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The article investigates photonic crystal fibers (PCFs) with triangular and kagome structures for use in 

fiber optic gyroscopes (FOGs). The advantages of PCFs in enhancing FOG performance are substantiated, 

highlighting their unique features, such as high sensitivity, low optical losses, and resistance to tempera-

ture fluctuations. Mechanisms of energy localization through photonic bandgaps and single-mode opera-

tion are discussed to improve measurement accuracy. Numerical calculations of dispersion characteristics 

and eigenmodes of PCFs were performed using the plane wave expansion method in the MIT Photonic 

Bands software. The modal properties of various PCF designs were analyzed, focusing on the impact of hol-

low core diameter on spectral characteristics. It is demonstrated that the optimal ratio of geometric pa-

rameters ensures effective energy localization in the hollow core and minimizes losses.Special attention is 

given to PCFs with kagome lattices, which show potential for reducing energy losses due to the spatial dis-

tribution of the electromagnetic field. Conclusions are drawn about the application of PCFs in gyroscopes 

for aviation and defense navigation systems. The findings open new possibilities for developing high-

precision equipment capable of operating under extreme conditions. 
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1. INTRODUCTION 
 

Fiber optic gyroscopes (FOGs) use the Sagnac effect 

[1], where light waves traveling in opposite directions 

in a closed loop accumulate a phase shift proportional 

to the angular velocity of the system’s rotation. 

Photonic crystal fibers (PCFs) offer unique properties 

that enhance FOG performance [3-4]. Their periodic 

structure creates photonic band gaps for efficient light 

localization, while birefringence reduces noise and 

improves measurement accuracy. PCFs are also 

resistant to mechanical impacts and temperature 

fluctuations, ensuring reliable operation in extreme 

conditions. Photonic crystal structures are widely used 

to create various functional devices: waveguides, 

resonators, filters, etc. [5-6]. Photonic crystal 

waveguides of various dimensions are basic 

components of many modern optoelectronic systems [7-

9]. Microstructured optical waveguides are a type of 

such waveguides and can be identified as photonic 

crystal fiber waveguides [10]. PCFs are actively 

researched for applications in optical sensors and 

gyroscopes. Their ability to guide light through a 

hollow core allows precise rotation angle measurement, 

making them ideal for aerospace and defense 

navigation systems. Their low losses, dual beam 

splitting, and high sensitivity improve the signal-to-

noise ratio and reduce crosstalk, opening new 

possibilities for precise measurement systems. 

PCFs with hollow cores localize energy through the 

photonic bandgap mechanism, allowing single-mode 

waveguides even for large hollow core cross-sections. 

Thus, the main operational characteristics of 

photonic crystal fibers are determined by the 

electrodynamic properties of the periodic cladding of the 

waveguide channel, which essentially represents a two-

dimensional photonic crystal. This crystal is formed by a 

hexagonal lattice of hollow holes in silicon glass with a 

dielectric permittivity of ε = 2.1. The thickness of the 

walls between the holes is much smaller than the lattice 

period, thereby forming an environment with an 

effective dielectric permittivity close to one. This 

waveguide cross-sectional configuration significantly 

reduces losses that occur during the propagation of 

electromagnetic waves in the dielectric medium. 

 

2. CALCULATION OF THE EIGENMODES OF 

PHOTONIC CRYSTAL FIBER WAVEGUIDES 

 

2.1 Dispersion Characteristics of Photonic 

Crystal Fiber with a Cladding in the Form of 

a Triangular Lattice of Hollow Holes 
 

The dispersion characteristics of the photonic 

crystal forming the cladding of the fiber waveguide 

serve as the foundation for determining the eigenmode 

characteristics of the photonic crystal fiber. Figure 3.1 

presents a schematic representation of a two-

dimensional photonic crystal, consisting of periodically 

arranged hollow cylindrical holes within a dielectric 

(silicon glass) array, along with the corresponding 

oblique coordinate system. The period of the structure 
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is defined as the distance between the centers of any 

two nearest cylinders. The radius of the cylinders, 

normalized to the period of the structure L, is 

r/L  0.48. This configuration is commonly used for 

modeling photonic crystal fiber waveguides. For the 

calculations of the dispersion characteristics, the 

specialized software package MIT Photonic Bands, 

which is freely distributed and open-source [11], was 

used. This software is widely applied for the study of 

photonic crystal structures and utilizes the plane wave 

expansion method, commonly used to determine the 

eigenmodes of various periodic systems of different 

dimensions. The periodic structure is formed in the 

standard way by creating a unit cell and applying the 

property of translational invariance. 
 

