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In the presented article a relationship between the structure of defects in CdSexTei-x (x = 0.4) and its
kinetic properties is established. For the first time, a method for determining the energy spectrum, wave
function, and self-consistent crystal potential in CdSeo.4Teos at a predetermined temperature is proposed.
Within the framework of the supercell method, the structure of defects is studied and the temperature de-
pendences of the ionization energies of various types of defects are determined. The proposed method also
makes it possible to determine the temperature dependences of the optical and acoustic deformation poten-
tials, as well as the temperature dependence of electron scattering parameters on different types of crystal
defects. Within the framework of the short-range scattering models, the dependences of the electron mobil-
ity and electron's Hall factor vs temperature are established.
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1. INTRODUCTION

The solid solution CdSesTe1-x is widely used in the
manufacturing of solar energy devices and infrared detec-
tors. This is due to the fact that this material has a re-
quired band gap and a large absorption coefficient. Such
properties make it suitable for photovoltaic applications in
solar energy converters. Therefore, the study of the quali-
ty of crystals of this solid solution attracts the attention of
many researchers and is an important applied problem. It
is known that the main factor determining the optical and
electrical properties of the solid solution CdSe Tei-» is
crystal lattice defects of various types. The structure of
crystal defects of this solid solution is systematically stud-
ied in works [1-13]. However, these works do not investi-
gate the relationship between the defect structure and the
kinetic properties of CdSexTei-» On the other hand, in
work [14] an attempt is made to establish such a relation-
ship in the sphalerite n-CdSexTe1-x (0.1 <x < 0.5) crystals
by combining two theoretical methods: 1) application of
the wave function and self-consistent potential obtained
from first principles using the ABINIT code; 2) application
of the short-range principle to consider the scattering of a
charge carrier on different types of crystal defects [15-17].
However, there are certain shortcomings in this work: 1)
the used wave function and self-consistent potential de-
scribe the ground state of the crystal (7'=0) and therefore
cannot be used to describe the crystal state at 7> 0; 2) the
defects structure is described by a donor defect of an un-
known nature with the ionization energy AEp~ 10 meV,
which do not depend on temperature. To eliminate the
above-mentioned shortcomings, the proposed work, for the
first time, suggests a method for calculating the wave
function and self-consistent crystal potential of the solid
solution CdSesTe1-x (x =0.4) with the sphalerite structure
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which will be used to describe the crystal state at 7> 0. In
addition, here we consider the method of determining the
structure of donor defects in CdSexTe1-x» (x=0.4), which
will allow the temperature dependences of the ionization
energies of various types of defects to be defined. These
methods are used to describe the kinetic properties of the
CdSeo.4Teo.6 solid solution.

2. THE METHOD OF CALCULATING THE
WAVE FUNCTION AND SELF-CONSISTENT
CRYTAL POTENTIAL AT A GIVEN
TEMPERATURE

When calculating, a value of the lattice constant for
each value of the composition of the solid solution was
chosen so as to coincide with the experimental data.
These values were used to calculate the wave functions
and crystal potentials of CdTe and CdSe unit cells, as
well as CdsTes and CdsSes supercells.

The wave function and self-consistent potential of
the ideal CdSeo.4Teo.s solid solution were determined as
follows. Initially, these values and the energy spectrum
were calculated for the unit cells of the sphalerite CdTe
and CdSe (note that Cd atoms are on the cell boundary,
and Te or Se atoms are inside the cell). For this pur-
pose, previously selected GGA exchange-correlation
potentials of Cd, Se, and Te were used as initial data.
Then a certain mixture of these exchange-correlation
potentials and the Hartree-Fock exchange-correlation
potential was chosen (this mixture is determined by the
parameter a)[17]. The value of the parameter o was
chosen for the following reasons: at a given tempera-
ture, the theoretical value of the band gap should be
equal to its experimental value, which was determined
from the expression [18, 19]:

Egcasere = X Egcase + (1 — X)Egcase — 0.9x(1 — x) eV, (1)

Using such a method, it is possible to select, for a
given solid solution composition, certain values of the
parameter o that correspond to the width of the band
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gap at 0 K and 300 K. Herewith, the wave functions
Yeare, ¥ease and potentials Ucare, Ucase of the spha-lerite
CdTe and CdSe unit cells at 0 K and 300 K are calculat-
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ed. The calculation results are presented in Table 1.

