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Nanoparticle detection in scanning electron microscopy (SEM) is crucial for various applications. Existing
techniques for detecting nanoparticles in SEM images need help to handle dispersed particles and need more
accuracy. This research uses a deep learning strategy to enhance recognition efficiency and precision. To
overcome the challenges, we develop a robust Multi fused Spectral Deep Convolute Neural Net (MS-DCNN)
based model for nanoparticle detection, utilizing synthetic data generation to facilitate practical neural
network training and collecting the SEM image dataset for detecting the nanoparticle. Created an algorithm to
generate synthetic data, combining random particle distributions to simulate SEM micrographs and allows the
development of annotated datasets that are essential for neural network training. Compared to existing
approaches; the results are reduced pixel (0.62), warp errors (0.0008), decreased computing time (398s) and
greater accuracy (92.5%). The suggested MS-DCNN framework is practical and better than conventional
techniques, exhibiting improved precision in the identification of dispersed nanoparticles. The generation of
synthetic data helps in the development of a trained model that will deal with a variety of particle
distributions. The model is trained using synthetic data, demonstrating the technique's potential to improve
nanoparticle analysis in SEM imaging which got proven result over the existing method.
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1. INTRODUCTION

Detection of nanoparticles by scanning electron
microscopy (SEM) was essential to many scientific fields,
such as biology, materials science and nanotechnology [1].
The characteristics of nanoparticles and maximizing their
uses require accurately identifying and describing them.
Due to the small size and tendency for aggregation,
nanoparticles present intrinsic obstacles in their detection,
making new techniques that are necessary to improve
detection sensitivity and accuracy [2].

1.1 The Importance of Detecting Nanoparticles

The structure, distribution and behaviour of
nanoparticles require accurate detection of these particles.
Understanding environmental interactions, evaluating the
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effectiveness of medicine delivery systems and enhancing
material qualities benefit from the knowledge [3]. Improving
the detection of nanoparticles not only accelerates research
but also helps create cutting-edge technology with a wide
range of applications.

1.2 Difficulties in Detecting Nanoparticles

Noise changes in nanoparticle morphology and a lack of
available datasets for algorithm training are problems with
traditional SEM-based nanoparticle detection techniques.
When working with multifaceted nanoparticle samples,
overcoming these obstacles was essential to achieve reliable
and effective detection [4].

1.3 Solution of Synthetic Data
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The intriguing way to overcome the drawbacks of
conventional detection techniques was to employ synthetic
data. To train detection techniques on a controlled and
varied sample set, synthetic datasets that imitate real-world
SEM images can be created [5]. Improved performance
across a range of sample types and experimental settings
can be achieved by utilizing synthetic data to strengthen the
generalizability and resilience of nano-particle detection
models. The scope of the research used MS-DCNN detection
strategy for the purpose of identifying dispersed
nanoparticles in SEM images. Computer software was
created to create digital pictures that resembled SEM
micrographs, representing the nanoparticles present in the
actual sample, to acquire annotated training data.

The structure of the article is as follows: The article is
divided into five parts: Part 2 covers relevant work, Part 3
describes the materials and techniques used in the
suggested algorithms, Part 4 shows the results of the
performance evaluation and Part 5 concludes.

2. RELATED WORKS

In the study, a unique Deep Learning technique for
automated  nanoparticle  detection, classification,
orientations inference and reconstruction in three
dimensions from microscope images was presented. The
method makes use of convolutional neural networks
(CNN) [6]. The approach has limits in terms of portraying
real-world variability and processing demands as well as
exhibits promising results when used with generated
datasets that mimic images from a scanning electron
microscope. It provided an effective method for nano-
particle characterization. To overcome the lack of
algorithms in nanotechnology, the study developed an
extensive framework for nanoparticle categorization in
SEM images. The model attained an impressive 97%
accuracy and 98 % F1-score by combining morphological
procedures [7], Visual Geometry Group 19 (VGG-19) deep
networks and Gray Wolf Optimization (GWO). There
were imbalances in the dataset, but the study highlights
the promise of the model as an effective tool for
nanoparticle analysis. There were issues with
generalizability and processing needs. To categorize and
segment nanostructured materials in TEM images, the
study [8] used Mask R-CNN (Region-SNN) with Residual
Network 101(ResNet) 101. For hydrogen silicate, silicon
dioxide nano-particles and coating compounds, the
research achieved remarkable accuracy scores of 85-99%.
Although issues with generalizability and real-world
artifacts remain, the model performs well in identifying
overlapping clusters, demonstrating its potential as a
reliable tool for nanomaterial investigation.

