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Zinc oxide (ZnO) nanoparticles (NP) are generating substantial attention across multiple areas due to the
distinctive Structural and Molecular Features. Predicting and understanding these properties is crucial for designing
effective applications in areas such as catalysis, sensors, and biomedical devices. Nanotechnology has emerged as a
pivotal field, particularly in materials science, where the unique properties of NP are harnessed for various
applications. Understanding and predicting the physical properties of NP, such as those in ZnO, is crucial for
optimizing their performance. For the classification approach, we introduced a novel method, Bat based Random
Forest (B-RF) to enhance the accuracy and efficiency of predicting major physical properties of ZnO NP. In this
research, we utilize a relevant dataset encompassing various physical properties of ZnO NP. The model is fine-tuned
to achieve optimal performance. The proposed Random Forest-based classification approach demonstrates superior
predictive performance compared to traditional methods. Our model attains high accuracy and reliability in
predicting diverse physical properties of ZnO NP. By the end of the study, our suggested approach outperforms other
methods in terms of Accuracy (92.8%), Sensitivity (90.8%), and Specificity (93.9%). This can contribute to improve the

overall performance and functioning of the existing model in a better way.
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1. INTRODUCTION

Nanotechnology, which involves the modification of
material at the nanoscale, has emerged as an innovative
field with extensive consequences across multiple
industries. Scientists have an important challenge in
understanding and predicting the physical characteristics
of NP, which are particles with size measured in
nanometers [1]. The physical characteristics of NP,
including their size, shape, surface area, and composition,
are crucial for determining the behavior and efficiency of
these tiny particles in many applications, spanning from
medicine to electronics. Precisely predicting these
characteristics is crucial for fully harnessing the promise of
nanotechnology. At the nanoscale, substances present
unique and frequently unexpected features that differ from
those found in bulk [2]. This phenomenon occurs a
consequence of quantum effects and increased surface-to-
volume ratios, leading to modified physical, chemical, and
biological interactions [3]. Therefore, it is crucial to create
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dependable techniques for forecasting the physical
characteristics of NP, which requires multidisciplinary
cooperation and inventive strategies. The intricacy of
nanoscale formations presents a fundamental barrier to
forecasting their characteristics. NP has complex forms,
crystal structures, and surface changes, unlike larger
materials, which contribute to their different
characteristics [4]. To tackle this intricate issue, scientists
have turned to computational techniques, utilizing
complex algorithms and simulation to acquire a deeper
understanding of the behavior of particles at the atomic
and molecular scales. Computational tools play an
essential part in predicting characteristics including
stability, reactivity, and thermal conductivity [5]. These
provide a vital connection between experiment and theory.
The utilization of simulations of molecular dynamics and
quantum mechanical computations has been highly
beneficial in clarifying the mysteries surrounding the
behavior of NP. Through the process of modeling,
researchers may mimic the dynamic reactions of NP to
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outside stimuli by examining the interactions among
atoms and molecules in NP. This provides a virtual
laboratory environment that allows for the exploration of
many situations [6]. These simulations serve the purpose
of predicting physical attributes, but providing guidance to
experimentalists in the process of developing and
producing NP with specific features. The attempt of
forecasting physical characteristics in NP encompasses
theoretical development but also methods from
experiments. Advanced methodologies, such as in situ
microscopy and spectroscopy to allow for the direct and
immediate monitoring of NP dynamics in different
environments [7]. The combination of this data from
experiments with computer models creates a synergistic
approach that enhances our wunderstanding of NP
characteristics. Predicting the material properties of zinc
oxide particles involves multiple challenges and
constraints [8]. The accurate estimation of these features is
heavily dependent on the accessibility of substantial
empirical data, which may be limited or difficult to acquire
at the nanostructures. Additionally, the fundamental
complexity of particle systems, such as size-dependent
impacts, surface modifications, and quantum mechanical
events, offers significant computing difficulties [9, 10].

The rest of this article is divided into the following
sections: Section 2, Related Works; Section 3,
Methodology; Section 4, Performance evaluation; and
Section 5, Conclusion.

2. RELATED WORK

The study [11] presented a machine learning (ML)
method that predicted NP antibacterial properties with
promising findings (R2 = 0.78). A literature study of 60
publications had yielded essential physicochemical (p-
chem.) parameters and experimental conditions for in vitro
experiments. Due to the non-linear connection among
variables that were input and output, RF predicted the
antibacterial impact better than other models.

