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Identifying and quantifying unexpected events in non-equilibrium systems is critical work that is necessary
for systems managers to make well-informed decisions, particularly when forecasting rare and extreme events.
In this paper neural networks are integrated to increase the predictive capacity of information theory. Two
information theory techniques, “Information Length (IL) and Information Flow (IF)”, are being examined for
their sensitivity to rapid changes. To simulate the first occurrence of extreme and rare events, we utilize a non-
autonomous Kramer model to introduce a perturbation. we introduced a Dynamic Osprey Long Short-Term
Memory (DOLSTM) for predicting rare and extreme events in non-equilibrium systems. Our results show that
IL performs better than IF in accurately forecasting unexpected occurrences when combined with a neural
network. This study highlights a novel integration between information theory & neural networks, giving an
effective strategy for forecasting rare & extreme events in non-equilibrium environments. An effective
methodology for identifying and forecasting the behavior of dynamic systems is established by combining
information-length diagnostics with neural network predictions, especially in situations involving rare and
extreme events. This novel method illustrates that the theory of information and neural networks can be used

to provide robust predictions for dynamic systems, when encountering rare and extreme events.
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1. INTRODUCTION

Extreme Precipitation Event (EPE) prediction is an
essential scientific problem that is crucial to society for
water management optimization and civil protection.
EPEs can arise as a result of a variety of atmospheric and
geographic  conditions. Moisture availability and
movement are essential components, as they are required
to attain excessive daily accumulations [1]. Due to their
catastrophic effects and sporadic occurrence, extreme
events provide significant challenges to several scientific
communities in interdisciplinary research. A wide range of
processes, from environmental -catastrophes to call
dropouts in cellular networks, exhibit the emergent
behavior of extreme events [2]. It is common in physics,
chemistry and many other scientific fields to examine
systems whose dynamics are changeable or fluctuating and
where crucial information is found in "rare events," or
unique occurrences of the dynamics that deviate from the
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usual pattern [3]. Equilibrium statistical mechanics, which
is based on the assumption that systems would eventually
attain a stable state, is inadequate in the context of non-
equilibrium  systems. Alternatively, non-equilibrium
systems exchange matter and energy with their
environment, resulting in complex behaviors that require
new methods of analysis [4]. Sophisticated approaches that
capture the fundamental factors, fluctuations and effects of
external perturbations are necessary for the prediction of
uncommon occurrences in such systems [5].

The intricacy of non-equilibrium systems necessitates
the application of sophisticated computer models and
computational techniques. Machine learning techniques,
stochastic calculus as well as dynamic systems theory are
used to interpret the complex relationships and patterns
that provide shape to unusual events [6]. The impact of
outside disturbances and fluctuations in pushing a system
toward critical states is considered into factoring when
predicting uncommon events. Recognizing the ways that
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internal dynamics interact with external factors is crucial
for predicting unusual occurrences as even small variations
have the ability to set off a chain reaction that deviates from
the general pattern [7]. Non-equilibrium systems are
unpredictable and exhibit emergent behaviors because they
are defined by dynamic, changing states that are remote
from thermodynamic equilibrium. In these systems,
occurrences with low frequency but important ramifications,
like big fluctuations, abrupt transitions, or catastrophic
events, are referred as rare and extreme events [8].

The following categories can be used to classify the
remaining research: Section 2 provided an explanation of
related works. Section 3 outlines our recommended
course of action. Section 4 presents the study's result,
while section 5 concludes the paper.

2. RELATED WORK

Study [9] examined the effectiveness of deep learning
techniques in complex chaotic dynamical systems for
predicting severe events. Deep neural networks have
proven effective in solving a variety of big data image
processing issues and had demonstrated promise in the
research of dynamical systems. Study [10] introduced a
HybridNet framework that combines model-driven
computation with data-driven deep learning to forecast
the spatiotemporal evolution of dynamical systems, even
if the parameters do not exist with clarity. Study [11]
presented a deep neural network method that enables
event cameras to be used for a difficult motion-estimation
task: predicting the steering angle of a moving vehicle.
Study [12] utilized the dehumidification technique to
reduce damage caused by condensation flow that was not
in equilibrium. The Eulerian-Eulerian technique and
sensitive grid size test were used for the first modeling &
validation of the phenomena.

Study [13] developed a thermodynamic and dynamical
non-equilibrium framework for generic complex systems. An
analogy to the classical statistic mechanic method for
dealing with the phases of equilibrium transitions was
employed in the technique to capture and reflect the
character of the non-equilibrium dynamics. Study [14]
presented a novel paradigm for handling multiscale non-
equilibrium flows using machine learning that was based on
physical constraints and inspiration. The resulting model,
“coarse-grained deep operator networks (CG-DeepONet)”,
utilized a hierarchical architecture inspired by physics to
train integral response operators for multi-fidelity coarse-
textured master equations. Its central component, PI-
DeepONet, was physics-informed. Study [15] constructed an
effective method that uses machine learning techniques to
estimate the rate of entropy formation over time. The
algorithm validated the numerical estimates in relevant
parameter regimes utilizing tractable Langevin models.
Study [16] employed the non-equilibrium statistical
mechanics' landscape-flux theory as a general framework to
measure the ecological systems' overall stability and provide
alerts for crucial transitions.

