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Stable molecular Bose-Einstein condensate (MBEC) can be formed through the Bose-stimulated Raman
adiabatic passage from atomic Bose-Einstein condensate (ABEC) via an intermediate excited MBEC state.
Such a three-mode atom-molecule Bose-Einstein condensates (AMBECs) system is consists of three Bose-
Einstein condensates (BECs) in which there are one ABEC, one excited MBEC, and one stable MBEC. Non-
zero intermodal couplings and intramodal interactions are present in the system. The free-bound coupling
is present between the ABEC and the excited MBEC, and the bound-bound coupling is present between the
excited MBEC and the stable MBEC. The intraspecies interactions are due to the third order nonlinearity
of the system. The quantum mechanical Hamiltonian of the system is constructed considering the intermodal
couplings and intramodal interactions. We solve the system Hamiltonian analytically to find out the time
evaluation of the field operators associated with all three BEC modes. In our solution process we have con-
sidered up to the second order of all coupling and interaction constants. Employing these solutions and start-
ing from an initial composite coherent state of three BEC modes, we study the second order quantum coher-
ence function of three pure BEC modes and three coupled modes (ABEC-exited MBEC, excited MBEC-stable
MBEC, and ABEC-stable MBEC). Quantum antibunching is reported in all three pure BEC modes and in
ABEC-excited MBEC, excited MBEC-stable MBEC coupled modes whereas the joint mode of ABEC and
stable MBEC is always coherent. We also study the quantum statistical properties of the system by intro-
ducing an initial phase to the coherent states of pure BEC modes. The quantum statistical properties of
different pure and coupled modes also depend on the initial phase angles of the pure BEC modes. A compre-
hensive study on this is also reported here.

Keywords: Bose-Einstein condensates, Bose-stimulated Raman adiabatic passage, Photoassociation,

Quantum coherence, Quantum antibunching.
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1. INTRODUCTION

The formation of MBEC from the ABEC is possible
through photoassocition [1] or through Feshbach reso-
nance [2]. The Bose-stimulated Raman adiabatic passage
is an efficient method for conversion of ABEC to MBEC
[3]. The stimulated Raman adiabatic passage transfers
the atoms from ABEC to molecule in the stable MBEC
via an intermediate excited MBEC by the coherent two-
colour photoassociation. Such system is a three level
BECs system with one ABEC and two MBECs.

From an ordinary light source, photons emit in the form
of bunches. So, the incoherent or chaotic light has the pho-
ton bunching property. The photons emitted from a coher-
ent source have random distribution. The laser light inter-
acting with a nonlinear medium shows a different type of
photon distribution which has no classical explanation,
known as photon antibunching. For manipulation of pho-
tons in quantum optics the basic requirement is the photon
antibunching [4]. The antibunching effect of light can gen-
erate single photon source which has immense application
in quantum information processing [5-7].

A BEC is equivalent to a laser beam in many ways. The
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atoms or molecules in BEC have the similar properties of
photons in laser beam in many cases with the only excep-
tion that the atoms or molecules in BEC can interact with
each other. Using extremely dilute condensates we can sup-
press the interactions. The gaseous BEC can be used as a
coherent matter wave sources which have various applica-
tions in atom optics, beam splitters, diffraction study, high
precession interferometry, and realization of axicon [8-10].

In the recent year the study of quantum statistical
properties of BEC has become an important topic. For
this we need to define some correlation functions which
play a fundamental role in the coherence phenomenon.
The first-order coherence in an atom-molecule BEC sys-
tem is related to the formation of the molecular conden-
sates from the atomic BEC [11]. The second-order quan-
tum coherence properties of the system opens up a com-
pletely new property called antibunching which has no
classical counterpart. The quantum second order coher-
ence function at zero time delay of mode j defined as

g;z)(O) which determines the quantum statistical prop-

erties of that mode [12]. For 0< g;z)(O) <1, the particle
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distribution of mode j will be sub-Poissonian which gen-
erally exhibits the nonclassical antibunching property
[13, 14].