The Cascades Mask-RCNN neural network was used
in the study [9] to automate the recognition of
nanoparticles in TEM images of heterogeneous catalysts.
With low deviation from manual assessment, the
integrated "Particles NN' online service accelerated TEM
data processing, decreasing analysis time to minutes and
achieved recall and precision of 0.71 for both types of
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objects and 0.84 for visible particles. The instrument
improved the accuracy and objectivity of catalytic
research. To examine the atomic framework of
PtNiPdCoFe images of alloys with high entropy (HEAs)
obtained with a scanning electrons transmission
microscopy (STEM), the study [10] proposed a fully
convolutional neural network (FCN). In elemental atomic
fractions, the DL model provides precise column height
estimates that highlight local aggregations and non-
uniform fluctuations. Potential sensitivity to laboratory
conditions and the requirement for additional
generalization testing were among the limitations.

With an emphasis on electron microscopy, the article
[11] investigated an upsurge in the use of deep learning-
based object recognition models in materials science. A
community-curated ecosystem was envisioned to improve
object detection's broader application in other materials
areas. A CNN was developed in the study to detect
measurements of the height of atomic column in excellent
quality TEM images containing particles of gold in real-time
[12]. With the use of a regression technique and a physically
real-world training dataset produced by the William Wulff
development, the CNN rapidly and precisely extracts
conditions from experiments. While generalizability and
practical variability were the important factors to consider,
the paradigm lays the groundwork for expedited
nanoparticle analysis in nanoscience.

To provide accurate nanoparticle modelling, the paper
[13] integrated a novel protecting model into an
expedited approach for characterizing the structure of
nanoparticles using generated datasets. A generative
adversarial network for improving resolution in SEM
images was presented in the article [14-15]. The method
offered significant efficiency enhancements in SEM
imaging by allowing for faster acquisition of images with
more excellent resolution while mitigating the electron
imposing and sample damage.

3. PROPOSED METHODOLOGY

Creating a MS-DCNN, especially for SEM images, is
the suggested technique. To imitate SEM micrographs,
synthetic data collection is applied, which makes it easier
to provide a variety of structured data sets for efficient
MS-DCNN training. Multi fused convolutional layers are
used in MS-DCNN design for feature extraction, whereas
fully linked layers are used for classification. The
algorithm uses these artificial datasets to improve the
model's nanoparticle detection performance. Evaluation
measures are used to compare the model's performance
with other approaches, such as accuracy, computation
time, pixel error and warp error.

3.1 Data Collection

The dataset includes descriptions of the relevant
three-dimensional (3D) structures for 2048 synthetic
SEM images of powder materials. Each set consists of
256 systems and images that are grouped according to
eight closely similar particle size distributions (PSDs).
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3.2 Synthetic SEM Images

Blender is an open-source graphics program used for
scientific visualization, rendering, animation and 3D
modelling. It was used to create the dataset. The spherical
particles that comprise the powder structures are selected at
random from the designated PSDs. A total of 2048 synthetic
powder microscopy images were produced by creating 256
individual structure/image pairings for each of the eight
unique PSDs. Each image was created by placing 800
particles into an 11 x11 x2 (arbitrarily Bender units)
render container. Using one of the eight producing PSDs,
randomly chosen particle radii were used to provide for
particle occlusions and intersections. A spherical model was
used to generate the particles and an image of zinc grains
from the dataset was used to give them a surface texture.
Fig. 1 shows the two-step procedure for creating particle
images. There are two processes in the creation of a
synthetic image. JSON files with information on every
particle in the image are made in the first phase (a). Then,
textured images are produced in step (b) of the process,
where textures are selected from a database of actual SEM
images. After the generation stage, each image is subjected
to a 5x5 pixel histogram normalizing process, which is
carried out to improve the general quality and visual
coherence of the images of manufactured nanoparticles.
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Fig. 1 — Procedure for creating particle images

3.3 Data Preprocessing

Histogram equalization data preparation is a method
used to improve contrast and feature visibility in images,
when using synthetic data for nanoparticle identification
in SEM. By modifying the proportions of pixel intensities
in an image, the technique improves its suitability to use
with later image analysis techniques. Histogram
equalization is applied to enhance the detection of
nanoparticles, which entails a mathematical adjustment
of the image's values of intensity to produce a more
uniform histogram. The density function of probability
k(V;) for the image Vis expressed in Eq. (1).

k) =2 (1)

For each value of ¢ in the range of t=0, 1, ..., L—1.
Where n is the periodicity at which the intensity level (V;)
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occurs and n! is the total number of pixels in the input
picture V. The input picture's histogram is associated
with k(Vi), which denotes the number of pixels with a
particular intensity V:. In actuality, nt versus V: is
represented graphically by the V histogram. Eq. (2)
illustrates how the density function of probabilities is
used to express the cumulative density function.

