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Identifying and quantifying unexpected events in non-equilibrium systems is critical work that is necessary 

for systems managers to make well-informed decisions, particularly when forecasting rare and extreme events. 

In this paper neural networks are integrated to increase the predictive capacity of information theory. Two 

information theory techniques, “Information Length (IL) and Information Flow (IF)”, are being examined for 

their sensitivity to rapid changes. To simulate the first occurrence of extreme and rare events, we utilize a non-

autonomous Kramer model to introduce a perturbation. we introduced a Dynamic Osprey Long Short-Term 

Memory (DOLSTM) for predicting rare and extreme events in non-equilibrium systems. Our results show that 

IL performs better than IF in accurately forecasting unexpected occurrences when combined with a neural 

network. This study highlights a novel integration between information theory & neural networks, giving an 

effective strategy for forecasting rare & extreme events in non-equilibrium environments. An effective 

methodology for identifying and forecasting the behavior of dynamic systems is established by combining 

information-length diagnostics with neural network predictions, especially in situations involving rare and 

extreme events. This novel method illustrates that the theory of information and neural networks can be used 

to provide robust predictions for dynamic systems, when encountering rare and extreme events. 
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1. INTRODUCTION 
 

Extreme Precipitation Event (EPE) prediction is an 

essential scientific problem that is crucial to society for 

water management optimization and civil protection. 

EPEs can arise as a result of a variety of atmospheric and 

geographic conditions. Moisture availability and 

movement are essential components, as they are required 

to attain excessive daily accumulations [1]. Due to their 

catastrophic effects and sporadic occurrence, extreme 

events provide significant challenges to several scientific 

communities in interdisciplinary research. A wide range of 

processes, from environmental catastrophes to call 

dropouts in cellular networks, exhibit the emergent 

behavior of extreme events [2]. It is common in physics, 

chemistry and many other scientific fields to examine 

systems whose dynamics are changeable or fluctuating and 

where crucial information is found in "rare events," or 

unique occurrences of the dynamics that deviate from the 

usual pattern [3]. Equilibrium statistical mechanics, which 

is based on the assumption that systems would eventually 

attain a stable state, is inadequate in the context of non-

equilibrium systems. Alternatively, non-equilibrium 

systems exchange matter and energy with their 

environment, resulting in complex behaviors that require 

new methods of analysis [4]. Sophisticated approaches that 

capture the fundamental factors, fluctuations and effects of 

external perturbations are necessary for the prediction of 

uncommon occurrences in such systems [5]. 

The intricacy of non-equilibrium systems necessitates 

the application of sophisticated computer models and 

computational techniques. Machine learning techniques, 

stochastic calculus as well as dynamic systems theory are 

used to interpret the complex relationships and patterns 

that provide shape to unusual events [6]. The impact of 

outside disturbances and fluctuations in pushing a system 

toward critical states is considered into factoring when 

predicting uncommon events. Recognizing the ways that 
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internal dynamics interact with external factors is crucial 

for predicting unusual occurrences as even small variations 

have the ability to set off a chain reaction that deviates from 

the general pattern [7]. Non-equilibrium systems are 

unpredictable and exhibit emergent behaviors because they 

are defined by dynamic, changing states that are remote 

from thermodynamic equilibrium. In these systems, 

occurrences with low frequency but important ramifications, 

like big fluctuations, abrupt transitions, or catastrophic 

events, are referred as rare and extreme events [8]. 

The following categories can be used to classify the 

remaining research: Section 2 provided an explanation of 

related works. Section 3 outlines our recommended 

course of action. Section 4 presents the study's result, 

while section 5 concludes the paper. 

 

2. RELATED WORK  
 

Study [9] examined the effectiveness of deep learning 

techniques in complex chaotic dynamical systems for 

predicting severe events. Deep neural networks have 

proven effective in solving a variety of big data image 

processing issues and had demonstrated promise in the 

research of dynamical systems. Study [10] introduced a 

HybridNet framework that combines model-driven 

computation with data-driven deep learning to forecast 

the spatiotemporal evolution of dynamical systems, even 

if the parameters do not exist with clarity. Study [11] 

presented a deep neural network method that enables 

event cameras to be used for a difficult motion-estimation 

task: predicting the steering angle of a moving vehicle. 