 
 

Fig. 1 – Diagram of the Photonic Crystal 
 

The dispersion properties of the basic configurations 

of photonic crystals are well-studied [12]. It is known 

that under certain conditions, the structure shown in 

Figure 1 has photonic band gaps for two polarization 

states (TE and TM). In particular, the widest band gap 

is realized for TE polarization, where the magnetic field 

vector is directed along the Oz axis. 

The results of the dispersion diagram calculations 

for a two-dimensional photonic crystal with a 

triangular lattice of hollow cylinders are presented in 

Figure 2 for TE polarization. 
 

 
 

Fig. 2 – Dispersion diagrams of the photonic crystal for TE  

polarization states 
 

Along the abscissa axis, the values of the Bloch 

wavevector are plotted within the unreduced first 

Brillouin zone. Points of high symmetry within this 

zone are marked by letters. Along the ordinate axis, the 

normalized frequency is plotted, which is essentially 

the ratio of the structure's period to the wavelength of 

the radiation. 

From Figure 2, it is evident that in this case, 

photonic band gaps are absent for this polarization. 

This result is due to the low dielectric contrast in the 

studied structure (2.1:1). It should be noted that the 

results presented in Figure 2 were obtained for the case 

where the longitudinal component of the wavevector is 

zero, i.e., kz  0. This means that the waves propagate 

only in the xy-plane. In a fiber waveguide, propagation 

occurs along the Oz coordinate axis (kz ≠ 0), i.e., 

perpendicular to the plane of the diagram. Therefore, to 

study the eigenmodes of the photonic crystal fiber 

waveguide, the dispersion characteristics of the 

photonic crystal must be considered for nonzero values 

of the longitudinal wavevector component (the 

propagation constant). 

It is known that increasing the propagation 

constant leads to the appearance of photonic band gaps 

in the structure shown in Figure 1. The physical factors 

behind this phenomenon are typically explained by the 

conditions of the so-called scalar approximation when 

the value of kz increases [11]. Under these conditions, 

the electrodynamic characteristics of the dielectric 

photonic crystal resemble those of a crystal made of 

metallic cylinders and exhibiting multiple photonic 

band gaps. Thus, starting from a certain value of the 

propagation constant, photonic band gaps should 

appear in the photonic crystal that forms the 

waveguide cladding. It is within these gaps that the 

localization of electromagnetic energy in the waveguide 

channel and the realization of the eigenmodes of the 

photonic crystal fiber waveguide can occur. 

Figure 3 presents the results of dispersion 

characteristic calculations for nonzero values of the 

longitudinal wavevector component. Along the abscissa 

axis, the normalized propagation constant values are 

plotted. The dashed line represents the "light line," where 

points correspond to cases where the phase velocity of the 

waves equals the speed of light in a vacuum. 

The light areas of the dispersion diagram in 

Figure 3 correspond to the forbidden zones of the 

photonic crystal. It can be seen that, starting from the 

value kzL/2  1.43, a photonic band gap opens up, 

which gradually expands as the propagation constant 

increases. At the same time, there is only a limited 

range of kzL/2 values where this band gap lies above 

the light line, indicating the possibility of realizing 

eigenmodes of the structure that correspond to volume 

waves. The region of the diagram below the light line 

corresponds to surface wave modes, whose field 

exponentially decays in free space. Additionally, the 

energy of surface waves is concentrated on the surfaces 

of the dielectric elements of the structure, leading to 

additional losses. Therefore, surface wave modes are 

generally not used as operating modes in photonic 

crystal fiber waveguides. 
 

 
 

Fig. 3 – Dispersion diagram of the photonic crystal for the 

longitudinal component of the wavevector 
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Thus, the operating range of the photonic crystal fiber 

waveguide is limited. The vertical dashed lines in Figure 3 

indicate the boundary values of the propagation constant. 

The results of the dispersion diagram calculations for 

different values of the propagation constant are 

presented in Figure 4. The diagram in Figure 3.4a is 

calculated for a value of the parameter kzL/2 outside the 

operating range of the waveguide. Indeed, in this case, 

only the zero photonic band gap exists, in which the 

eigenmodes can only exist as surface wave modes. 
 

 
 

Fig. 4 – Dispersion diagrams of the photonic crystal for 

different values of the longitudinal wavevector 
 

The diagram in Figure 4 is calculated within the 

operating range of propagation constant values. The 

horizontal band represents the photonic band gap, 

where the eigenmodes of the structure can exist both as 

surface and volume waves. This band gap opens as the 

propagation constant of the waveguide increases. 
 