The paper [12] examined how the artificial neural
network (ANN) predicted the Heat conduction titanium
dioxide-aluminum oxide NPusing spatial Temperature
and Concentration levels. The thermal conductivity was
predicted through the application of “self-organizing map
(SOM) and Back Propagation-Levenberq-Marquardt (BP-
LM)” methods. These methods were considered excellent
predictors of thermal conductivity due to their results.

The article [13] employed multilayer perceptron (MLP)
and long short-term memory (LSTM) connectivity to
forecast metal-organic structure adsorption of gases abilities
via a hypothetical collection of 130,000 MOF structures with
natural Gas and greenhouse Gas absorption information for
multiple pressures. Mixed NP was used to create effective
deep learning models, proving that different nanomaterials
could be used for deep learning.

The study [14] employed Deep Neural Network (DNN)
to estimate Methylene Blue (MB)dye disappearance
under TiO22 NPs. Additionally, the suggested DNN
model integrated complicated input-output circumstances
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for optimal outcome prediction. The variables that were
entered TiO22 NPs, ethylene glycol, and reaction time,
while the response was MB dye elimination %. The Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Standard Deviation
(SD) findings showed that the DNN algorithm had lower
error than Multiple Linear Regression.

The study [15] presented two-stage architecture for a
ML-driven high quantities microfluidic system that
produced NP of silver with the specified absorbance
spectrum. After 120 circumstances, the computational
approach converged to the desired spectrum using a
Gaussian process-based Bayesian optimization (BO) and
a DNN. When there was a desire for greater regression
accuracy within the target, the recommendation was to
consider altering the acquisition function during the
second phase of the structure.

3. METHODOLOFY
3.1 Data Arrangement for ML

The initialization of the ZnO Np structure, containing
272Atomic Units, is presented in Fig. 1. The ZnO
characterization of the NP involved a super cell of the
hexagon crystal form with dimensions of
30*30*30.Statistical features of the data set including
ZnONP were examined in this study. For reasons of
clarity, we include the graphs corresponding to the lowest
and highest data sets, despite the fact that we utilize
atom shapes generated at temperatures ranging from 0 K
to 998 K (100,250,450, 800). Every data set consists of
272 atoms at every temperature level, with each one
characterized by its three-dimensional geometric
dimensions. There is no linear correlation between the
continuously variables being input, and every variable
that is continuous follows a normal distribution. The Zn
and O atoms are in equal quantity in the information (an
equal distribution of 50% Zn and 50% O). When
addressing classification concerns, these data sets are

referred as distributed data.
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Fig. 1 - The initial ZnO NP model structure comprises 272
atoms (pink is Oxygen, Blue is Zinc). (Source: Author)

3.2 Bat Algorithm

The Bat Algorithm (BA) has emerged as an innovative
optimization technique inspiration from bat echolocation
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behavior. The Bat Algorithm offers a robust optimization
framework to enhance the accuracy of computational
models. By leveraging the algorithm's ability to explore
solution spaces efficiently, researchers can optimize the
parameters of predictive models, leading to more
accurate and reliable predictions of physical properties in
ZnO NPs While echoes are used by most species of bats to
locate their prey, not all bat varieties follow the exact
same procedure. The microbat is a well-known example of
an animal that uses echolocation. Consequently, the
echolocation behavior is the first feature.

The second characteristic is the range at which the
microbat searches for prey by sending out a set
frequency,e_min, with a variable wavelength, A, and
loudness, Bo.

The volume may be changed in a variety of ways. For
reasons of simplicity, it is assumed that the loudness may
be adjusted between a positive, big BO and emin, the

minimal constant value. Egs. (1) —(3) simulate the
motion of the virtual bat approach.

€ = emin T (emax — emin)-ﬁ )

uf = w T+ (W] — Whese). € (2

P =wiT ol 3)

The suffixes min and max indicate the lowest and
highest values, accordingly, where e is the frequency that
the bat uses to look for its prey. In the solution time, the
J — th bat's position is indicated by w;. The bat's velocity,
represented byu;, is determined by s, which denotes the
present version, f, a stochastic vector selected from an
equal probability, g € [0,1]], and Wyes, which shows the
globally proximate optimal solution found thus extensively
spread throughout the population as a whole. The formula
4;4; efo,1» Where j is the suffix indicating the j th bat. Every
time, q; is contrasted with a randomly generated number.