Study [12] utilized the dehumidification technique to 

reduce damage caused by condensation flow that was not 

in equilibrium. The Eulerian-Eulerian technique and 

sensitive grid size test were used for the first modeling & 

validation of the phenomena.  

Study [13] developed a thermodynamic and dynamical 

non-equilibrium framework for generic complex systems. An 

analogy to the classical statistic mechanic method for 

dealing with the phases of equilibrium transitions was 

employed in the technique to capture and reflect the 

character of the non-equilibrium dynamics. Study [14] 

presented a novel paradigm for handling multiscale non-

equilibrium flows using machine learning that was based on 

physical constraints and inspiration. The resulting model, 

“coarse-grained deep operator networks (CG-DeepONet)”, 

utilized a hierarchical architecture inspired by physics to 

train integral response operators for multi-fidelity coarse-

textured master equations. Its central component, PI-

DeepONet, was physics-informed. Study [15] constructed an 

effective method that uses machine learning techniques to 

estimate the rate of entropy formation over time. The 

algorithm validated the numerical estimates in relevant 

parameter regimes utilizing tractable Langevin models. 

Study [16] employed the non-equilibrium statistical 

mechanics' landscape-flux theory as a general framework to 

measure the ecological systems' overall stability and provide 

alerts for crucial transitions.  

Study [17] presented a multiscale model that 

describes how three-dimensional strain affects non-

equilibrium wall-bounded turbulence. That was achieved 

utilizing direct numerical simulation of transient, three-

dimensional turbulent channels up to 1,000 frictions 

Reynolds numbers that were subjected to a lateral 

pressure gradient. 

 

3. PROPOSED WORK 
 

3.1 The Statistics of Non-autonomous Linear 

Stochastic Procedures 
 

The Gaussian stochastic noises, denoted as Γ  Rn, 

are produced by n dimension vectors of -correlated 

Gaussian noise, denoted as Γi (i = 1,2,3,..n) & so on. The 

consistent real matrices A & B are n  n and n  1, 

respectively. 

“A linear non-autonomous procedure” is given by, 
 

 𝑤̇(𝑠) = 𝐵𝑤 (𝑠) + 𝐴𝑣(𝑠) + Γ(𝑠) (1) 
 

 〈Γ𝑗(𝑠)〉 = 0, 〈Γ𝑗(𝑠)Γ𝑖(𝑠1)〉 = 2𝐶𝑗𝑖(𝑠) 𝛿(𝑠 − 𝑠1) , 𝑐𝑗𝑖(𝑠) , ∀𝑗, 𝑖 = 1,2, . . , 𝑚  (2) 
 

Here, the average over Γi is indicated by the angle 

brackets. The Gaussian “probability density function 

(PDF)” is assumed at the outset and it stays Gaussian 

throughout time. Therefore, the following is true. 

At every given time t, the value of the combined PDF 

of systems (1) and (2) is provided by, 
 

 𝑜(𝑤; 𝑠) =
1

√det(2𝜋𝛴)
𝑓−

1

2
(𝑤−〈𝑤(𝑠)〉)𝑆Σ−1(𝑤− 〈𝑤(𝑠)〉)

 (3) 

 

 〈𝑊(𝑠)〉 = 𝑓𝐵𝑠〈𝑤(0)〉 +  ∫ 𝑓𝐵(𝑠−𝜏)𝐴𝑣(𝜏)𝑑𝜏
𝑠

0
  (4) 

 

 Σ(𝑠) = 𝑓𝐵𝑠〈𝛿𝑊(0)𝛿𝑤(0)𝑆〉𝑓𝐵𝑆𝑠 + 2 ∫ 𝑓𝐵(𝑠−𝜏) 𝐶𝑓𝐵𝑆(𝑠−𝜏)𝑑𝜏
𝑠

0
  (5) 

 

Where the matrix D  Rnn has the entries cji (s). The 

covariance matrix is denoted by Σ and the mean value for 

W(s) is represented by 〈W(s)〉. 
The following outcome can be used to calculate the 

exponential matrix fBs. 
 

 𝑓𝐵𝑠 =  ℓ−1[(𝑡𝐽 − 𝐵)−1] (6) 
 

The complex variable t inverse Laplace transform is 

represented by l –1 in this case. 

 

3.2 Diagnostics for Information Length (IL) 
 

We determine the IL “L”of the system provided by the 

joint PDF o(w;s). 
 