The experimental measurement of the first-order
temporal coherence in AMBECs system was performed
by the Weiman’s group [15]. Jin et al. calculated the sec-
ond-order correlation function for a two-mode AMBECs
system [11]. In some previous works we have reported
the higher order antibunching of the two-mode BEC sys-
tem [13, 16]. The sus-Poissonian statistical property of
the stable MBEC of a three-mode AMBECs system is re-
ported in Ref. [17]. But no such complete and details work
was performed to study the quantum statistical proper-
ties of all three pure BEC modes and their coupled modes
of a three-mode AMBECs system. Here we study the
quantum statistical properties of a three-mode AMBECs
system by deriving the second order correlation function
in pure and coupled modes. The ABEC and the MBECs
are coupled via two-colour photoassociation. The intraspe-
cies interactions are due to the elastic s-wave scattering

which introduce the »® nonlinearity in the system [17].

We organize the paper as follows. Sec. 2 is dedicated
for the analytical solution of the Hamiltonian of the sys-
tem and hence to find out the time evaluation of the field

H= Sb*b—g(a“b+azb*)—%(b*c+bc*) + 7, aa? + 1, b7 + y, ¢,

where 6 is the intermediate detuning. The strength of
the nonlinear intraspecies interactions in the ABEC, ex-
cited MBEC, and the stable MBEC are y,,y,, and g,

respectively. The bosonic annihilation operators for
ABEC, excited MBEC, and stable MBEC states are a, b,
and c, respectively.

The Heisenberg equations of motion for the field op-
erators are

d:ia)a*b—Zi;(a a'a?,
bz_iabﬂga2+igc—2ilbb*b2, 2.2)

é:igb—zi%c*cz.
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operators. In Sec. 3 we study the quantum statistical
properties of the system by evaluating the second-order
coherence function. Finally we concluded in Sec. 4.

2. TIME EVALUATION OF THE SYSTEM

The energy level diagram of the three-mode
AMBECs system is shown in Fig. 1. The ABEC and the
stable MBEC modes are in the same electronic state.
The interspecies coupling strength between the ABEC
and the excited MBEC is w and that of the excited MBEC
and stable MBEC is &.

18)

[

|} v}

Fig. 1- Scheme of a three-mode AMBECs system in A configura-
tion
Here |c), |B), and|y) are the electronic states of ABEC,

excited MBEC, and the stable MBEC modes, respectively.
The three-mode bosonic Hamiltonian for exact two-photon
resonance can be written as (taking 7=1) [3, 18]

2.1

These are nonlinear and coupled operator’s equations
and hence it’s difficult to find out the exact analytical
solutions in closed-form for the time evaluation of the
field operators. But we can proceed through some short
of approximated solution method. We solved this using
a special approximation method [19]. This method has
an excellent degree of accuracy that we have established
earlier in a previous work [13]. Solutions for the time
evaluation of the field operators considering up to the
second order of the coupling and the interaction con-
stants are (In the rest of the paper we have written
a(0) =a, b(0) =b, andc(0) =c)

a(t)=fa+ f,a'b+fata® + fa’b+ fa'c+ fia'a® + f,ab™d + f.a%ab + £,a’6'b* + f,,@®" + f,,a"?a?,

b(t)=gb+g,a” +gsc+g.bb* + gb+g,a” + g:atab+ ggala® + goclc + g,,a"b” + g,,a°b'b

+g,b'be+ g b + g,,b'b% + g,.b?,

2.3)

c(t)=hec+hb+ hyc'e® + hyc+ hya® +hbd® + hyce? + hgb'c? + hybete + by ct2e?,

where the time dependent parameters f,,ie{l-11};
8,,1€{1-15}; and h;, i< {1-10} are given in APPEN-
DIX A. The parameters have the properties that at ¢ =0
the first parameters (1 =1), i.e,, f=g =h =1 and all
other parameters (i >2) are zero. As time evolves the
i > 2 parameters come out due the presence of the inter-
modal couplings and intramodal interactions. The oper-
ators a, b, and c always satisfy the bosonic commutation
relations. In the Bose-stimulated Raman adiabatic pas-

sage, two atoms in the ABEC can combine to form a mol-
ecule in the excited MBEC state and then the excited

molecule can de-excites to a stable molecule to occupy
the stable MBEC state. The total number of atoms in all
three modes (considering two atoms for one molecule in
the MBECs) is a constant of motion. If N, (¢) is the
atomic population and N, (¢), N.({) are the molecular
populations in the ABEC, excited MBEC, and the stable
MBEC modes, respectively at any instant ¢, then

N, (£) + 2N, (t) + 2N, (t) = Const. (2.4)

The time evaluation of the annihilation operators have
to satisfy the equal time commutation relations (ETCR),

01028-2
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which are [a(t),a’()]=1,[b6(z),b"(t)]=1, and

[c(t),cT (t)}:l. The solutions (Equation (2.3)) satisfy

the both (Equation (2.4) and the ETCR). Hence, the cor-
rectness of our solution is verified.