Table 1 — Energy spectrum of CdTe and CdSe elementary cell

T=0E,=1512eV,A=1.545" eV

Energy levels of E._1x (5.854) (0) a = 0.08866
CdTe cell, eV E,_3 x (4.342) (2)*
Energy levels of E._1 % (4.309) (0) a = 1.1941

CdSe cell, eV E,_3x(2.797) (2)

T =300,E, = 1.380 eV,A= 1.503 eV

Energy levels of E._1x (5.798) (0) a = 0.0309
CdTe cell, eV E,_ 3 x (4.418) (2)
Energy levels of E._1 % (4.295) (0) a = 1.17045

CdSe cell, eV E,_ 3 x(2915) (2)

* A — a shift between the energy levels of ideal CdTe and CdSe
elementary cells.

* Recording 3 x (4.342) (2) means that there is exist
3-fold degenerate energy level with an occupation number
equal 2.

As can be seen from Table I, at a given temperature,
the energy levels Ec and E, in CdTe and CdSe cells do
not match, i.e., there exist energy barriers in the tran-
sition between cells of different types. However, it is
known from experiment that a solid solution
CdSeo.4Teo.s at a given temperature has the same band
gap width in all parts of the crystal. To eliminate this
contradiction between experiment and theory, we shall
use the following technique: the energy levels of the
CdSe cell is shifted up by the value A, which is equal to
the difference in the levels of the bottom of the conduc-
tion band E. (or the top of the valence band E.) in two
different unit cells. Then we obtain a crystal that has
the same band gap width in each of its parts (see
Fig. 1). It should be noted that a similar result is ob-
tained if the energy levels of the CdTe cell are shifted
down by the value A.

CdSe CdTe Cdse CdTe

A B A B

5.854 (0) 5.854 (0) | 5.854 (0)

4.309 (0)

4.342 (2) 4.342 (2) | 4.342(2)

2.797 (2)

X

Fig. 1 — The location along the X axis of ideal CdTe and CdSe
elementary cells and the corresponding positions of the energy
levels for ideal elementary cells at T = 0 K for CdSeo.4Teo..

The above theoretical approach can be justified as
follows: a) in the experiment, the width of the band gap
E; is measured, i.e., the difference in the energy levels,
but not their absolute values. Therefore, the reference
point of the energy in each cell can be chosen arbitrari-
ly; b) the coordinate systems in the cells of CdTe and
CdSe are not related to each other. This means that in
Fig. 1 point A is the reference point of the coordinate
system (x =0, y =0, z=0) in the CdSe cell, and point B
is the reference point of the coordinate system (x'=0,
y'=0,2z'=0) in the CdTe cells.

Based on the wave functions and crystal potentials of
the unit cells, the wave functions and derivatives of the
crystal potential with respect to the coordinates of the
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cell atoms can be calculated for the ideal CdSesTe1-x
solid solution [14]. Using these characteristics of the
ideal CdSexTe1 -« solid solution and short-range scatter-
ing models [15-17], it is possible to calculate the electron
scattering constants on crystal lattice defects [20]. These
scattering constants are represented as integrals over
the wave function wy(r)casere and the crystal potential
U(r)casere. Since the functions y(r)casere and U(r)cdseTe
are different at 0 K and 300 K, then, accordingly, the
scattering constants are different, i.e., these scattering
parameters depend on temperature. Assuming the sim-
plest, linear, temperature dependence, it is possible to
obtain these dependences of the above-mentioned con-
stants:

Apo = (1007 +2x 1074 T) x 10720 m?,  (2a)
dy=-73-2x10"3TeV, (2b)

Eje = —2.06—233%x107*TeV, (2¢)

Ay =(0498-333x107°T) x 101 m™1,  (2d)

The obtained temperature dependences of the scat-
tering constants make it possible to calculate the elec-
tron scattering probability on different types of crystal
defects and, in turn, the kinetic coefficients of the
CdSeo.4Teo.6 solid solution.