 ℒ(𝑠) =  ∫ 𝑑𝑠1
𝑠

0
√∫ 𝑑𝑤

[𝜕𝑠1𝑜(𝑤;𝑠1)]
2

𝑜(𝑤;𝑠1)

∞

−∞
=  ∫ 𝑑𝑠1√𝜀

𝑠

0
 (7) 

 

Where the information velocity squared is 

represented by ℰ = ∫ 𝑑𝑤
[𝜕𝑠1𝑜(𝑤;𝑠1)]

2

𝑜(𝑤;𝑠1)

∞

−∞
. 

A dimension of 1√𝜀 ≡  τ provides a dynamic measure 

of time for information change. This means that by 

combining √ε from times 0 and t, every data change in 
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the specified interval can be found. 

The combined PDF of the system's IL is given by, 
 

 ℒ(𝑠) =  ∫ 𝑑𝑠1
𝑠

0
√𝜀(𝑠1) (8) 

 

𝜀(𝑠1) = (𝜕𝑠1
〈𝑤(𝑠1)〉𝑆)Σ−1(𝜕𝑠1

〈𝑤(𝑠1)〉) +
1

2
 𝑡𝑟 ((Σ−1𝜕𝑠1

Σ)
2

) (9) 
 

Eqs. (4) and (5) can be used to determine 〈W(s)〉 and 

Σ(t), respectively, which we need to compute Eq. (9). For 

𝜕𝑠〈𝑊(𝑠)〉𝑖 in particular, we have: 
 

 𝜕𝑠〈𝑤(𝑠)〉 = 𝐵〈𝑤(𝑠)〉 + 𝐴𝑣(𝑠) (10) 
 

It is helpful to establish εn(s) as follows for a linear 

process of order n (1) with an unknown variable 

𝑥 𝜖 𝑅𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇. 
 

ℰ𝑛(𝑠) =  ∑ 𝜀𝑗(𝑠)𝑚
𝑗=1 =  ∑

(𝜕𝑠〈𝑤𝑗〉)
2

Σ𝑤𝑗𝑤𝑗

𝑚
𝑗=1 + ∑

(𝜕𝑠Σ𝑤𝑗𝑤𝑗
)

2

2Σ𝑤𝑗𝑤𝑗
2

𝑚
𝑗=1  (11) 

 

Where a marginal PDF of o(w;s) is used to compute ℰ𝑖. 

Keep in mind that whenever the n random factors are 

independent, E in Equation (9) is the same as ℰ𝑛 in Eq. (11). 

ℰ =  ℰ𝑛 can be used to introduce independent variables. 
 

 𝜀(𝑠) − 𝜀𝑛(𝑠) (12) 
 

3.3 Information Flow Based on Entropy 
 

An important information theory metric that has been 

examined in terms of causes, knowledge development and 

predictability transmission is “information flow (IF)”, 

known as information transfer.It shows the exact way the 

various states of the system to the others. Having the 

consideration of a pair of Brownian particles with 

coordinate x  (x1, x2), subjected to a potential G(w), given 

by the Langevin equation, interacting with two separate 

thermal baths at temperatures T1 and T2, respectively. 
 

 𝑝 = −𝜕𝑤𝑗𝐺(𝑤) − 𝛤𝑗𝑤˙𝑗(𝑠) + 𝑣𝑗(𝑠) + 𝜂𝑗(𝑠),  
 

 〈𝜂𝑗(𝑠)𝜂𝑖(𝑠1)〉 = 2Γ𝑗𝑆𝑗𝛿𝑗𝑖𝛿 (𝑠 − 𝑠1), 𝑗, 𝑖 = 1,2 (13) 
 

In this case, the bounded input is denoted by vj(s), 

Kronecker's symbol is represented by ji and the particle-

environment interaction is characterized by the lowering 

constants Γj (based on the temperature Sj).  

Next, data flows S from 1 → 2 and 2 → 1 are provided by, 
 

 𝑆2→1 =
1

Γ1
∫ 𝑑𝑤𝑂(𝑤; 𝑠) [𝜕𝑤1

 𝐺(𝑤) + 𝑆1𝜕𝑤1
ln 𝑂(𝑤; 𝑠)]𝜕𝑤1

ln
𝑂𝑤1

(𝑤1;𝑠)

𝑂(𝑤;𝑠)
, (14) 

 

 𝑆1→2 =
1

Γ2
∫ 𝑑𝑤𝑂(𝑤; 𝑠) [𝜕𝑤2

 𝐺(𝑤) + 𝑆2𝜕𝑤2
ln 𝑂(𝑤; 𝑠)]𝜕𝑤2

ln
𝑂𝑤2

(𝑤2;𝑠)

𝑂(𝑤;𝑠)
, (15) 

 

Recalling that Eqs. (14) and (15) can be used to 

interpret the actual meaning of IF in the context of 

shared understanding or entropy S is helpful. 
 

