices, which show potential for reducing energy losses due to the spatial dis-
tribution of the electromagnetic field. Conclusions are drawn about the application of PCF's in gyroscopes
for aviation and defense navigation systems. The findings open new possibilities for developing high-
precision equipment capable of operating under extreme conditions.
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1. INTRODUCTION

Fiber optic gyroscopes (FOGs) use the Sagnac effect
[1], where light waves traveling in opposite directions
in a closed loop accumulate a phase shift proportional
to the angular velocity of the system’s rotation.
Photonic crystal fibers (PCFs) offer unique properties
that enhance FOG performance [3-4]. Their periodic
structure creates photonic band gaps for efficient light
localization, while birefringence reduces noise and
improves measurement accuracy. PCFs are also
resistant to mechanical impacts and temperature
fluctuations, ensuring reliable operation in extreme
conditions. Photonic crystal structures are widely used
to create various functional devices: waveguides,
resonators, filters, etc. [5-6]. Photonic crystal
waveguides of various dimensions are basic
components of many modern optoelectronic systems [7-
9]. Microstructured optical waveguides are a type of
such waveguides and can be identified as photonic
crystal fiber waveguides [10]. PCFs are actively
researched for applications in optical sensors and
gyroscopes. Their ability to guide light through a
hollow core allows precise rotation angle measurement,
making them ideal for aerospace and defense
navigation systems. Their low losses, dual beam
splitting, and high sensitivity improve the signal-to-
noise ratio and reduce crosstalk, opening new
possibilities for precise measurement systems.

PCFs with hollow cores localize energy through the
photonic bandgap mechanism, allowing single-mode
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waveguides even for large hollow core cross-sections.
Thus, the main operational characteristics of
photonic crystal fibers are determined by the
electrodynamic properties of the periodic cladding of the
waveguide channel, which essentially represents a two-
dimensional photonic crystal. This crystal is formed by a
hexagonal lattice of hollow holes in silicon glass with a
dielectric permittivity of ¢ = 2.1. The thickness of the
walls between the holes is much smaller than the lattice
period, thereby forming an environment with an
effective dielectric permittivity close to one. This
waveguide cross-sectional configuration significantly
reduces losses that occur during the propagation of
electromagnetic waves in the dielectric medium.

2. CALCULATION OF THE EIGENMODES OF
PHOTONIC CRYSTAL FIBER WAVEGUIDES

2.1 Dispersion Characteristics of Photonic
Crystal Fiber with a Cladding in the Form of
a Triangular Lattice of Hollow Holes

The dispersion characteristics of the photonic
crystal forming the cladding of the fiber waveguide
serve as the foundation for determining the eigenmode
characteristics of the photonic crystal fiber. Figure 3.1
presents a schematic representation of a two-
dimensional photonic crystal, consisting of periodically
arranged hollow cylindrical holes within a dielectric
(silicon glass) array, along with the corresponding
oblique coordinate system. The period of the structure
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is defined as the distance between the centers of any
two nearest cylinders. The radius of the cylinders,
normalized to the period of the structure L, is
r/L = 0.48. This configuration is commonly used for
modeling photonic crystal fiber waveguides. For the
calculations of the dispersion characteristics, the
specialized software package MIT Photonic Bands,
which is freely distributed and open-source [11], was
used. This software is widely applied for the study of
photonic crystal structures and utilizes the plane wave
expansion method, commonly used to determine the
eigenmodes of various periodic systems of different
dimensions. The periodic structure is formed in the
standard way by creating a unit cell and applying the
property of translational invariance.
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Fig. 1 — Diagram of the Photonic Crystal

The dispersion properties of the basic configurations
of photonic crystals are well-studied [12]. It is known
that under certain conditions, the structure shown in
Figure 1 has photonic band gaps for two polarization
states (TE and TM). In particular, the widest band gap
is realized for TE polarization, where the magnetic field
vector is directed along the O: axis.

The results of the dispersion diagram calculations
for a two-dimensional photonic crystal with a
triangular lattice of hollow cylinders are presented in
Figure 2 for TE polarization.
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Fig. 2 — Dispersion diagrams of the photonic crystal for TE
polarization states

Along the abscissa axis, the values of the Bloch
wavevector are plotted within the unreduced first
Brillouin zone. Points of high symmetry within this
zone are marked by letters. Along the ordinate axis, the
normalized frequency is plotted, which is essentially
the ratio of the structure's period to the wavelength of
the radiation.

