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This study investigates the response of small-scale length parameters and homogenization models of a
simply supported nano-plate composed of functionally graded material. The natural frequency is presented
for all cases, and the effect of different modes (Voigt, Reuss, LRVE, and Tamura), thickness ratio, and non-
local parameter on the natural frequency is analyzed. The results show that the homogenization scheme is
more influential in the vibrational response of FGM nanoplate with lower aspect ratios, and an increase in
the small scale parameter causes a decrease in the natural frequency. To derive the governing equations
and resolve them, the virtual work principle and Navier's model were employed. The accuracy of the pro-
posed analytical model was verified by comparing the results with those obtained from other models avail-
able in the literature.
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1. INTRODUCTION

In recent years, there has been a significant rise in
the utilization of micro/manostructures in various fields
of engineering and technology. The fascinating examples
include solar cell energy, micro/nanosensors [1], biologi-
cal applications, and micro/nanoelectromechanical sys-
tems (MEMS/NEMS), among others. However, it is cru-
cial to note that the behaviors of these structures, such
as nanoplates, nanobeams, and nanoshells, are vastly
different from those of macrostructures due to the influ-
ence of small-scale length parameters on their behavior.
Therefore, it is essential to develop a profound under-
standing of the mechanical and thermal behavior of
micro/nanostructures.

Among the various types of advanced composite ma-
terials used in several sectors, Functionally Graded
Materials (FGMs) have drawn significant attention[2-6].
In this regard, the present article investigates the ef-
fects of various homogenization models on the free vi-
bration of a functionally graded material (FGM) nano
plate. The Voigt, Reuss, Tamura, and Local Representa-
tive Volume Elements (LRVE) schemes were utilized to
predict the effective material properties of the two-phase
particle composite. The results indicate that the Voigt
model overestimates frequencies, and the LRVE model
provides a good balance between estimation accuracy
and ease of implementation.

2. NONLOCAL ELASTICITY ERINGEN THEORY

Eringen proposed that the stress field at a point in an
elastic material depends not only on the strain at that
point but also on strains at all other points of the body.
This nonlocal stress field can be expressed as an integral
of the product of the nonlocal modulus and the classical
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macroscopic stress tensor over the volume of the material.

Eringen showed that the nonlocal constitutive equa-
tion can be represented in an equivalent differential
form. This is expressed as an equation involving the
Laplacian operator acting on the stress tensor [7], with a
material constant 7 related to the internal and external
characteristic lengths.

(1 —-12L%V?)o = t,
-2

u _ [eoa
-\t )

where u = (eoa) , €0 1s a material constant and a and L are

@.1)

2.2)

the internal and external characteristic lengths, respectively.

3. PROBLEM DEFINITION GEOMETRY

The problem assumes that the domain has geometry
of a nano rectangular plate, depicted in Fig. 1, with a
thickness of "h", a length of "a" and a width of "b".

Fig. 1 — The geometry of functionally graded nanoplates

The top surface of the plate consists of a ceramic-
rich material (SisN4) while the bottom surface is made
of a metal-rich material (SUS304). The material proper-
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ties, including the mass density p and Young's modulus
E, are determined as follows: pc = 2,370 for (SisN4) and
for SUS304. Poisson's ratiov is assumed to be constant
at 0.3 for this study.

The volume distribution fraction through the thick-
ness has been identified as following functions.

V(z) = (Zz+h)p.

2h

3.1)

4. DIFFERENT MICROMECHANICS MODELS

The micromechanics models chosen for the compari-
son study are [4]. The Mixture law or Voigt model is a
mathematical model used to describe the behavior of
composite materials. It combines the properties of indi-
vidual components linearly to obtain the properties of
the composite material. This model helps to calculate
various properties of the composite material, such as
the effective modulus of elasticity and strength. It was
first introduced by Voigt et al in 1889 [§].

P (z) =PV(2) +B,(1-V(2). 4.1)

The Reuss model is a mathematical model used to
calculate the effective properties of a composite material.
It assumes that the properties of the composite material
are obtained by averaging the properties of the individu-
al components. It is used to calculate the effective modu-
lus of elasticity, strength, and other properties of a com-
posite material used to calculate the proprieties of FG
structures with the assumption that the stress is uniform
through the thickness. Reuss A. (1929) [9].