 𝑆2→1 = 𝜕𝑠 𝑇[𝑤1(𝑠)] − 𝜕𝑠1
𝑇[𝑤1(𝑠 + 𝑠1)|𝑤2(𝑠)]|𝑠1→0 (16) 

 

Where the notation 𝑇[𝑤1(𝑠 + 𝑠1)|𝑤2(𝑠)] represents the 

variance of 𝑤1(𝑠 + 𝑠1) at the time 𝑠 + 𝑠1, conditioned by 

w2(s)at the previous time and t. According to Eq. (16), IF 

is the amount of change in the entropy conditional of w1, 

w2 that remains frozen between the times (𝑠, 𝑠 + 𝑠1) and 

the final entropy of w1. Put otherwise, S2→1 represents 

the portion of the entropy variation in w1 (between (𝑠, 𝑠 +
𝑠1)  that results from variations in w2. 

There are a few important things to note. In the event 

where S2→1 (T1) is negative, w2 operates to decrease the 

least entropy as x1. S2→1 & S1→2 might be both positive 

and negative. Second, the only variable utilized to 

determine causality is the absolute value of IF. Eq. (14) 

has one last advantage over Eq. (16): Rather than 

employing two-point time PDFs, equal-time 

joint/marginal PDFs can be used to construct it. Finally, 

although Eqs. (15) and (16) do not immediately show this, 

the IF depends on the (equal-time) correlation matrix. 

 

4. RESULT 
 

To assess the suggested method's effectiveness using 

the following metrics: detection time (sec), F1-score (%), 

accuracy (%), precision (%), recall (%), false positives and 

negatives. Some existing methods are “Random Forest 

(RF) (20), Support Vector Machine (SVM) (20) and 

Logistic Regression (LR) (20)”. Table 1 presents the 

dataset. 
 

Table 1 – Dataset description 
 

Date Temperature 

(°C) 

Pressure 

(hPa) 

Velocity 

(m/s) 

Abrupt 

Change 

2022-

01-01 

25.3 1013.2 10.5 0 

2022-

01-02 

24.8 1012.8 11.2 0 

2022-

01-03 

23.5 1011.4 12.1 0 

2023-

01-01 

22.0 1014.3 9.2 1 

2023-

01-02 

22.3 1014.4 9.3 1 

2023-

01-03 

22.5 1014.6 9.5 1 

2023-

12-31 

23.8 1014.9 11.3 0 

 

Note*: 1  changes, 0  no changes. 
 

An important parameter for evaluating the detection 

system's overall correctness is its accuracy, which 

involves identifying rare & extreme events in non-

equilibrium systems. We assess and contrast the 

innovative detection approach's accuracy with existing 

approaches. Fig. 1 shows the accuracy rates of proposed 

and existing approaches. Attained accuracy rates of LR 

(80%, 85%), SVM (82%, 89%) and RF (83%, 90%) in the 

IF and IL, respectively. In contrast to existing 

approaches, the suggested strategy (DOLSTM) has an 

accuracy rate of (85%, 92%).It demonstrates the 

superiority of our suggested method over existing 

techniques. 
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Fig. 1 – Result of Accuracy (Source: Author) 
 

The detection system's precision is important since it 

measures how well the system recognizes rare & extreme 

events from the anticipated positive cases. We compare 

the accuracy of the suggested strategy with existing 

approaches. The precision rates for existing and 

suggested techniques are displayed in Fig. 2. LR obtained 

(71%, 83%), SVM (73%, 85%) and RF (77%, 89%) 

precision values in the IF and IL, respectively. Compared 

with existing methods, the proposed strategy (DOLSTM) 

has a precision value of 78%, 91%. It demonstrates the 

superiority of our suggested method over existing 

techniques. 
 