From Figure 2, it is evident that in this case,
photonic band gaps are absent for this polarization.
This result is due to the low dielectric contrast in the
studied structure (2.1:1). It should be noted that the
results presented in Figure 2 were obtained for the case
where the longitudinal component of the wavevector is
zero, i.e., k= 0. This means that the waves propagate
only in the xy-plane. In a fiber waveguide, propagation
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occurs along the Oz coordinate axis (k:#0), i.e.,
perpendicular to the plane of the diagram. Therefore, to
study the eigenmodes of the photonic crystal fiber
waveguide, the dispersion characteristics of the
photonic crystal must be considered for nonzero values
of the longitudinal wavevector component (the
propagation constant).

It 1s known that increasing the propagation
constant leads to the appearance of photonic band gaps
in the structure shown in Figure 1. The physical factors
behind this phenomenon are typically explained by the
conditions of the so-called scalar approximation when
the value of k; increases [11]. Under these conditions,
the electrodynamic characteristics of the dielectric
photonic crystal resemble those of a crystal made of
metallic cylinders and exhibiting multiple photonic
band gaps. Thus, starting from a certain value of the
propagation constant, photonic band gaps should
appear in the photonic crystal that forms the
waveguide cladding. It is within these gaps that the
localization of electromagnetic energy in the waveguide
channel and the realization of the eigenmodes of the
photonic crystal fiber waveguide can occur.

Figure 3 presents the results of dispersion
characteristic calculations for nonzero values of the
longitudinal wavevector component. Along the abscissa
axis, the normalized propagation constant values are
plotted. The dashed line represents the "light line," where
points correspond to cases where the phase velocity of the
waves equals the speed of light in a vacuum.

The light areas of the dispersion diagram in
Figure 3 correspond to the forbidden zones of the
photonic crystal. It can be seen that, starting from the
value k.L/27=1.43, a photonic band gap opens up,
which gradually expands as the propagation constant
increases. At the same time, there is only a limited
range of k.L/27 values where this band gap lies above
the light line, indicating the possibility of realizing
eigenmodes of the structure that correspond to volume
waves. The region of the diagram below the light line
corresponds to surface wave modes, whose field
exponentially decays in free space. Additionally, the
energy of surface waves is concentrated on the surfaces
of the dielectric elements of the structure, leading to
additional losses. Therefore, surface wave modes are
generally not used as operating modes in photonic
crystal fiber waveguides.
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Fig. 3 — Dispersion diagram of the photonic crystal for the
longitudinal component of the wavevector
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Thus, the operating range of the photonic crystal fiber
waveguide is limited. The vertical dashed lines in Figure 3
indicate the boundary values of the propagation constant.

The results of the dispersion diagram calculations for
different values of the propagation constant are
presented in Figure 4. The diagram in Figure 3.4a is
calculated for a value of the parameter k.L/27 outside the
operating range of the waveguide. Indeed, in this case,
only the zero photonic band gap exists, in which the
eigenmodes can only exist as surface wave modes.
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Fig. 4 — Dispersion diagrams of the photonic crystal for
different values of the longitudinal wavevector

The diagram in Figure 4 is calculated within the
operating range of propagation constant values. The
horizontal band represents the photonic band gap,
where the eigenmodes of the structure can exist both as
surface and volume waves. This band gap opens as the
propagation constant of the waveguide increases.

2.2 Eigenmode Characteristics of Photonic

Crystal Fibers

An important characteristic of the eigenmodes of
photonic crystal fiber waveguides is the distribution of the
electromagnetic field across the cross-section of the
structure. This distribution allows us to determine the
mode structure of the waveguide and the energy losses
due to its penetration into the cladding of the waveguide
channel. A convenient way to visualize this is through the
calculation of the spatial distribution of field intensity,
which effectively represents an energetic characteristic.
Therefore, numerical calculations were carried out for the
energy of the electric field of the eigenmodes of the
photonic crystal fiber waveguide.

Since the MIT Photonic Bands package is designed
to determine the characteristics of eigenmodes for periodic

structures only, it cannot be directly used for studying
structures with defects in periodicity, such as photonic
crystal waveguides and resonators. This problem is solved
by using the supercell method, which restores the
periodicity of the structure by creating a new cell with
larger dimensions [14]. However, when applying this
method, a larger number of dispersion curves must be
calculated due to the increased number of
eigenfrequencies in the supercell compared to a regular
unit cell. Furthermore, in this case, only those eigenmodes
of the built periodic structure are considered valid, which
are characterized by the absence of electromagnetic
coupling between neighboring periodicity defects.