3. SECOND ORDER COHERENCE

The second order correlation is the correlation of in-
tensities. The first experimental measurement of the
second order coherence was performed by Hanbury
Brown and Twiss [20]. The equal time second order
quantum correlation function for mode j is defined as
[11, 13]

; (3.1

where n; is the number operator of mode j. For
g§2)(0) >1, the particle distribution in mode j will be su-
per-Poissonian which exhibits the bunching phenome-
non. For coherent state gj»z)(O) =1and the coherent state
always exhibits the Poissonian statistical property.
Quantum mechanically g;z)(O) <1 is also possible that

opens up a completely new distribution property which
can’t be explain by any classical theory. This is known as
quantum antibunching effect which also exhibits the
sub-Poissonian statistical distribution. In the alternative

form g;Q)(O) can also be written as

<(A”f')2>‘<”">_ D, iy
N

2
The term D, = <(Anj) >— <n,> determines the properties

gP(0) =1+

of the second order coherence of mode j. Here
D;>0,D, =0, and D; <0 correspond to super-Pois-

sonian, Poissonian, and sub-Poissonian quantum statis-
tical correlation properties of the system. Now
the quantum second order coherence function for the
joint mode ij is defined as [11, 13]

D,
g0 =1+—7

For the coupled mode the term D, = <ni n,->—<m><nj>

(3.3)

determines the quantum statistical properties of the
mode ij. We derive the values of D, for three pure BEC
modes a, b and ¢, and the values of D; for the coupled

modes ab, be, and ac.

To study the quantum coherence properties of the
system we consider all the BEC modes are initially co-
herent. Then the composite wavefunction of the system
can be written as the direct product of all three coherent
states [13, 21]. So, at t =0

v) =|<) @) ®]). .0

Here |a),|B) and |y) are the coherent state eigen func-

tions with corresponding eigen values «, B8, and y of

modes a, b, and c, respectively. The eigen values may be
real or complex. The eigen value equations are

a|y(0)) = a|w(0)),
b|w(0)) = Blw(0)),
e|y(0)) = 7w (0)).

(3.5)

We study the time evaluation of this interacting sys-
tem in the Heisenberg picture where the operators will
be evolved as per Equation (2.3). We derive the values of
D; for three pure BEC modes. They are

Da:\,3\2(\,3\2_%\044+6\a\2m\2j+[(f2+f9_,g,g)awmfsa*%(zfs_4f2,g)\afa*szg\ﬂfa*z,mc.c.} (3.6)

D, = [(gfgu +28,8, )| B + (81812 + 28,83 ) |8 By +C-c.],

D, =~ [o[* 1" (3+ 20" ) +[ (o + 21 )" 7" + .|

To study the quantum statistical properties of three
pure BEC modes, we plot the above equations in Fig. 2

r(=wt) for 5=10°Hz,
a =|B=5,]y|=12.

In the present investigation we have taken the eigen
value corresponding to the ABEC mode is complex and

with dimensionless time

o, £ =10°Hz, Ko =Xo = Xo =107,

hence we can write a = ‘a‘ e where 0 is the initial

phase angle of the ABEC mode. In Fig. 2 the eigen val-
ues for other two MBECs are real. Antibunching prop-
erty is found in all three pure BEC modes and it depends
on the initial phase angle of the ABEC mode. Where the

(3.7)

(3.8)

ABEC mode exhibits the sub-Poissonian statistical prop-
erties for = % (Fig. 2a), the excited MBEC mode

shows the super-Poissonian statistical properties for
that value of 6 (Fig. 2b). Antibunching and hence the
sub-Poissonian statistical property is found in ABEC

mode for 9:% (Fig. 2a), in excited MBEC mode for
60=0, (Fig. 2b), and in stable MBEC mode for