 
 

Fig. 2 – Result of Precision (Source: Author) 
 

Evaluating recall is essential for recognizing the 

sensitivity of the detection system to rare & extreme 

events. This study examines and compares the proposed 

approach's recall performance to that of the existing 

methods. Fig. 3 shows the recall rates for the proposed and 

existing approaches. Acquired recall values for the IF and 

IL of LR (83%, 85%), SVM (87%, 89%) and RF (88%, 91%), 

respectively. When compared to existing methods, the 

suggested approach (DOLSTM) achieves 90% and 94% 

recall rates; respectively. It demonstrates the superiority of 

our suggested method over existing techniques. 
 

 
 

Fig. 3 – Result of Recall (Source: Author) 

The F1-score combines precision and recall as factors 

to provide a thorough assessment of the detection 

system's performance. The F1 scores of the suggested 

strategy and existing approaches are contrasted in this 

analysis. The f1-score values for the suggested and 

existing approaches are displayed in Fig. 4. Obtained f1-

score values for LR (75%, 83%), SVM (80%, 88%) and RF 

(81%, 90%), correspondingly, for the IF as well as IL. The 

proposed method (DOLSTM) achieves 84% and 92% f1-

score values, respectively, when compared to existing 

approaches. It demonstrates the superiority of our 

suggested method over existing techniques. 
 

 
 

Fig. 4 – Result of F1-score (Source: Author) 
 

Detection time is an important factor to consider as 

well because it shows the speed at which the system is 

able to respond to rare and extreme events. This study 

compares and examines the detection times attained by 

proposed and existing strategies. 

 

5. CONCLUSION 
 

Rare & extreme occurrences in non-equilibrium systems 

investigate infrequent and unusual events in dynamic 

systems, offering light on their fundamental causes and 

effects on complex phenomena. The aim of this study is to 

improve the identification and estimation of abrupt changes 

in dynamic structures, which is important for managing 

systems as well as forecasting uncommon and extreme 

events. We investigate the possibility of mimicking abrupt 

changes with a non-autonomous Kramer equation and 

introducing an LSTM tailored for Dynamic Osprey. The 

findings show that when combined with neural networks, IL 

produces better accurate predictions of abrupt occurrences 

than IF. This novel method illustrates that the theory of 

information and neural networks can be used to provide 

robust predictions for dynamic systems, when encountering 

rare and extreme events. The model's ability to accurately 

forecast rare and extreme events is impacted by these 

limitations. Future work needs to address data limits, 

improve extrapolation skills and create more adaptable 

hyperparameter techniques to increase accuracy in 

forecasting for rare as well as extreme events to improve 

LSTM stability in non-equilibrium systems in addition to 

overcome these limitations. 
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Виявлення та кількісна оцінка неочікуваних подій у нерівноважних системах є критично важливою 

роботою, яка необхідна системним менеджерам для прийняття обґрунтованих рішень, особливо при 

прогнозуванні рідкісних та екстремальних подій. У цій статті нейронні мережі об’єднані для підвищення 

прогнозної здатності теорії інформації. Дві методики теорії інформації, «Довжина інформації» (IL) і «Потік 

інформації» (IF)», вивчаються на предмет їх чутливості до швидких змін. Щоб змоделювати перше 

виникнення екстремальних і рідкісних подій, ми використовуємо неавтономну модель Крамера, щоб 

ввести збурення. ми представили довгострокову пам’ять Dynamic Osprey (DOLSTM) для передбачення 

рідкісних і екстремальних подій у нерівноважних системах. Наші результати показують, що IL працює 

краще, ніж IF, у точному прогнозуванні несподіваних подій у поєднанні з нейронною мережею. Це 

дослідження підкреслює нову інтеграцію між теорією інформації та нейронними мережами, що дає 

ефективну стратегію для прогнозування рідкісних та екстремальних подій у нерівноважних середовищах. 

Ефективна методологія ідентифікації та прогнозування поведінки динамічних систем створена шляхом 

поєднання діагностики довжини інформації з прогнозуванням нейронної мережі, особливо в ситуаціях, 

пов’язаних із рідкісними та екстремальними подіями. Цей новий метод показує, що теорія інформації та 

нейронні мережі можуть бути використані для забезпечення надійних прогнозів для динамічних систем, 

коли вони стикаються з рідкісними та екстремальними подіями. 
 

Kлючові слова: Рідкісні та екстремальні події, Довжина інформації, Потік інформації. 
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