Let us consider several variants of the fiber
waveguide cross-section, differing in the radius of the
hollow core. The first variant has a radius value
normalized to the structure period of R/L=0.83.
Figure 5 shows the cross-section of the corresponding
photonic crystal fiber.

Fig. 5 — Diagram of the photonic crystal fiber

As seen in Figure 5, in this case, the configuration
of the hollow waveguide channel cross-section ensures
the absence of eigenmodes of the structure
corresponding to surface waves [15-16]. This is
confirmed by the results of calculations of the spatial
distribution of the electric field intensity in the
waveguide cross-section, as shown in Figure 6.
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Fig. 6 — Spatial distributions of the electric field intensity of
the eigenmodes of the photonic crystal fiber waveguide

It is quite natural that the fundamental mode of the
waveguide corresponds to the lowest frequency. In this
mode, the most effective localization of energy occurs in
the hollow core of the structure. It should be noted that
the calculation results presented in Figure 6 were
obtained for a fixed propagation constant value of
kL/27=1.7. Therefore, all the spatial distributions of the
electric field intensity correspond to the eigenmodes of the
structure for bulk waves, since the corresponding
eigenfrequencies are greater than 1.7. For higher modes, a
more significant penetration of energy into the
waveguide's cladding is observed, which increases the
losses.

Figure 7 shows the cross-section diagram of a
photonic crystal fiber waveguide with a normalized
hollow core radius of R/L=1.5. This configuration
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supports the existence of eigenmodes on surface waves,
which is determined by the structure of the boundary of
the hollow waveguide channel.

Fig. 7 — Cross-section diagram of a photonic crystal fiber
waveguide

This conclusion is confirmed by the results of
calculations of the spatial distributions of the electric
field intensity for the eigenmodes of the structure, as
shown in Figure 8. From Figure 8, it can be seen that in
this case, nearly all the eigenmodes of the structure are
hybrid, meaning they combine characteristics of both
bulk and surface wave modes. Another interpretation of
the obtained results is the overlap of the regions where
the bulk and surface modes of the waveguide exist.

YYYY
r’\x/ N

OIS

DA S LY
. .8

AN AN
CX X Xk X X

L2 =1.7552

wLl2m=1.73

Fig. 8 — Spatial distributions of the electric field intensity for
the eigenmodes of the photonic crystal fiber waveguide

A significant portion of the energy is concentrated in
the dielectric, which leads to increased losses in the
waveguide channel and, consequently, deteriorates the
energy characteristics of the photonic crystal fiber
waveguide. In Figure 9, the cross-section diagram of the
waveguide with an increased hollow waveguide channel
radius value of R/L = 1.8 is presented.

r

Fig. 9 — Cross-section diagram of the photonic crystal fiber
waveguide

This cross-section configuration of the photonic crystal
fiber waveguide also provides a fairly weak coupling
between the bulk and surface modes, which allows for
improved localization of electromagnetic energy in the

JJ. NANO- ELECTRON. PHYS. 16, 06029 (2024)

hollow core [15]. However, unlike the waveguide with
smaller core radii, in this case, the waveguide becomes
significantly multimodal. As a result, the frequency range
in which only the bulk wave modes can exist is reduced.
Figure 10 presents the results of the calculation of the
spatial distribution of the electric field intensity for the
waveguide modes corresponding to bulk waves.
NN N
A J'\J‘I\v/‘\%l\j A

@ (
S A \ 4 4 \\T" \ 4
X

wL/2m =1.7266
\;r Y Y Y YYY \:\r

AN NN =)

X YO X

oL27c =1.7678

wL/2m =1.7519
Fig. 10 — Spatial distribution of the electric field intensity for
the eigenmodes of the photonic crystal fiber waveguide

It is evident that both axially symmetric and
asymmetric modes can be realized. It is important to note
the increase in the efficiency of field energy localization
for the fundamental mode compared to configurations
with a smaller hollow core radius. This is a fully expected
result, as it is known that energy outside the waveguide
channel decreases as 1/R®* when the core radius R
increases [15-16].

The calculation results show that for higher modes,
the energy outside the waveguide channel increases
compared to the fundamental mode. Therefore, the
working range of the waveguide is typically the single-
mode range, where energy losses are minimized.