Randomised walk is a local search technique that is
triggered when the random integer exceeds q;. Equation

(4) gives an unusual solution for the bat:
Wnew = Woiq + €B*® 4)

Where B; is the mean intensity of every bat at the
current iteration, and ¢ is a stochastic variable that falls
between [-1, 1]. Only when the Earth-wide near-best
solution is adjusted and the random generated value is
less than B; are the audibility B; and pulse emissions rate
q; changed following the update of bats' positions.
Egs. (5) and (6) act on the update of B; and q;:

Bf*! =c. B} 5)
q;tt = qf[1—f7r] (6)
3.3 Random Forests (RF)

RF is an ensemble learning that capitalizes on the
collective power of several decision trees to enhance

J. NANO- ELECTRON. PHYS. 16, 05011 (2024)

predictive accuracy and robustness. In the context of
predicting physical properties in Zinc Oxide NP, RF
excels in handling complex relationships and
nonlinearities in the data, providing a comprehensive
and accurate model.

At each stage of the building, one fully developed leaf is
chosen. Each tree is built using half of the dataset
information, randomly split in two. The structural features
that determine the tree's form are accounted for when
estimating divided sizes and divide attributes. The
evaluation nodes suit the estimating techniques used in each
tree leaf. Each tree has its assumptions about the data
randomly split between the structure and estimate
components. The Random forest algorithm is shown in Fig. 2.
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Fig. 2 — Random forest model

The testing examples for the i;(v),i,(y),..,i;(y)
classifiers were randomized from the distribution of the
random vectors Z,Y. The wealth feature is presented as

NA(Y, 2) = bw ] (i (V) = 2) =27 bhyf (b (Y) = k) (7)

Where the measured value is J(.). The source of the
mistake is

QF" = Qyz(mg(Y,2) < 0) (©)
The probability over the YZ dimension, indicated by

where Y,Z space InRF,i;(Y) = i(Y, 9p)
The margin feature for an RF is

max

mr(Y,Z) = Qo(i(Y,0) = 2) —— Qo (i(Y,0)}  (9)

Moreover, the set of classifiers {i(Y,0)} has a value of

T = Fyymr(Y,Z) K45 (10)
3.4 Enhanced Prediction of Zinc Oxide
Nanoparticle Physical Properties

The integration of the Bat algorithm and Random
Forest algorithm presents a novel hybrid approach for
predicting physical properties in Zinc Oxide NP. The Bat
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algorithm, inspired by the echolocation behavior of bats,
offers a powerful optimization technique to fine-tune the
parameters of the Random Forest model, enhancing its
predictive accuracy. By leveraging the strengths of both
algorithms, this hybrid model aims to overcome
challenges associated with traditional predictive methods
for NP properties. Algorithm 1 shows the B-RF
pseudocode.
Algorithm 1:B-RF
Initialize population of bats
Initialize Random Forest with parameters
Repeat until convergence:
For each bat:
Generate a new solution using Bat algorithm
Evaluate the solution using Random Forest
Update bat's position based on fitness
Update Random Forest with new solutions
End loop

4. RESULT AND DISCUSSION

Receiver Operating Characteristic (ROC) curve is a
Performance visualization for binary classification
models, illustrating the balance among sensitivity and
specificity at various decision points. For a
comprehensive evaluation of algorithm performances,
evaluating accuracy, specificity, and sensitivity. Fig. 3
depicts the proposed method outcome of ROC. Fig. 4
illustrates the outcome of Sensitivity-Specificity. Fig. 5
displays the Outcome of precision-recall.
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Fig. 3 — Outcome of ROC
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Fig. 4 — Outcome of Sensitivity-Specificity
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Fig. 5 — Outcome of precision-recall

In this section, the performance evaluation of the
proposed approach involves assessing it in terms of
Accuracy, Sensitivity and Specificity, and conducting a
comparative analysis with other existing methods, including
“Flexible Discriminant Analysis (FDA) [21]and, Naive Bayes
(NB), [21], K-Nearest Neighbor (KNN)[21]".