CV) =Zr=0 k(%) @

The C(V(z- 1) must inevitably equal 1 when V; is equal
to w for any t range from 0 to L — 1. To transfer the input
image into the whole dynamic range denoted by (Vo,
Vi@-1), the method (HE) employs the average density
function as the transformation function. Let's construct
the transformation functional f(v) as given in Eq. (3),
building on the accumulating density function.

f@) =Vo+ (Vi1 = Vo)C(v) 3

Eq.4 and 5 enable us to express the HE's output
image as y = y(i, x).

y=f) 4
={fVEOIVV(3E x)eV} ®)

HE stretches the intensity values throughout the
whole range, making details in an image more accessible
to identify in low-contrast areas. It's a robust approach.
Use caution when applying it, as its efficacy varies
depending on the image's properties and the particular
objectives of the image processing assignment.

3.4 Multi fused Spectral Deep Convolute Neural
Net (MS-DCNN)

A MS-DCNN is a crucial component in the field of
better nanoparticle identification in SEM utilizing
synthetic data. The neural network is designed to interpret
complex characteristics and patterns found in SEM images
of nanoparticles. It operates as a sophisticated image-
processing architecture. Convolutional and pooling layers
are two of the many layers that are included in its
architecture to extract complicated characteristics from
raw pixel input hierarchically. The network uses training
data to forward propagation, which produces a loss
function that measures the difference between expected
and actual values. To maximize the neural network's
performance, backpropagation modifies its parameters
according to the derivatives of the loss. The complete
architecture, which combines FPN in Retina Net with a
pre-trained backbone, demonstrates a reliable method of
object recognition that places a focus on the extraction of
features and precise predictions. The neural network
passes through an essential step in the training phase
when the loss function, which shows the difference
between expected and actual results, is calculated. During
backpropagation, the network parameters are adjusted in
a manner that is proportional to the variations of the loss
concerning these parameters. For Retina Net, in
particular, using Focal Loss is a valuable training
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technique. Before each cycle, the augmented pictures are
randomly sheared, rotated and flipped along with their
respective bounding boxes to train the neural network.
This training program runs for around 50 hours on the
Kaggle cloud GPU (NVidia K80), covering 48 epochs with
an initial batch size of 16. The optimizer developed by
Adam is used and the acquisition rate is fixed at 0.001.
Fig. 2 shows the schematic of the training process, which
gives a visual picture of the complexities involved.
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Fig. 2 — Structure detection of nano participles

4. RESULT AND DISCUSSION

The hardware specs used during the training stage
were the same ones used for the test evaluation. The
machine was equipped with an Intel Core i9 processor
running at 3.60 GHz and an NVIDIA GeForce RTX 2080
GPU with 8 GB of RAM. Furthermore, the device
included 32 GB of RAM. By minimizing possible
differences brought by hardware discrepancies, this
uniformity in hardware configuration throughout the
training and testing stages helps to assure an accurate
and fair evaluation of the model's performance.

The efficiency of the suggested strategy is evaluated
by using a number of common existing approaches such
as Inception — V3, ResNet, Inception — V4, UNet and
GAN [19, 20]. A number of metrics are used to evaluate
the system's performance, including pixel and warp
errors, accuracy and calculation time, all of which are
covered in more detail in the sections that follow.

Accuracy

Accuracy is a performance parameter used in SEM to
assess the overall accuracy of the detection strategy in
the context of nanoparticle detection. The ratio of
properly recognized nanoparticles (true positives) to all
nanoparticles, both effectively and erratically identified,
is used to measure accuracy. The following is the
accuracy Eq. (6).
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Number of True Positives (6)

Accuracy =
y Total Number of Nanoparticles

Table 1 — Values of Accuracy

Methods Accuracy (%)
Inception — V3 89.8
ResNet 87.5
Inception — V4 89.2
Proposed 92.5
> os

(%)

ACcuracy

Fig. 3 — Comparison of Accuracy

Fig. 3 and Table 1 depict the comparison of accuracy.
The suggested technique (92.5 %) outperforms the
current oneslike Inception — V3 89.8 %, ResNet 87.5 %
and Inception — V4 89.2 % [19], exhibiting increased
precision in the identification of nanoparticles in SEM
images. This improved performance highlights the
method's usefulness and demonstrates its effectiveness
as a valuable instrument for improved and accurate
nanoparticle identification in SEM applications.