Study [17] presented a multiscale model that
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describes how three-dimensional strain affects non-
equilibrium wall-bounded turbulence. That was achieved
utilizing direct numerical simulation of transient, three-
dimensional turbulent channels up to 1,000 frictions
Reynolds numbers that were subjected to a lateral
pressure gradient.

3. PROPOSED WORK

3.1 The Statistics of Non-autonomous Linear

Stochastic Procedures

The Gaussian stochastic noises, denoted as I' € R»,
are produced by n dimension vectors of &-correlated
Gaussian noise, denoted as I (i = 1,2,3,..n) & so on. The
consistent real matrices A& B are nxn and nx1,
respectively.

“A linear non-autonomous procedure” is given by,

w(s) = Bw (s) + Av(s) + I'(s) 1)
(T;(s)) = 0,(L;()Ti(s,)) = 2C;i(s) 8(s —51) , ;i (s) , ¥j, i = 1,2,..,m (2)

Here, the average over I is indicated by the angle
brackets. The Gaussian “probability density function
(PDF)” is assumed at the outset and it stays Gaussian
throughout time. Therefore, the following is true.

At every given time t, the value of the combined PDF
of systems (1) and (2) is provided by,

o(w;s) = — ) Frw-wEOD T W= W) (g

JdetGrz)
(W(s)) = FE5w(0)) + [, B Av(r)dr 4)

£(s) = fE(OW()w(0))f 7 +2 [) 767 ¢fFDdr (5)

Where the matrix D € R» has the entries ¢ji (s). The
covariance matrix is denoted by X and the mean value for
W(s) is represented by (W(s)).

The following outcome can be used to calculate the
exponential matrix fBs.

f =y -B)"] ®)
The complex variable t inverse Laplace transform is
represented by /! in this case.
3.2 Diagnostics for Information Length (IL)

We determine the IL “L”of the system provided by the
joint PDF o(w;s).

’ o o [os0wis))]’
L(s) = fosdsl f_mdw%= fosdslx/z (7

Where the information velocity

85, 0wis)]’

represented by € = ffooo dw [

squared is

o(w;sy)

A dimension of 1v/e = 1 provides a dynamic measure
of time for information change. This means that by
combining Ve from times 0 and ¢, every data change in
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the specified interval can be found.
The combined PDF of the system's IL is given by,

L(s) = [, ds;/e(s1) ®)
£(s;) = (0, (W(s))*)Z ™ (3, (W (s1))) +7 7 ((zflaslz)z) 9)

Eqgs. (4) and (5) can be used to determine (W(s)) and
3(t), respectively, which we need to compute Eq. (9). For
05(W (s))i in particular, we have:

ds(w(s)) = B{w(s)) + Av(s) (10)

It is helpful to establish e.(s) as follows for a linear
process of order n (1) with an unknown variable
x € R™ = [x1, %5, .., x,]T.

)2 3T )
n oo = s e g - L

J7
j=1"y 2
Wiwj Wi%j

gn(s) =

Where a marginal PDF of o(w,s) is used to compute &;.
Keep in mind that whenever the n random factors are
independent, E in Equation (9) is the same as &, in Eq. (11).

&€ = &, can be used to introduce independent variables.

e(s) — e(s) (12)
3.3 Information Flow Based on Entropy

An important information theory metric that has been
examined in terms of causes, knowledge development and
predictability transmission is “information flow (IF)”,
known as information transfer.It shows the exact way the
various states of the system to the others. Having the
consideration of a pair of Brownian particles with
coordinate x = (x1, x2), subjected to a potential G(w), given
by the Langevin equation, interacting with two separate
thermal baths at temperatures T1 and T2, respectively.

p = —0w;G(w) — Ijwj(s) +vj(s) +nj(s),
(;(sIni(s1)) = 2I;5;6;6 (s —s4), j,i=1.2 (13)

In this case, the bounded input is denoted by uvj(s),
Kronecker's symbol is represented by §;; and the particle-
environment interaction is characterized by the lowering
constants I (based on the temperature S)).

Next, data flows S from 1 — 2 and 2 — 1 are provided by,

S1 = 7 AWOW; ) [, GOW) + 5,0, 0 O(W; )]0, I 212, (14)

Sie = 1 J AWOW;5) [3, GOW) +S,9,, 10 Ow; )]0y, In 2L, (15)

Recalling that Eqgs. (14) and (15) can be used to
interpret the actual meaning of IF in the context of
shared understanding or entropy S is helpful.