Table 1 — Comparative evaluation

Methods Accuracy (%) Sensitivity (%) Specificity (%)
FDA 88.9 82.6 77.4

NB 80.5 51.7 89.5

KNN 67.8 65.9 59.6

B-RF

[Proposed] 92.8 90.8 93.9

Table 1 depict the comparative evaluation of accuracy.
The entire accuracy of the classification or extraction
procedure is measured by accuracy. When compared to
currently existing methods such as FDA, NB and KNN,
which have Accuracy values of 88.9%, 80.5% and 67.8%,
respectively, The suggested B-RF achieves a higher
accuracy of 92.8% for performs in estimating or forecasting
the desired physical properties of the NP.

Specificity is a fundamental parameter utilized in the
fields of statistics to evaluate predictive positive outcomes. A
higher Specificity value implies that the model is making
lower occurrences of false positives, indicating an accurate
identification of positive cases.

Sensitivity is a fundamental metric used for evaluating
the performance of predictive models, including those
involved in predicting physical properties in Zinc Oxide NP.

5. CONCLUSION

In this study, we introduced a novel approach, Bat based
Random Forest (B-RF), accurately estimated to physical
properties in Zinc Oxide Nanoparticles. Experimental
results showed Accuracy (92.8%), Sensitivity (90.8%), and
Specificity (93.9%). The results of the proposed method were
compared to the other utilized algorithms, and the outcomes
of the evaluations showed that the suggested strategy was
more effective for ability to predict key characteristics of zinc
oxide nanoparticles. The quality of the data used for
training and testing the model is crucial. Inaccuracies, noise,
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or biases in the data may impact the model's predictive
capabilities. In future research Continuously refine and
optimize feature selection or engineering processes to
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Hawmouactuarn (NP) okcuny mmaKy (ZnO) mipupBepTaioTh 3HAYHY yBary B 6araThox 00JIACTSX 3ABIISAKYA BIIMIHHUM
CTPYKTYPHHMM 1 MOJIEKYJISIPHAM ocobsmBocTsiM. [IporHO3yBaHHS Ta PO3yMIHHS IPIX BJIACTMBOCTEN MAa€ BUpIINAJIBHE
3HAYEHHS JIJIs1 PO3POOKH e(PEeKTUBHUX 3aCTOCYBAaHBb y TAKHUX cepax, SK KATas3, MaTIuK| Ta OIOMEeIUYHI IPHUCTPOIL.
Hanorexwostorii cramm KIouoBo0 cdepoio, 0coOJIMBO B MATEPIaIO3HABCTBI, /i€ YHIKAJIBHI BJIACTUBOCTI HAHOUYACTHHOK
BHKOPHCTOBYIOTHCS [IJISI PI3HUX 3aCTOCyBaHb. PO3yMIHHS Ta IPOTHO3yBaHHS (DISMYHUX BJIACTHBOCTEHM HAHOYACTHHOK,

TPEJCTABUJIM HOBUI METOJ, SKWM INJBUIINYE TOYHICTh 1 €(EKTUBHICTh IIPOrHO3YBAHHS OCHOBHUX (DISUIHIX
BiaactusocTeit ZnO NP. V mpoMy mocimimxkeHH]I MM BHKOPHCTOBYEMO BIATIOBIIHMI HAOIp JAHUWX, IO OXOILIIOE Pi3HI
dismumi BiactuBocTi HaHodacTrHOK Zn(Q. Momesmbs HasammoBaHa I JOCATHEHHS ONTHMAJIBHOI IIPOMYKTHBHOCTI.
3alponoHOBAHMI INAXIA 10 Kiaacugikalli IeMOHCTpYye Kpally eQeKTUBHICTh IMIPOrHO3YBAHHS IIOPIBHAHO 3
TPaIUIIMHUME MeTogaMu. Hara Mopesb [ocsrae BUCOKOI TOYHOCTI Ta HAMIMHOCTI B IIPOTrHO3YBAHHI PIZHOMAHITHIX
isuunmx BracTuBocTedt HaHodacTHHOK Zn(O. 3amporoHOBAHWHN INJXI [IEpPeBepIlye IHIN METOIU 3 TOUKH 30py
Tounocti (92,8 %), uyrmmsoceri (90,8 %) 1 cmermdiumocti (93,9 %). Ile Moske CIOpPHATH IIOKPAIICHHIO 3aTasIbHOL
IPOAYKTUBHOCTI TA (PYHKITIOHYBAHHS ICHYIOUOI MOIEIIl KPALIIAM YMHOM.

Kmouori cnosa: Oxcup imuky, Harorexuostorii, MisuaHi BJIaCTUBOCTI.
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