PcPm

P(2) = Pc(1-V(2))+PpV(2)

(4.2)

The Tamura model is a mathematical model used to
calculate the effective properties of a composite materi-
al. It is based on the concept of strain energy density
and assumes that the properties of the composite mate-
rial are obtained by combining the properties of the
individual components in a non-linear manner. It is
used to calculate the effective modulus of elasticity,
strength, and other properties of a composite material.

The method of Tamura is another way to express
the linear law of Voigt where the empirical term ¢
“stress-to-strain transfer” has been added in formula-
tion. Tamura (1973) [10].

(1=V(2)) Pm(q=P)+V(2) P

P@) = Pc(1-V(2))+PnV (2)(1-V(2) ) (Q—P)+V (2) P(q—Ppm)’

(4.3)

where P(z) is the effective material property. Pn and P
are the properties of the Metal and Ceramic faces of
beam respectively.

The LRVE is developed based on the assumption that
the microstructure of the heterogeneous material is known.
The input for the LRVE for the deterministic micromechan-
ical framework is usually volume average or ensemble av-
erage of the descriptors of the microstructures.

P(z) = P,[1-, V(231 — ’;—':). (4.4)

5. GOVERNING EQUATIONS
5.1 The Displacement Field
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The displacement field of a theory is determined
based on three assumptions: partitioning of in-plane
and transverse displacements into bending and shear
components, similarity of bending parts of in-plane
displacements to classical plate theory, and hyperbolic
variation of shear strains causing shear stresses to
vanish at the top and bottom surfaces of the plate. The
resulting displacement field is then provided.

owg
ox

d
u(x,y,2,6) = up(x,y,t) = 252 — f(2)
owg
ay’

v(x,y,2,t) = vo(x,y,t) — 2‘2—“;,” - f(2) (5.1)

w(x,y,z,t) = wy(x,y,t) + ws(x,y,t)
f(z) is the warping function written as:

f@=z-@1/2-"2). (5.2)

5.2 The Nonlocal Constitutive Relations

The two-dimensional nonlocal constitutive relations
for elastic FG nano-plate can be expressed as

Ifcrx\l Ifcrx\l [Cn C, O 0 0 I(sx\l
gy ay Cp Cp 0 0 0]}g
Ty _H("_Zz+"_22) Tyt=|0 0 Cqs 0 0 [{¥qy1,(5.3)
T e F [o 0 0 ¢ o
yz yz 55 yyz
\7..) ) Lo 0 0o o ¢l

where (ax, Oy Ty Tyz) ‘ryx) and (sx, £y, Vays Vyzs yxz) are the
stress and strain components, respectively. The stiff-
ness coefficients, Cjj, can be expressed as:

E(z) _ VE(2)
1-v(2)2’ 2= 1-v(2)2’

ED _ (5.4)

2[1+v(2)]"

€1 =0 = Chy = Cs5 = G =

5.3 Hamilton’s Principle

Hamilton's principle is used herein to derive the
equations of motion.

0= [, (8U - 68K)dt, (5.5)

where 60U is the variation of strain energy; and JK is the
variation of kinetic energy.

6. SOLUTION PROCEDURE

Following the Navier solution procedure, we assume
the following solution form for wugy, vy, w, and wy that
satisfies the boundary conditions:

Uo Uppne'“tcos(ax)sin(By)

vo [ _ | Vnne'“tsin(ax)cos(By) ©.1)
Wp Wymne “tsin(ax)sin(By) |’ ’
Ws

Wemne'@tsin(ax)sin(By))

where U, Vi Womn and W, are arbitrary parame-
ters to be determined, w is the eigenfrequency associat-
ed with (m, n) th eigenmode. The analytical solutions

can be obtained from
my; 0 0 0 Unin 0
0 mpy 0 0 v, 0
3.2 22 mn | _
< Aw l 0 0 m3z mg, ){Wbmn} {0} (62)
0 0 Mgy My Wemn 0

Q1 A1z A3 Gy
Qiz Gz Q3 Qg
Qi3 O3 Q33 Q3
Q14 G4 Q34 Qyq
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(I, 11,]1, 15, ]2, K5) are mass inertias defined as:

Uo Iz )2 Ko) = 107, (1, 2%, 2f, f)p(2)dz

And A}, Bj, Djj, etc., are the plate stiffness, defined by

All

n/2
Aiz Bz D Bf; Di; Hi; =f Ci1(1,z f2(2)){v}dz
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7. RESULTS AND DISCUSSION

JJ. NANO- ELECTRON. PHYS. 15, 06018 (2023)

This section of the study focuses on investigating
Homogenization Models and small-scale length parame-
ters response of of a simply supported nano-plate com-
posed of functionally graded material. The non-
dimensionalized natural frequency is presented for all

cases defined as:
@® = wh /&,
Ge

where @ is the natural frequency, o and G. are the mass
density and shear modulus of the ceramic phase, respectively.