Sp1 = 05 T[wy(s)] - 651T[W1(S + sl)|W2(s)]|51_,0 (16)

Where the notation T[w; (s + s1)|w,(s)] represents the
variance of wy(s + s;) at the time s+ s;, conditioned by
we(s)at the previous time and ¢. According to Eq. (16), IF
is the amount of change in the entropy conditional of w1,
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we that remains frozen between the times (s,s + s;) and
the final entropy of wi. Put otherwise, Se—1 represents
the portion of the entropy variation in w1 (between (s,s +
s1) that results from variations in we.

There are a few important things to note. In the event
where S2-.1 (T1) is negative, w2 operates to decrease the
least entropy as x1. S2—1 & S1—2 might be both positive
and negative. Second, the only variable utilized to
determine causality is the absolute value of IF. Eq. (14)
has one last advantage over Eq.(16): Rather than
employing two-point time PDFs, equal-time
joint/marginal PDFs can be used to construct it. Finally,
although Egs. (15) and (16) do not immediately show this,
the IF depends on the (equal-time) correlation matrix.

4. RESULT

To assess the suggested method's effectiveness using
the following metrics: detection time (sec), F1-score (%),
accuracy (%), precision (%), recall (%), false positives and
negatives. Some existing methods are “Random Forest
(RF) (20), Support Vector Machine (SVM) (20) and
Logistic Regression (LR) (20)”. Table 1 presents the
dataset.

Table 1 — Dataset description

Date Temperature | Pressure | Velocity | Abrupt
°C) (hPa) (m/s) Change

2022- | 25.3 1013.2 10.5 0

01-01

2022- | 24.8 1012.8 11.2 0

01-02

2022- | 23.5 1011.4 12.1 0

01-03

2023- | 22.0 1014.3 9.2 1

01-01

2023- | 22.3 1014.4 9.3 1

01-02

2023- | 22.5 1014.6 9.5 1

01-03

2023- | 23.8 1014.9 11.3 0

12-31

Note*: 1 = changes, 0 = no changes.

An important parameter for evaluating the detection
system's overall correctness is its accuracy, which
involves identifying rare & extreme events in non-
equilibrium systems. We assess and contrast the
innovative detection approach's accuracy with existing
approaches. Fig. 1 shows the accuracy rates of proposed
and existing approaches. Attained accuracy rates of LR
(80%, 85%), SVM (82%, 89%) and RF (83%, 90%) in the
IF and IL, respectively. In contrast to existing
approaches, the suggested strategy (DOLSTM) has an
accuracy rate of (85%, 92%).Jt demonstrates the
superiority of our suggested method over existing
techniques.
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Fig. 1 — Result of Accuracy (Source: Author)

The detection system's precision is important since it
measures how well the system recognizes rare & extreme
events from the anticipated positive cases. We compare
the accuracy of the suggested strategy with existing
approaches. The precision rates for existing and
suggested techniques are displayed in Fig. 2. LR obtained
(71%, 83%), SVM (73%, 85%) and RF (77%, 89%)
precision values in the IF and IL, respectively. Compared
with existing methods, the proposed strategy (DOLSTM)
has a precision value of 78%, 91%. It demonstrates the
superiority of our suggested method over existing
techniques.
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Fig. 2 — Result of Precision (Source: Author)

Evaluating recall is essential for recognizing the
sensitivity of the detection system to rare & extreme
events. This study examines and compares the proposed
approach's recall performance to that of the existing
methods. Fig. 3 shows the recall rates for the proposed and
existing approaches. Acquired recall values for the IF and
IL of LR (83%, 85%), SVM (87%, 89%) and RF (88%, 91%),
respectively. When compared to existing methods, the
suggested approach (DOLSTM) achieves 90% and 94%
recall rates; respectively. It demonstrates the superiority of
our suggested method over existing techniques.

LR
96,

Recall (%) 94

=S —Information flow,
» — Information length

DOLSTM [

RF

Fig. 3 — Result of Recall (Source: Author)
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The Fl-score combines precision and recall as factors
to provide a thorough assessment of the detection
system's performance. The F1 scores of the suggested
strategy and existing approaches are contrasted in this
analysis. The fl-score values for the suggested and
existing approaches are displayed in Fig. 4. Obtained f1-
score values for LR (756%, 83%), SVM (80%, 88%) and RF
(81%, 90%), correspondingly, for the IF as well as IL. The
proposed method (DOLSTM) achieves 84% and 92% f1-
score values, respectively, when compared to existing
approaches. It demonstrates the superiority of our
suggested method over existing techniques.