3. CALCULATION OF THE TEMPERATURE
DEPENDENCE OF THE IONIZATION ENER-
GY OF CRYSTAL DEFECTS

This article considers the following intrinsic donor
defects: Cdre , Cdse , Vse-Cdse. The energy spectrum of
the defect structure was calculated using the supercell
method [20]: for Cdre — supercell CdgoTe7; Cdse — super-
cell CdeSer; Vse—Cdse — supercell CdoSes. In addition,
the energy spectrum of the ideal CdsTes and CdsSes
supercell were calculated.

To calculate the energy spectrum of ideal and defec-
tive supercells, it is necessary to have pseudopotentials
of Cd, Se and Te atoms. The pseudopotentials for these
atoms were obtained by means of the AtomPAW
(Atompaw v3.0.1.9 and AtomPAW2Abinit v3.3.1) code.
The PAW functions have been generated for the follow-
ing valence basis states: 5s25p%4d'° for Cd, 4s24p* for Se
and 4s24p%5s25p* for Te. The radii of the augmentation
spheres reaw have the following values: 2.2, 1.8 and 2.4 for
Cd, Se and Te respectively. The exchange and correlation
effects have been taken into account within density-
functional theory (DFT), namely in generalized gradient
approximation (GGA) formalism. The output files of the
AtomPAW code contain a full set of data which are input
parameters for initiation of the ABINIT code. The result of
calculations of energy spectra of ideal supercells for the
CdSeo.35Teo.65 solid solutions is presented in Table 2.

As can be seen from Table 2, the energy levels of the
spectra of the ideal CdsTes and CdsSes supercells do not
coincide, i.e., there are energy barriers between the
CdsTes and CdsSes supercells. Therefore, as in the case
of CdTe and CdSe unit cells, it is necessary to shift the
energy levels of the CdsSes supercell up (or the energy
levels of the CdsTes supercell down) by the value A
equal to the difference in the levels of the bottom of the
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conduction band (or the top of the valence band) in two
different supercells. As a result, we will get an ideal so-
id solution in which the ideal CdsTes and CdsSes super-
cells are located in a certain way, for which the lattice
constant and the theoretical value of the band gap
coincide with the experiment.

Table 2 — Energy spectrum of ideal CdsTes and CdsSes supercells

T=0,E; =1512eV,A= 123 eV

Energy levels of E._1x(5.021) (0) a = —0.08165
ideal CdsTes E,_2 % (3.509) (2)
supercell, eV

Energy levels of E._1x(3.791) (0) a = 0.93
ideal CdsSes E,_2x(2.279) (2)

supercell, eV

T =300,E;, = 1.380 eV,A= 1.216 eV

Energy levels of E._1 % (4.963) (0) a=-—0.1243
ideal CdsTes E,_2 % (3.583) (2)
supercell, eV

Energy levels of E._1x (3.747) (0) a = 0.7871
ideal CdsSes E,_2x(2.367) (2)

supercell, eV

A comparison of the energy spectra of the ideal (the
energy levels of which are shifted by the appropriate
value A) and defect (the origin energy levels of which
are also shifted by the appropriate value A) supercells
is presented in Table 3. Based on these data and using
the method proposed in [20], it is possible to determine
the ionization energies of various defects in the crystal
lattice of CdSeo.4Teo.s solid solution. The results of the
calculations take the form.

It should be noted that the above method for de-
scribing an ideal CdSeo.4Teos crystal and the structure
of its defects is a combination of the short-range princi-
ple (exchange of energy (electrons) occurs only between
neighbouring crystal regions) and the first principles
approach (calculation of the energy spectra of different
regions of the crystal).
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Table 3 — Energy spectrum of ideal and defect supercell

T=0,E; =1512¢eV
Energy levels of Energy levels of Tonization
ideal CdsTes defect, eV energy, eV
(CdsSes), eV

E,_1x (5.021) (0) Cdre

E,_2 % (3.509) (2) 2 x (5.200) (0) AE, = 0.064
1 x (4.957) (2)

E,_1x (5.021) (0) Cds.

E,_2 % (3.509) (2) 2x(5917) (0) | AEp, = —0.534
1 x (5.555) (2)

E._1x (5.021) (0) Vse —Cdse

E,_2 x (3.509) (2) 2 x (5.027) (0) AEp = 0.057
1% (4.964) (2)

T =300,E;, = 1.380eV

E._1 % (4.963) (0) Cdre.