Computation Time

Computation time in SEM nanoparticle detection is the
amount of time the detection model needs to process and
analyze images from SEM to detect and recognize
nanoparticles. It is an important statistic that indicates how
effective the detection technique is for real-time and
practical applications; shorter calculation durations are
preferred. In the detection of nanoparticles (Eq.7), the
computation time (7) can be represented as the difference
across the time at the start of the process (tsar) and the time
at the conclusion (fexq) of the method of detection (fend).

T = tena — tstare O]

Table 2 — Values of computation time

Methods Computing Time(s)
Inception — V3 434

ResNet 7018

Inception — V4 6135

Proposed 398
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Fig. 4 — Outcome of computation time

Table 2 and Fig. 4 depict the outcome of computation
time. The suggested approach is positioned as a very
beneficial tool due to this efficiency improvement, which
makes it useful for the rapid and precise detection of
nanoparticles in SEM techniques.

5. CONCLUSION
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BusiBieHHsI HAHOYACTUHOK y CKAHYIOUIN eJIeKTPOHHIN mikpockomil (SEM) mae BupimaibHe 3HAYEHHS IS
PI3HUX 3aCTOCYBaHb. IcHyUl MeTonu BUsBIIEHHs HaHouacTwHOK Ha SEM-300paskeHHSX mOTpeOyIOTH I0ITOMOrH
I OOpOOKHM MCIIEPrOBAHWX YACTHHOK 1 TMOTPeOyoTh OLIBINOI TOoYHOCT. lle mMocitimikeHHS BUKOPHUCTOBYE
cTpareriio rIMOOKOro HABYAHHS JJIS MIABHUINEHHS e(EeKTHBHOCTI Ta TOUYHOCTI posmisuaBauusd. 11[06 momosmartu
TPYJHOIII, MU PO3POOWMJIM HAMIMHY MOZEJb JeTeKTyBaHHsS HaHodacTWHOK Ha 0a3i Multi fused Spectral Deep
Convolute Neural Net (MS-DCNN), BUKOpHCTOBYIOUM TI'€HEpAII0 CHUHTETHUYHWX IAHUX JJIsA IIOJIETIIeHHS
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OPAKTUYHOrO0 HAaBYAHHS HEWPOHHOI Mepeski Ta 306opy Habopy maHux 3o0pamenb SEM s BusBiieHHS
HaHouacTUHOK. CTBOPEHO aJrOpWTM JUIsi TeHepallill CHHTeTUYHUX JAHUX, [OeJHYIOYH BUIIAKOBI PO3IIOILIN
YaCcTHHOK i MomesoBanusa SEM-mikpodoTorpadiit 1 m03BoIAI0UN PO3POOIATH AHOTOBAHI HAOOpH JTAHUX,
HeOOXITHI JIJIf HABYAHHSA HeHpOoHHOI Mepeski. [[opiBHAHO 3 ICHYIOUMMU INIX0IaMU; Pe3yJIbTATOM € 3MEHIIeHHS
mikcesis (0,62), momuiok gedopmarii (0,0008), smenmerus yacy oouncienus (398 ¢) 1 6ibmra TounicTsb (92,5%).
BamporionoBana crpykrypa MS-DCNN e mpakTuumoi Ta Kpamoo, HIsK 3BHYAWHI METOIU, JIEMOHCTPYIOYH
MIBUINIEHY TOYHICTH 1IEHTUMIKAIT JUCTIEproBaHNX HAHOYACTUHOK. |'eHepalrisa CMHTeTUIHUX JaHUX JOIIOMAarae
B pO3po0ITl HABUYEHOI MOJEN, SKA MATHME CIPaBy 3 PI3HUMHU PO3MOAiIaMu dacTHHOK. Mojesab TpeHyeTbes 3
BUKOPUCTAHHSAM CHHTETUYHUX [AHWUX, IO JEeMOHCTPYe TIIOTEHITA] TEeXHIKM [JIS IIOKPAIIEHHS aHAaJi3y
HaHouacTuHOK y SEM-300paskenHi, KU OTPUMAB IIePeBIpeHUN Pe3yIbTAT MOPIBHAHO 3 ICHYIOUMM METOIOM.

Knrouori cooea: Hanmouacrmaru, Cramyoua enexrponHa wikpockomisa (SEM), Cunrernuni nawsi,
My IbTUKOHIIEHTPOBAHA CIIEKTPaAbHA IINO0Ka 3ropHyTa HeiiporHa mepexa (MS-DCNN).
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