(7.1)

7.1 Comparison and Validation Numerical Study

The main purpose of Table 1 is to validate the nu-
merical results obtained in this study that investigates
the natural frequency of FGM square nano plates with
gradient index taken p = 5, by comparing them with the
results presented in a relevant literature by Natarajan
et al. (2012) [11]. The table presents important details
regarding the Effect of thickness ratio L/h, modes (1,2
and 3), Homogenization Models (Voigt Reuss, LRVE
and Tamura) and the nonlocal parameter p on the nat-
ural frequency. The table allows for a comparison of the
results obtained in the current study with the results
obtained in the literature, thereby validating the nu-
merical analysis and ensuring the accuracy and reliabil-
ity of the study.

Table 1 - Effect of thickness ratio, modes, homogenization models, and nonlocal parameter on natural frequency of FGM square

nano plates with gradient index p =5

Model (n=1-m=1) Mode 2 (n=1-m=2) Mode3 (n=1-m=3)
The nonlocal parameter 4 | The nonlocal parameter z | The nonlocal parameter u
a/h | schemes 0 1 2 4 0 1 2 4 0 1 2 4
Mori- 0.0441 0.0403 0.0374 0.0330 0.1051 0.0860 0.0745 0.0609 0.1051 0.0860 0.0746 0.0610
Tanaka [11]
Voigt 0.0442 | 0.0401 [ 0.0376 | 0.0331 [ 0.1050 | 0.0863 | 0.0745 | 0.0610 | 0.1980 | 0.1400 | 0.1150 [ 0.0888
10 Reuss 0.0455 | 0.0418 [ 0.0385 | 0.0339 [ 0.1080 | 0.0884 | 0.0766 | 0.0627 | 0.203 0.144 0.118 0.0914
LRVE 0.0467 | 0.0425 [ 0.0397 | 0.0350 [ 0.113 0.0922 | 0.0796 | 0.0653 | 0.210 0.148 0.121 0.0947
Tamura 0.0455 0.0418 0.0385 0.0339 0.108 0.0884 0.0766 0.0627 0.202 0.144 0.118 0.0914
Mori- 0.0113 0.0103 0.0096 0.0085 0.0278 0.0228 0.0197 0.0161 0.0279 0.0228 0.0198 0.0162
Tanaka [11]
Voigt 0.0113 0.0104 0.0096 0.0084 0.0279 0.0229 0.0198 0.0163 0.0544 0.0388 0.0317 0.0246
20 Reuss 0.0118 | 0.0107 [ 0.0099 | 0.0087 | 0.0288 | 0.0237 | 0.0203 | 0.0167 | 0.0565 | 0.0399 | 0.0326 | 0.0254
LRVE 0.0120 | 0.0110 [ 0.0102 | 0.0089 [ 0.0298 | 0.0244 | 0.0212 | 0.0173 | 0.0582 | 0.0412 [ 0.0338 [ 0.0260
Tamura 0.0117 | 0.0107 [ 0.0099 | 0.0087 [ 0.0288 | 0.0237 | 0.0205 | 0.0167 | 0.0565 | 0.0399 | 0.0326 | 0.0254
7.2 The Effect of Different Modes on the Natural FREQUENCY

Frequency

According to Fig. 2, there is a clear relationship be-
tween the height values of natural frequency and their
corresponding eigenmode values. This means that as
the values of natural frequency increase, while
eigenmode values also increase. Additionally, the
smallest natural frequency values are associated with
the smallest eigenmode values.

Overall, Fig. 2 shows how different eigenmodes affect
the natural frequency of an FGM nano plate, and empha-
sizes the significance of selecting an appropriate analytical
solution to accurately determine the natural frequency.