Information flow
== Information length

DOLSTM
[Proposed]

RF

Methods

SVM

LR

o] 20 40 60 80 100
f1-Score (%)

Fig. 4 — Result of F1-score (Source: Author)

Detection time is an important factor to consider as
well because it shows the speed at which the system is
able to respond to rare and extreme events. This study
compares and examines the detection times attained by
proposed and existing strategies.

5. CONCLUSION

Rare & extreme occurrences in non-equilibrium systems
investigate infrequent and unusual events in dynamic
systems, offering light on their fundamental causes and
effects on complex phenomena. The aim of this study is to
improve the identification and estimation of abrupt changes
in dynamic structures, which is important for managing
systems as well as forecasting uncommon and extreme
events. We investigate the possibility of mimicking abrupt
changes with a non-autonomous Kramer equation and
introducing an LSTM tailored for Dynamic Osprey. The
findings show that when combined with neural networks, IL
produces better accurate predictions of abrupt occurrences
than IF. This novel method illustrates that the theory of
information and neural networks can be used to provide
robust predictions for dynamic systems, when encountering
rare and extreme events. The model's ability to accurately
forecast rare and extreme events is impacted by these
limitations. Future work needs to address data limits,
improve extrapolation skills and create more adaptable
hyperparameter techniques to increase accuracy in
forecasting for rare as well as extreme events to improve
LSTM stability in non-equilibrium systems in addition to
overcome these limitations.
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BusisrenHsT Ta K1IBKICHA OIIIHKA HEOUIKYBAHHUX IIOIIM Y HEPIBHOBAKHUX CHCTEMAaX € KPUTHYHO BAKJINBOIO
poboTOI0, AKA HeoOXIJHA CHCTEeMHHM MeHeIKepaM [IJiA IPUAHATTA OOIPYHTOBAHMX PillleHb, OCOOJMBO IIPHU
IPOrHO3YBAHHI PIAKICHUX TA €KCTPEMAJbHHUX IIOIii. Y Il cTaTTi HEMPOHHI Mepeski 00’ eqHaHI IJIs MiBUIICHHS
POTHO3HOI 3MaTHOCTI Teopil iudopmartii. /i Metonuku Teopii irndopmariii, «/losxuna indopmarii» (IL) 1 «[Torix
indopmarii» (IF)», BuBuatoThbes Ha mpeaMeT IX UyTJMBOCTI 10 mBHAKUX 3MiH. 1[06 3momesmoBaTm mepime
BAHUKHEHHS E€KCTPEeMAaJIbHUX 1 PIAKICHMX IIOii, MM BHKOPHCTOBYEMO HEABTOHOMHY MOAeJb Kpamepa, mo0
BBeCTH 30ypeHHsS. MM IIPEACTABUJIM JOBrOCTPOKOBY mamaTh Dynamic Osprey (DOLSTM) misa mepembadeHHs
PIOKICHUX 1 eKCTpeMaJbHUX MO y HEepIBHOBAKHUX cucTeMax. Harm pesysbTaT IOKas3yoTb, 1o 1L mpairoe
kpame, HiK [F, y TouHOMy IpOrHO3yBaHHI HECIOIIBAHWX IIOMIM y HOEJHAHHI 3 HEWPOHHOK Mepesken. lle
JIOCJTTKEHHS IIKPECITIOE HOBY 1HTErpalfiio MK Teopien iHdopmarlii Ta HeAPOHHUMH MEpeskaMH, II0 Jae
e)eKTUBHY CTPATETI JJIS TPOrHO3YBAHHS PIIKICHUX TA eKCTPEMAaJILHUX MO Y HePIBHOBAKHUX CEPEIOBUINAX.
EdextuBra meromosorisi imenTHdiKaIii Ta IPOrHO3yBAHHS IIOBEJIHKY AWMHAMIYHHX CHCTEM CTBOPEHA ILISIXOM
TOeHAHHS J1arHOCTUKY JOBXKUHY 1H(OpPMAIl 3 IPOrHO3yBAHHSM HEHPOHHOI Mepeski, 0COOJIMBO B CHUTYAIlisX,
OB’ I3aHUX 13 PIIKICHUME Ta eKcTpeMaabHuMu nomiamvu. [leit HoBuit MeTos mOKa3ye, 110 Teopis iHdopMarlrii Ta
HEWPOHHI Mepeski MOKYTh OyTH BHKOPHUCTAHI s 3a0e3levueHHsT HaJIMHUX TPOTHO3IB JIJIS JUHAMIYHUX CHCTEM,
KOJIM BOHU CTHKAIOTHCS 3 PIAKICHUME Ta eKCTPeMAaJIbHUMU TI0JTIsIMU.

Koouosi cirosa: PinkicHi Ta excrpemasbi momii, Josskuaa indopmarrii, ITorik indopmarrii.
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