2.2 Eigenmode Characteristics of Photonic 

Crystal Fibers 
 

An important characteristic of the eigenmodes of 

photonic crystal fiber waveguides is the distribution of the 

electromagnetic field across the cross-section of the 

structure. This distribution allows us to determine the 

mode structure of the waveguide and the energy losses 

due to its penetration into the cladding of the waveguide 

channel. A convenient way to visualize this is through the 

calculation of the spatial distribution of field intensity, 

which effectively represents an energetic characteristic. 

Therefore, numerical calculations were carried out for the 

energy of the electric field of the eigenmodes of the 

photonic crystal fiber waveguide. 

Since the MIT Photonic Bands package is designed 

to determine the characteristics of eigenmodes for periodic 

structures only, it cannot be directly used for studying 

structures with defects in periodicity, such as photonic 

crystal waveguides and resonators. This problem is solved 

by using the supercell method, which restores the 

periodicity of the structure by creating a new cell with 

larger dimensions [14]. However, when applying this 

method, a larger number of dispersion curves must be 

calculated due to the increased number of 

eigenfrequencies in the supercell compared to a regular 

unit cell. Furthermore, in this case, only those eigenmodes 

of the built periodic structure are considered valid, which 

are characterized by the absence of electromagnetic 

coupling between neighboring periodicity defects. 

Let us consider several variants of the fiber 

waveguide cross-section, differing in the radius of the 

hollow core. The first variant has a radius value 

normalized to the structure period of R/L  0.83. 

Figure 5 shows the cross-section of the corresponding 

photonic crystal fiber. 
 

 
 

Fig. 5 – Diagram of the photonic crystal fiber 
 

As seen in Figure 5, in this case, the configuration 

of the hollow waveguide channel cross-section ensures 

the absence of eigenmodes of the structure 

corresponding to surface waves [15-16]. This is 

confirmed by the results of calculations of the spatial 

distribution of the electric field intensity in the 

waveguide cross-section, as shown in Figure 6. 
 

 

  L/2с  1.7317         L/2с  1.7668        L/2с  1.7684 
 

Fig. 6 – Spatial distributions of the electric field intensity of 

the eigenmodes of the photonic crystal fiber waveguide 
 

It is quite natural that the fundamental mode of the 

waveguide corresponds to the lowest frequency. In this 

mode, the most effective localization of energy occurs in 

the hollow core of the structure. It should be noted that 

the calculation results presented in Figure 6 were 

obtained for a fixed propagation constant value of 

kzL/2  1.7. Therefore, all the spatial distributions of the 

electric field intensity correspond to the eigenmodes of the 

structure for bulk waves, since the corresponding 

eigenfrequencies are greater than 1.7. For higher modes, a 

more significant penetration of energy into the 

waveguide's cladding is observed, which increases the 

losses. 

Figure 7 shows the cross-section diagram of a 

photonic crystal fiber waveguide with a normalized 

hollow core radius of R/L  1.5. This configuration 
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supports the existence of eigenmodes on surface waves, 

which is determined by the structure of the boundary of 

the hollow waveguide channel. 

 
Fig. 7 – Cross-section diagram of a photonic crystal fiber 

waveguide 
 

This conclusion is confirmed by the results of 

calculations of the spatial distributions of the electric 

field intensity for the eigenmodes of the structure, as 

shown in Figure 8. From Figure 8, it can be seen that in 

this case, nearly all the eigenmodes of the structure are 

hybrid, meaning they combine characteristics of both 

bulk and surface wave modes. Another interpretation of 

the obtained results is the overlap of the regions where 

the bulk and surface modes of the waveguide exist. 
 

 
                     L/2с  1.7192               L/2с  1.7267     

 
               L/2с  1.73                    L/2с  1.7552  
 

Fig. 8 – Spatial distributions of the electric field intensity for 

the eigenmodes of the photonic crystal fiber waveguide 
 

A significant portion of the energy is concentrated in 

the dielectric, which leads to increased losses in the 

waveguide channel and, consequently, deteriorates the 

energy characteristics of the photonic crystal fiber 

waveguide. In Figure 9, the cross-section diagram of the 

waveguide with an increased hollow waveguide channel 

radius value of R/L = 1.8 is presented. 
 

 
 

Fig. 9 – Cross-section diagram of the photonic crystal fiber 

waveguide 
 

This cross-section configuration of the photonic crystal 

fiber waveguide also provides a fairly weak coupling 

between the bulk and surface modes, which allows for 

improved localization of electromagnetic energy in the 

hollow core [15]. However, unlike the waveguide with 

smaller core radii, in this case, the waveguide becomes 

significantly multimodal. As a result, the frequency range 

in which only the bulk wave modes can exist is reduced. 