E, 2 % (3.583) (2) 2x(5.211) (0) | AEp = —0.010
1x (4.973) (2)

E._1x (4.963) (0) Cdse

E,_2 % (3.583) (2) 2 % (5.930) (0) AEp, = —0.599
1 % (5.562) (2)

E._1x (4.963) (0) Vse —Cdse

E, 2 x (3.583) (2) 2 x (5.035) (0) AE, = 0.030
1x (4.933) (2)

Cdre: AEp = 0.064 — 247 x 10™* T, (3a)
Vse — Cdge: AE = 0.057 —9 %X 1075 T, (3b)

4. DISCUSSION

Based on the theoretical assumptions presented in the
two previous sections, the article considers the transport
phenomena in the CdSeo.4Teos solid solution in the tem-
perature range of 10 +400 K and defects concentration
Np=5x10"=+5x 1018 cm —3. When solving the neutrality
equation, the transition of defects Cdre and Vse—Cdse into
a fully ionized state, as well as complete ionization of the
defect Cdse, was taken into account:

T <2249K,
F-AE e N 1 F-AE e—Cdgse
n—p=(1-x)Np/{1+2exp [T?T]} + XTD +5xNp /{1 + 2exp []ZB%TMS]},
2249K< T,

n—p=1A-x)Np +§xND +§xND/[1 + 2exp [M]],

The theoretical dependences of the electron mobility
on temperature for different defects concentrations
(donors and static strain (SS) centers) are shown in
Fig.3. The electron mobility was calculated on the basis
of short-range scattering models [14-17] using the exact
solution of the Boltzmann kinetic equation.

A comparison of two competing approaches (short-
range and long-range scattering models) in the descrip-
tion of transport phenomena in CdSeo4Teos is consid-
ered in Fig. 3a — 3e. Solid curves 1 correspond to short-
range scattering models and are obtained within the
framework of the exact solution of the Boltzmann ki-
netic equation Dashed curves 2 and 3 correspond to
long-range scattering models (relaxation time approxi-
mation): curve 2 describes the region of low tempera-
ture (hw > kgT), curve 3 describes the region of high
temperatures (hw « kgT). As it can be seen, these

kT

curves demonstrate significant qualitative and quanti-
tative differences of the temperature dependences of
the electron mobility throughout the studied range of
defect concentrations and temperatures. Regarding the
approximation of the relaxation time, the following
remark should be made. It is known that for
CdSeo.4Teos the Debye temperature is equal to
Op =261 K. It means that the low-temperature region
will be determined by the condition 7'< 26.1 K, and the
high- temperature region will be determined by the
condition 7'> 2610 K. From this point of view, the ap-
plication of the relaxation time approximation (elastic
scattering) in the range of 26.1 K < T'< 2610 K is incor-
rect because in this temperature range the inelastic
scattering occur. At the same time, the short-range
scattering models allow a description of inelastic scat-
tering. Thus, it can be argued that the short-range
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models give a more adequate description of the physical
reality than the long-range models.

10 100

3

Fig. 2 — Electron mobility versus temperature in CdSeo.sTeos
with a different defects concentration. A — Np =5 x 104 cm-3,
Nss=1x10%cm~-3 B— Np=>5 x 10 cm—3, Ngs = 3 x 105 cm~3;
C—-Np=5x10%6cm-3, Nss=1x 106 cm-3; D — Np=5 x 107 cm~3,
Nss=3x10%6cm-3; E— Np=5x 108 cm~-3, Nss=8 x 1018 cm—3
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Fig. 3 — Comparison of two theoretical approaches in

CdSeo.4Teos samples: 1— short-range scattering models; 2 and
3 — relaxation time approximation

The proposed method of calculation allows the tem-
perature dependence of the electron’s Hall factor for
CdSeo.4Teo.s to be obtained (see. Fig. 4). As can be seen,
at low temperatures in sample D the electron gas is in
a degenerate state, while in samples A, B, C and D the
electron gas is non-degenerate or in an intermediate
(between degenerate and non-degenerate) state. At
high temperatures, the minima of the curves are ob-
served in the region where the transition from the dom-
inance of one scattering mechanism to another takes
place. The higher defect concentration in the crystal
determines the higher temperature where the mini-
mum of dependence rx(T) is observed.