2.3 Characteristics of a Photonic Crystal Fiber
with a Kagome Lattice Cladding

The calculation of the dispersion characteristics of a
photonic crystal fiber waveguide based on a kagome
lattice was performed, as in the previous case, using the
supercell method. The result of constructing the structure
for dispersion characteristic calculations using the
supercell method is presented in Figure 11. In this case,
the hollow core of the fiber waveguide has the shape of a
regular hexagon [17-19].

From Figure 11, it can be observed that the nearest
neighboring waveguide cores are separated by four
periods of the structure. Additional calculations have
shown that such a distance is sufficient to ensure
electromagnetic isolation between these cores in cases
where guided modes of the structure localize energy in
the central part of the supercell. It should be noted that
increasing the distance between the hollow cores leads to
an increase in the size of the supercell and a
corresponding significant rise in the computational
resources required.
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Fig. 11 — Schematic model of a photonic crystal fiber
waveguide based on a kagome lattice

Figure 12 presents the results of the calculations of
the dispersion characteristics of the fiber waveguide.
The dependencies of the normalized frequency on the
normalized longitudinal wave number were calculated
by considering 500 dispersion curves. This is due to the
large size of the supercell and the corresponding in-
crease in the multiple eigenfrequencies of the struc-
ture. The dashed inclined line represents the light line
for a vacuum.

In Figure 12, a photonic bandgap can be observed,
which emerges with an increase in the longitudinal wave
number (as shown in Figure 10). This bandgap is located
below the light line in the region where guided modes on
surface waves are realized. At the same time, in the re-
gion where guided modes on bulk waves exist, near the
light line, no bandgaps are present. It is this region of the
dispersion diagram that contains the operational modes
of the waveguide.
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Fig. 12 — Dispersion characteristic of a photonic crystal
waveguide based on a kagome lattice

The calculation of field characteristics for the guided
modes of a photonic crystal fiber waveguide based on a
kagome lattice was performed, as in the previous case, for
the intensity of the electric field in the waveguide cross-
section. The selected distributions of intensity were those
for which electromagnetic isolation between the centers
of neighboring supercells is achieved. In this case, the
calculation results correspond to the guided modes of the
fiber waveguide.

Figure 13 shows the spatial distributions of the
electric field intensity for the guided modes of the
structure, which are located on the dispersion diagram
below the light line. This follows from the normalized
eigenfrequencies of these modes, as the calculation was
conducted for a normalized propagation constant
kLI27=4. Such a configuration of the guided modes
indicates the surface nature of the electromagnetic field,
as confirmed by Figure 13. It can be seen that the field
energy is concentrated in the dielectric plates that form
the kagome structure. As the distance from the dielectric
increases into free space, the field undergoes exponential

JJ. NANO- ELECTRON. PHYS. 16, 06029 (2024)

decay. The greatest practical interest lies not in the
surface guided modes, but in the bulk guided modes of
the kagome fiber waveguide, as in this case, the field
energy propagates through free space with minimal
losses.

 wL2m=3861  oL/2m=3.97

Fig. 13 — Spatial distributions of the electric field intensity for
surface guided modes of the fiber waveguide

Figure 14 presents the results of the calculation of the
spatial distribution of the electric field intensity in the
projection onto the (x, y) plane for the fundamental and
the first higher modes of the waveguide.

The fundamental mode is characterized by the
absence of field variations in the cross-section of the
structure and the highest degree of electromagnetic
energy localization within the waveguide channel. The
first higher mode has two intensity maxima of the
electric field in the waveguide channel cross-section.
Accordingly, a zero intensity value is realized at the
center of the channel. Moreover, the effectiveness of
electromagnetic energy localization in this case is lower
compared to the fundamental mode. This is a natural
result, as for higher modes, the intensity maxima occur
closer to the boundaries of the waveguide channel,
leading to an increase in the field amplitude at these
boundaries. Consequently, energy losses of the mode
increase within the core due to its passage into the
waveguide cladding.

L2 = 4.037 oLi2 = 4.09

Fig. 14 — Spatial distributions of the electric field intensity for
the guided modes of the fiber waveguide on bulk waves

Figure 15 shows the spatial distributions of the electric
field intensity for two higher modes of the structure. One of
these modes (on the left in the figure) has an almost axially
symmetric spatial distribution of the field intensity within
the waveguide channel. It should be noted that for this
mode, a maximum field intensity is realized at the center
of the channel, with the diameter of the cross-section of
this maximum being significantly smaller than the width
of the field spot for the fundamental mode (Figure 14).
However, in this case, a much larger portion of the mode's
field energy is located outside the waveguide channel,
leading to increased losses.