01580
01433
0.4 0.1288

01138

LN @

0.08800

0.08425

0.06980

30,
)
2

0.05475

0.04000

0.02525

(AONAND:

o.01050

Fig. 2 — The effect of different modes on the natural frequency
of FGM nanoplate (3D) plot
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7.3 Effect of the Thickness Ratio Parameter
(a/h) on the Natural Frequency

Fig. 3 presents the impact of homogenization
schemes on the fundamental frequency of FGM nano-
plate at different aspect ratios (a/h), where p =5. The
results show that the homogenization scheme is more
influential in the vibrational response of FGM nano-
plate with lower aspect ratios, and this conclusion ap-
plies to all types of models.

Moreover, it is observed that the Voigt and Reuss
modelshave the highest and lowest frequencies, respec-
tively, among all homogenization schemes. On the other
hand, increasing the number of material length scale
parameters leads to an increase in the fundamental
frequency, indicating that the LRVE model has the
highest frequency among other plate models.
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Fig. 3 — Effect of the nonlocal parameter (1) and the thickness
parameter (a/h) on natural frequency

7.4 Effect of the Nonlocal Parameter (4) and the
Homogenization Models on the Natural Fre-
quency

Fig. 4 illustrates the correlation between the non-
local parameter and the natural frequency of (FGM)
nano-plate under different homogenization models.
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Fig. 4 — Effect of the nonlocal parameter (1) and thehomogeni-
zation scheme on natural frequency
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nonlocal parameter increases, resulting in a stiffer
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Tamura and Reuss models also demonstrate a frequen-
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nonlocal parameter.

7.5 Effect of the Nonlocal Parameter () and
Eigenmode on Natural Frequency

Fig. 5 displays how the natural frequencies of an FG
nano-plate with a/h = 10 are impacted by the first three
eigenmode values for different small scale parameter
values. The results show that an increase in the small
scale parameter causes a decrease in the natural fre-
quency. This can be attributed to the reduction in stiff-
ness of the FG nano-plate caused by an increase in the
small scale parameter.
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8. CONCLUSION

The study provides valuable insights into the vibra-
tional behavior of functionally graded material nano-
plates under different conditions. The results show that
the homogenization scheme, aspect ratio, and small-
scale length parameter significantly affect the natural
frequency of the nano-plate. The study confirms the
accuracy and reliability of the numerical study and
provides important resources for researchers and engi-
neers working in advanced composites sectors. The
findings can be used to design and optimize nano-plates
in various applications.
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Y 1mpoMy FOCITIIPKEHH] JTOC/IKYEThC PeaKInsa AploHoMAacCIITa0HUX TapaMeTpiB JOBKUHUA TA MOJIeJIei
TOMOTeHI3aIlil IPOCTO MATPUMYBAHOI HAHOILJIACTHHU, 10 CKJIATAETHCS 3 (PYHKIIOHAJIHHO COPTOBAHOTO Ma-
Tepiasny. Biacua yacrora mpejcraBiieHa IS BCIX BUMAIKIB, 8 TAKOK TPOAHAII30BAHO BILJIUB PISHUX PEIKH-
wmiB (Boiirra, Peiicca, LRVE 1 Tamypwu), koedirienTa TOBIIMHA Ta HEJIOKAJIHLHOTO IapaMeTpa Ha BJIACHY Jac-
ToTy. PesysbraTty mokasyoTs, 110 cxeMa TOMOreHi3alil Mae Ol/IBIINI BIJINB HA BIOPAI[NHY peakIliio HAHOI-
nacruan FGM i3 MeHIIIMMHY CITIBBIIHOIIIEHHSMH CTOPIH, a 30L/ILIIeHHS IapaMeTpa MaJIOro MacIuTady CIIpH-
YMHsSIe 3MEHIIeHHs BiacHol dactotu. [1{o6 BuBecTH KepiBHI PIBHSIHHSA TA PO3B’A3aTH IX, 0yJI0 BUKOPUCTAHO
IPHUHIUAI BIPTyaJIbHOI po0oTu Ta Momesib Has’e. TouHicTh 3aIIpoIIOHOBAHOI AHAJITHYHOI MOIEJIi OyJIo Iepe-
BIPEHO IIJISIXOM IIOPIBHSHHS Pe3yJIbTATIB 3 Pe3yIbTaTaMi, OTPUMAHNUMU 3 1HIIUX MOJeJsIeH, JOCTYIIHUX Y JIi-
Teparypi.

Kmiouosi ciosa: OynxiionassHo rpamyioBanuii Marepias, JpibHomacurraGHHII mapaMerp JOBIKUHH,
Mogesmi romorenisariii, Biracaa gacrora, Bibparriiina moBemiaga.
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