Figure 10 presents the results of the calculation of the 

spatial distribution of the electric field intensity for the 

waveguide modes corresponding to bulk waves. 
 

 
                       L/2с  1.711             L/2с  1.7266 

           
 L/2с  1.7519           L/2с  1.7678 

 

Fig. 10 – Spatial distribution of the electric field intensity for 

the eigenmodes of the photonic crystal fiber waveguide 
 

It is evident that both axially symmetric and 

asymmetric modes can be realized. It is important to note 

the increase in the efficiency of field energy localization 

for the fundamental mode compared to configurations 

with a smaller hollow core radius. This is a fully expected 

result, as it is known that energy outside the waveguide 

channel decreases as 1/R³ when the core radius R 

increases [15-16]. 

The calculation results show that for higher modes, 

the energy outside the waveguide channel increases 

compared to the fundamental mode. Therefore, the 

working range of the waveguide is typically the single-

mode range, where energy losses are minimized. 

 

2.3 Characteristics of a Photonic Crystal Fiber 

with a Kagome Lattice Cladding 
 

The calculation of the dispersion characteristics of a 

photonic crystal fiber waveguide based on a kagome 

lattice was performed, as in the previous case, using the 

supercell method. The result of constructing the structure 

for dispersion characteristic calculations using the 

supercell method is presented in Figure 11. In this case, 

the hollow core of the fiber waveguide has the shape of a 

regular hexagon [17-19]. 

From Figure 11, it can be observed that the nearest 

neighboring waveguide cores are separated by four 

periods of the structure. Additional calculations have 

shown that such a distance is sufficient to ensure 

electromagnetic isolation between these cores in cases 

where guided modes of the structure localize energy in 

the central part of the supercell. It should be noted that 

increasing the distance between the hollow cores leads to 

an increase in the size of the supercell and a 

corresponding significant rise in the computational 

resources required. 
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Fig. 11 – Schematic model of a photonic crystal fiber 

waveguide based on a kagome lattice 
 

Figure 12 presents the results of the calculations of 

the dispersion characteristics of the fiber waveguide. 

The dependencies of the normalized frequency on the 

normalized longitudinal wave number were calculated 

by considering 500 dispersion curves. This is due to the 

large size of the supercell and the corresponding in-

crease in the multiple eigenfrequencies of the struc-

ture. The dashed inclined line represents the light line 

for a vacuum. 

In Figure 12, a photonic bandgap can be observed, 

which emerges with an increase in the longitudinal wave 

number (as shown in Figure 10). This bandgap is located 

below the light line in the region where guided modes on 

surface waves are realized. At the same time, in the re-

gion where guided modes on bulk waves exist, near the 

light line, no bandgaps are present. It is this region of the 

dispersion diagram that contains the operational modes 

of the waveguide. 
 

 
 

Fig. 12 – Dispersion characteristic of a photonic crystal 

waveguide based on a kagome lattice 
 

The calculation of field characteristics for the guided 

modes of a photonic crystal fiber waveguide based on a 

kagome lattice was performed, as in the previous case, for 

the intensity of the electric field in the waveguide cross-

section. The selected distributions of intensity were those 

for which electromagnetic isolation between the centers 

of neighboring supercells is achieved. In this case, the 

calculation results correspond to the guided modes of the 

fiber waveguide. 

Figure 13 shows the spatial distributions of the 

electric field intensity for the guided modes of the 

structure, which are located on the dispersion diagram 

below the light line. This follows from the normalized 

eigenfrequencies of these modes, as the calculation was 

conducted for a normalized propagation constant 

kzL/2  4. Such a configuration of the guided modes 

indicates the surface nature of the electromagnetic field, 

as confirmed by Figure 13. It can be seen that the field 

energy is concentrated in the dielectric plates that form 

the kagome structure. As the distance from the dielectric 

increases into free space, the field undergoes exponential 

decay. The greatest practical interest lies not in the 

surface guided modes, but in the bulk guided modes of 

the kagome fiber waveguide, as in this case, the field 

energy propagates through free space with minimal 

losses. 
 

 
                          L/2с  3.861          L/2с  3.97   
 

Fig. 13 – Spatial distributions of the electric field intensity for 

surface guided modes of the fiber waveguide 
 

Figure 14 presents the results of the calculation of the 

spatial distribution of the electric field intensity in the 

projection onto the (x, y) plane for the fundamental and 

the first higher modes of the waveguide. 