CONCLUSION

The mathematical models for two configurations of
photonic crystal fiber waveguides with hollow cores have
been constructed. Numerical calculations of the
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wL/2m = 4.225

Fig. 15 — Spatial distributions of the electric field intensity for
higher modes of the fiber waveguide on bulk waves

electrodynamic characteristics of the guided modes were
performed using the plane wave expansion method,
implemented in the MIT Photonic Bands software
package, which is freely distributed and has open-source
code. The obtained dispersion and field characteristics
provide the opportunity to study the mode composition of
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@®OTOHHO-KPHUCTAJIIYHI BOJIOKHA 3 TPUKYTHOIO Ta KAaroMe CTPYKTypaMu
IJIS BOJIOKOHHO-OIITUYHHUX IiPOCKOIIIB

€.M. Ogapenro, O.C. 'marenko

Xapriecvrkull HauloHAILHUL YHI8epcumem paodioesiekmporiku, 61166 Xaprie, Yipaina

V¥ crarri gocaimkeno doronHo-Kprcramiuai BosokHa (PKB) i3 TpukyTHOIO Ta KaroMe CTPYKTYPOIO I
BHUKOPHMCTAHHA Yy BOJIOKOHHO-onTHUYHUX ripockornax (BOI). O6rpyaroBano mepesaru ®KB mia moxpaments
edexruBHOCTI podoTu BOI' 3aBasky yHIKAJIPHUM XapaKTePUCTHKAM, TAKHM SK BHCOKA UyTJIMBICTb, HU3BKL
ONTHUYHI BTPATH Ta CTIMKICTh JO TEMIIEPATYPHUX KOJIMBAHD. PO3IVISHYTO MeXaHI3MU JIOKai3alii eHeprii de-
pe3 hOTOHHO-KPUCTAIYHI 3a00pPOHEH] 30HM Ta OJHOXBHJIBOBI PEKMMU [JIA 30LJIBIIEHHS TOYHOCTI BEMIPIO-
Baub.lIpoBeeHo YrcI0Bl po3paxyHKHU JUCIepPCIiHMX Xapakrepuctuk Ta BiaacHux mox OKB i3 Burkopucran-
HAM METOY PO3KJIQIAaHHS II0 IJIOCKUM XBHJIAM y mporpamuomy cepemosutiri MIT Photonic Bands. [Ipoana-
JTII30BAHO MOJIEJIbHI BJIACTHBOCTI pisHUX KoHCTpyKINi MKB, 3oxpema BILIMB giamMeTpa MOPOYKHUCTOI Cep/arie-
BUHM Ha CIIEKTPaJIbHI XapakrepucTuku. [lokazano, Mo onTuMasbHe CIIBBIIHOIIEHHS TeOMETPUYHUX I1apa-
merpie KB 3a6esneuye ederTrBHY JIOKAIi3alfilo eHeprii B IMOPOKHFUCTIA CEP/IIEBHHI Ta MIHIMI3aIio
Brpat.Ocobmuy yeary mpumisieno KB i3 karome cTpyKTypamu, 1Mo IeMOHCTPYIOTH ITEPCIIEKTUBH JIJIS 3Me-
HIIIEHHS eHepreTUYHUX BTPAT 3aBJSAKHU IIPOCTOPOBOMY PO3IIOLITY €JIEKTPOMATHITHOTrO 10, Buanadyeno mo-
skiuBocti sacrocyBanaa OKB y ripockommax n/a aBiamiifHnx i 000pOHHUX HaBIramiiHux cucreMm. Peaynbratu
IOCIIIKeHHSA BIAKPUBAIOTH HOBI MOYKJIMBOCTI [IJISI CTBOPEHHS BHCOKOTOYHOTO 00JIagHAHHSA, 34ATHOTO IPALTIO-

BaTH B €KCTPEeMaJIbHUX YMOBaX.

Knrouosi ciosa: @oronuwmit kpucrasn, Omruume BoJsiokHo, [ipockor, Jlucrepciiini xapakTepUCTUKH,

3abopoHeHa 30HA.
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