6=0, ”2, and 7 (Fig. 2¢). Equation (3.8) shows that
the statistical property of the stable MBEC mode is in-
dependent of the eigen value a and hence the initial

phase angle of ABEC mode (Fig. 2c).
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Fig. 2 — Plot of Dj with dimensionless time 7 for ABEC mode (a), for exited MBEC mode (b), and for stable MBEC (c). The smooth

line, dashed line, and the dotted line are for phase angles 6 =0, % and 7z, respectively

Now, we evaluate the values of D, = <ni nj>—<ni><nj> excited MBEC-stable MBEC, and ABEC-stable MBEC.

They are
for three coupled modes which are ABEC-excited MBEC,
2 2 2 * 2 9 % 2 %9

D, =-ala.f laf’ |8 +] & sl @+ 16 ap+cc.] (3.9)

2 * * 2 *
D, =[h6\ﬁ\ B+ g,y B 7+c.c.}, (3.10)
D, =0. 3.11)
We plot the Equations (3.9) and (3.10) in Fig. 3 with re- (Fig. 3a). The coupled mode of two MBECs shows the su-
scaled time 7 (= wt) taking the same values of the inter- per-Poissonian statistical behavior and it independent of
action constants, intermediate detuning, coupling con- o and hence the initial phase angle of the ABEC mode.

stants, and particle numbers as in Fig. 2. Antibunching Antibunching is possible in the joint mode of excited
is reported in the coupled mode of ABEC-excited MBEC MBEC and stable MBEC if we vary the initial phase an-
irrespective of the initial phase angle of the ABEC mode gle of any MBEC mode (Fig. 3c).

Dy, Dye Dy
- T
0.005 0.01 3

~0.01 "R 0.0006 0.0005
-0.02 [

0.0004+

0.03 [ z
. [ 0.005 0.01
-0.04 0.0002+
- [ —0.0005
& — : i
0.005 0.01
a b ¢

Fig. 3 — Plot of Dij with rescaled time ¢ for ab mode (a), and for bc mode (b) & (c). In (a) & (b) the smooth line, dashed line, and
the dotted line are for phase angles 6 =0, % and 7, respectively. In (c) the smooth line, dashed line, and the dotted line are for

phase angles v =0, % and 7, respectively

Table 1 — Quantum statistical properties of different modes

Mode $=0,y=0 6=0,y=0 6=0,¢4=0
=0 0~/ 0=rx $=0 -7/ - w=0 v-rg | V=7
2 2 2
a Super-Pois- Sub-Pois- Super-Pois- | Super-Pois- | Super-Pois- Sub-Pois- Super-Pois- | Super-Pois- | Super-Pois-
sonian sonian sonian sonian sonian sonian sonian sonian sonian
Sub-Pois- Super-Pois- Sub-Pois- Sub-Pois- Super-Pois- | Super-Pois- Sub-Pois- Sub-Pois- Sub-Pois-
sonian sonian sonian sonian sonian sonian sonian sonian sonian
c Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois-
sonian sonian sonian sonian sonian sonian sonian sonian sonian
ab Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois- Sub-Pois-
sonian sonian sonian sonian sonian sonian sonian sonian sonian
be Super-Pois- | Super-Pois- | Super-Pois- | Super-Pois- Sub-Pois- Sub-Pois- Super-Pois- | Super-Pois- Sub-Pois-
sonian sonian sonian sonian sonian sonian sonian sonian sonian
ac Poissonian Poissonian Poissonian Poissonian Poissonian Poissonian Poissonian Poissonian Poissonian
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Now we also consider the complex eigen values of the
excited MBEC and stable MBEC modes as ﬂ:‘ﬂ‘ e

and y = M e, respectively. Here ¢ and y are the ini-

tial phase angles of the excited MBEC and stable MBEC
modes, respectively. Fig. 3c shows that the joint mode of
two MBECs is sub-Poissonian for y =7z. Equation