The fundamental mode is characterized by the 

absence of field variations in the cross-section of the 

structure and the highest degree of electromagnetic 

energy localization within the waveguide channel. The 

first higher mode has two intensity maxima of the 

electric field in the waveguide channel cross-section. 

Accordingly, a zero intensity value is realized at the 

center of the channel. Moreover, the effectiveness of 

electromagnetic energy localization in this case is lower 

compared to the fundamental mode. This is a natural 

result, as for higher modes, the intensity maxima occur 

closer to the boundaries of the waveguide channel, 

leading to an increase in the field amplitude at these 

boundaries. Consequently, energy losses of the mode 

increase within the core due to its passage into the 

waveguide cladding. 
 

 
   L/2с  4.037           L/2с  4.09   

 

Fig. 14 – Spatial distributions of the electric field intensity for 

the guided modes of the fiber waveguide on bulk waves 
 

Figure 15 shows the spatial distributions of the electric 

field intensity for two higher modes of the structure. One of 

these modes (on the left in the figure) has an almost axially 

symmetric spatial distribution of the field intensity within 

the waveguide channel. It should be noted that for this 

mode, a maximum field intensity is realized at the center 

of the channel, with the diameter of the cross-section of 

this maximum being significantly smaller than the width 

of the field spot for the fundamental mode (Figure 14). 

However, in this case, a much larger portion of the mode's 

field energy is located outside the waveguide channel, 

leading to increased losses. 
 

CONCLUSION 
 

The mathematical models for two configurations of 

photonic crystal fiber waveguides with hollow cores have 

been constructed. Numerical calculations of the 
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                    L/2с  4.2                L/2с  4.225 
 

Fig. 15 – Spatial distributions of the electric field intensity for 

higher modes of the fiber waveguide on bulk waves 

 

electrodynamic characteristics of the guided modes were 

performed using the plane wave expansion method, 

implemented in the MIT Photonic Bands software 

package, which is freely distributed and has open-source 

code. The obtained dispersion and field characteristics 

provide the opportunity to study the mode composition of 

different photonic crystal fiber waveguide configurations 

and their spectral properties. 

The conducted research shows that proper 

integration of photonic crystal fibers into the design of 

fiber-optic gyroscopes (FOGs) can significantly improve 

their efficiency, as these fibers are capable of ensuring 

low optical losses and resistance to temperature 

fluctuations, which is crucial for the stable operation of 

gyroscopes. Taking into account all the technological 

aspects discussed in this section is necessary for the 

creation of high-precision and reliable FOGs capable of 

operating in various conditions. These results highlight 

the importance of technological and design 

improvements for the development of modern fiber-

optic gyroscopes. 
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Фотонно-кристалічні волокна з трикутною та каґоме структурами  

для волоконно-оптичних гіроскопів 
 

Є.М. Одаренко, О.С. Гнатенко 
 

Харківський національний університет радіоелектроніки, 61166 Харків, Україна 
 

У статті досліджено фотонно-кристалічні волокна (ФКВ) із трикутною та каґоме структурою для 

використання у волоконно-оптичних гіроскопах (ВОГ). Обґрунтовано переваги ФКВ для покращення 

ефективності роботи ВОГ завдяки унікальним характеристикам, таким як висока чутливість, низькі 

оптичні втрати та стійкість до температурних коливань. Розглянуто механізми локалізації енергії че-

рез фотонно-кристалічні заборонені зони та однохвильові режими для збільшення точності вимірю-

вань.Проведено числові розрахунки дисперсійних характеристик та власних мод ФКВ із використан-

ням методу розкладання по плоским хвилям у програмному середовищі MIT Photonic Bands. Проана-

лізовано модельні властивості різних конструкцій ФКВ, зокрема вплив діаметра порожнистої сердце-

вини на спектральні характеристики. Показано, що оптимальне співвідношення геометричних пара-

метрів ФКВ забезпечує ефективну локалізацію енергії в порожнистій сердцевині та мінімізацію 

втрат.Особливу увагу приділено ФКВ із каґоме структурами, що демонструють перспективи для зме-

ншення енергетичних втрат завдяки просторовому розподілу електромагнітного поля. Визначено мо-

жливості застосування ФКВ у гіроскопах для авіаційних і оборонних навігаційних систем. Результати 

дослідження відкривають нові можливості для створення високоточного обладнання, здатного працю-

вати в екстремальних умовах. 
 

Ключові слова: Фотонний кристал, Оптичне волокно, Гіроскоп, Дисперсійні характеристики,  

Заборонена зона. 
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