(3.11) shows that the joint mode of ABEC and stable
MBEC is remain coherent with time and always exhibit
the Poissonian statistical property. The quantum statis-
tical properties of the pure BEC modes and their joint
modes generally depend on the initial phase angles of all
three pure BEC modes. A details study on this is sum-
marized in Table 1 where we have reported the quantum
statistical properties of three pure BEC modes (a, b, and

¢) and three joint modes (ab, be, and ac) for § =10°Hz,
=1, =7=10"0, ‘a‘ = ‘,B‘ =5, and
=12. Table-1 shows that the modes ¢ and ab are ex-

, £ =10°Hz, Xa

hibit the quantum antibunching property for any choice
of the initial phases of all three BEC modes. So, the sus-
tainable antibunching properties of stable MBEC and
the joint mode of ABEC and excited MBEC may be use-
ful in practical applications. All the pure BEC modes
and the joint modes except ac can be antibunched for
proper combinations of initial phases of the pure BEC
modes. The joint mode ac shows the Poissonian statisti-
cal property irrespective of the initial phases, the cou-
pling constants, and interaction constants.

4. CONCLUSION

We have considered a three-mode AMBECs system
which is prepared in Bose-stimulated Raman adiabatic
passage. Intermodal couplings are present in between
the ABEC and excited MBEC and also in between the
excited MBEC and stable MBEC. The intramodal inter-

(3)

actions due to the »'” nonlinearity are considered in all

three pure BEC modes. The system Hamiltonian is writ-
ten quantum mechanically considering the intermodal
couplings and the intraspecies interactions. The Hamil-
tonian is solved analytically to derive the time evalua-
tion of the field operators considering up to the second
order of coupling and interaction constants. Considering
the system initially in a composite coherent state and
employing the solutions the second order correlation
function is computed for three pure BEC modes (a, b,
and c¢) and three joint modes (ab, bc, and ac). The an-
tibunching property is reported in three pure BEC
modes and two joint modes (ab and bc¢). The joint mode
ac is remain coherent with time and hence always exhib-
its the Poissonian statistical property. We also reported
the dependence of the quantum statistical properties
with the initial phase angles of the pure BEC modes. A
comprehensive study on this of three pure BEC modes
and three coupled modes varying the initial phase an-
gles of the pure BEC modes is summarized in Table-1.
The BEC-light analogy is expected to find applications
of the antibunching properties of the three-mode
AMBECs system in quantum information processing.
Our solutions can be employed to study the other non-
classical properties of this system.

JJ. NANO- ELECTRON. PHYS. 16, 01028 (2024)

APPENDIX A
PARAMETERS OF EQUATION (2.3)

The parameters f, ie{l-11} are

F=1£=5G

21,0
fi=- 52

(t). f =-2ixt,
Fi-G(1],
fi = %[iét —G(t)],

f, = %[i&t—G(t)}—Z%ZtZ
f; ==2(fs +22.°%),
fo = 2242 3G (1) +iot (G (1) -3} .

fy =222 iste ™ -6 ()],

(A1)

2
fio =~ ? [ist+G* (1)), s =22,

where G(t) =1—e . The parameters g;, i {115} are

o f; £
gl_ &7 g2 22,g3 25G(t),
g, = 2iyte ™,

(Za) +é& ) o s
85 24752[—1616 at"’G(t):|,

f 602 . 5
g6 = 24,g7 52 [—Léte a‘+G(t)],

85 =284, 8o = -ist+G(t)], (A2)

80 = }g’—fe'iét [iét —G(t)], 811 =fs
2‘57( —id
812 = 52 b[ Ste™ G(t):|,
gy = %e’i‘” [i5t-G(t)],
8y =211, g5 = &4
and the parameters A, i €{1-10} are
=1, h,= £ G(t

2

= fi-c ()],
hy = %[iét —G(t)},

hg = ;( b [zﬁte"‘” J

hy =-2iyth, =

(A3)

h, =-2x7t%, hg =

[z5t+G J,

2
hy = gc [~ L5t+G()],h10=—2;(C2t2,

01028-5
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KBauToBO-CTAaTHCTHYHI BJIaCTUBOCTI TPUMOO0BOI cucremu Kouaencaris bose-Eitnmreiina
aTOM-MOJIEKYJIA IJII HEHYJIbOBUX BHYTPIIIHFOBUIOBUX B3A€MOIIN: AHTUTPYILIYy BAHHS

S.K. Giri

Department of Physics, Panskura Banamali College (Autonomous), 721152 Panskura, India

Crabinpauit moJstekyispunii Kougencar Bose-Eitnmreiina (MBEC) moske Gytu yrBOpeHUit yepes amiabda-
THUYHE IPOXOJKeHHS KOMOIHAIIMHOIO PO3CIIOBAHHS, CTUMYJIboBaHe bose, 3 atomapmuoro koumgencary Bose-
Eitumrreitna (ABEC) depes mpomisknuit 30ymxenuit cran MBEC. Taka TpumomoBa creremMa aToM-MOJIEKYJIa
Bose-Eitamreitnosoro kougencary (AMBEC) ckiragaerses 3 Tphox Bose-Eitamnrretinosux xonmercatis (BEC),
B axux ¢ ogud ABEC, omun 30ymxennit MBEC i omuu crabinsauit MBEC. V cucremi mpucyTHI HeHYIHOBI
iHTepMOJAJIbHI 3B’ I3KU Ta BHYTPIITHEOMOIAJIBHI B3aeMoii. Bibunit 38’130k mpucyTHin misk ABEC 1 30y mxe-
unM MBEC, a sp’asannii 38’130k mpucyTHin Misk 30ymxernM MBEC i cratiisaum MBEC. BayTpiniaboBumosi
B3a€MO/Ii1 3yMOBJIEH]I HEJIHIMHICTIO TPETHOIO MOPAAKY crcTeMu. KBAaHTOBO-MeXaHIUHMI TaMIJIBTOHIAH CHCTEMA
TO0YI0BAHO 3 YPAXyBAHHAM MIMKMOIAILHNX 3B A3KIB 1 BHYTPINTHHEOMOJAJIBHUX B3aeMOIi. Mu po3B’a3yeMo crc-
TeMHUH FaMUIBTOHIAH aHAJITAYHO, 00 3HANTH YaCOBY OITIHKY OIEPATOPIB II0JIsI, OB A3aHUX 3 yciMa TphoMa
pesxkumvamvu BEC. V mammomy mporteci BupineHHS ME BpaxyBaJId 0 IPYrOro MOPSIAKY BCIX KOHCTAHT 3B'SI3KY Ta
B3aemoil. BuxoprcroByroun 11l pillleHHs Ta MOYNHAIYY 3 ITOYATKOBOIO CKJIAEHOr0 KOTePEHTHOIO CTaHy TPhOX
mox BEC, mu fociiryemo QyHKIN0 KBAHTOBOI KOT€PEHTHOCTI IPYTOro HopsiAky Tpbox urctux mog BEC 1 tprox
noB’st3aaux Moyt (MBEC i3 36ymrenuam ABEC, MBEC i3 30ymxenusm MBEC Ta MBEC 13 cra6imsaum ABEC
). TloBimoMmutsieTbCst TIPO KBAHTOBE aHTUTPYILYBAaHHS y BCIX Tprox uwctux Momax BEC i B 30ymxenomy ABEC
MBEC, 36ymxenomy MBEC-crabinsromy 38’sz3aromy pesknmvi MBEC, Toni stk cripruit peskrm ABEC 1 cra6i-
aeHoro MBEC zaBskau korepentuuii. Mu Takosk BUBUYaEMO KBAHTOBI CTATUCTUYHI BJIACTHBOCTI CHCTEMH, BBO-
JISTYU TIOYATKOBY (pady [0 KorepeHTHHuX craHis uncrux Mox BEC. KBantoBo-craTueTiyHi BJIaCTHBOCTI PisHUX YH-
CTHX 1 IIOB’SI3QHUX MOJ[ TAKOMK 3aJIeKATh Bl MOYATKOBUX a30oBuX KyTiB unctux Mog BEC.

Kmiouosi ciiosa: Bose-eiiHmreiiniBebki KoHAeHCaTH, Bo3e-cTuMy Ib0BAHMM aaia0aTHIHNN IPOXis KOMOIHA-
witHoro poaciroBanus, Poroacomiamisa, Ksanrosa korepenTHicts, KBanTOBe aHTUrpyIyBaHHA.
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