JJ. NANO- ELECTRON. PHYS. 15, 05005 (2023)
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Fig. 4 — Electron’s Hall factor versus temperature in

CdSeo.4Teos samples with a different defects concentration.
The notation of the samples is the same as on Fig. 2

It should be noted that the proposed above calcula-
tion method can be applied to ternary, quaternary and
higher multicomponent solid solutions with sphalerite
structure. Indeed, if in the case of the binary solid solu-
tion CdSexTe1 - x, it was necessary to apply the supercell
method to two supercells CdsTes and CdsSes, then, for
example, in the case of the ternary solid solution
CdSeSTe one more supercell Cd8S8 should be added.
Further, by carrying out the calculation proposed
above, it is possible to determine the type of defects, as
well as the temperature dependence of their ionization
energies. By modifying electroneutrality equations, it is
possible to determine the Fermi level and, accordingly,
calculate the kinetic coefficients of the CdSeSTe solid
solution. The same can be done in the case of higher
multicomponent solid solutions.

5. CONCLUSION

In the presented paper, for the first time, a method
for calculating the energy spectrum of electrons, wave
function, and self-consistent potential of the CdSexTe1x
(x=0.4) solid solution for a predetermined temperature
is proposed. The application of this method to an ideal
unit cell made it possible to determine the temperature
dependences of the electron scattering constants on crys-
tal defects. This made it possible to calculate the proba-
bility of electron scattering on crystal defects and, ac-
cordingly, to identify the kinetic coefficients of
CdSeo.4Teos. The application of the same method for
CdsTes and CdsSes supercells made it possible to define
the structure of defects, as well as to calculate the tem-
perature dependence of the ionization energies of crystal
defects. Within the framework of the short-range scatter-
ing models, the dependences of electron mobility and
electron's Hall factor on temperature were established. A
comparison of the theoretical curves 1(7) obtained with-
in the framework of two competing approaches was
made: a) short-range scattering models; b) long-range
scattering models (approximation of the relaxation time).
It was established that the short-range scattering mod-
els more adequately describe the transport phenomena
in the solid solution CdSexTe: -x. The possibility of apply-
ing the proposed calculation method not only for other
binary solid solutions, but also for ternary, quaternary
and higher multicomponent solid solutions with the
sphalerite structure is substantiated.
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Kinernuni Binacrusocri CdSeosTeos: 38’30k ab initio migxoay 3 mpuHIHUIIOM OIU3BKOMIT

O.I1. Manur

Hauionanvruti ynisepcumem «JIvgiscorka nonimexwnixar, 12, eyn. C Bandepu, 29013 Jlveis, Yipaina

V crarTi BeTaHOBIIEHO 3B's130K MiK cTpyKTypoio AedertiB y CdSe Tei-x (x = 0,4) Ta #oro KiHeTHYHUMY BJIAC-
THUBOCTSIMH. Briepiiie 3ampomnoHOBaHO METO| BUSHAYEHHSI €HePreTHYHOIO CIIEKTPY, XBIJIBOBOI (DYHKIII Ta camMoy-
3roReHOro Kprcrasiusoro noreriany B CdSeosTeos pu 3amamiil Temmeparypl. Y paMKax METOLY CyLIepKOMi-
PKH JOCIIIIKEHO CTPYKTYPY JedeKTiB 1 BUSHAYEHO TEeMIIePATYPHI 3aJIesKHOCTI eHepriil 10Hi3all pisHUX TUINB
nedeKTiB. 3aIIPOIIOHOBAHMI METO TAKOMK JA€ 3MOTY BU3HAYNUTH TEMIIEPATYPHI 3AJIEIKHOCTI OITUYHOIO Ta aKyC-
TUYHOIO HIOTEHIHATIB JedopMariii, & TAKOK TeMIIepaTypHy 3aJIesKHICTh IapaMeTpiB PO3CIIOBAHHS eJIEKTPOHIB Ha
pisuux THOAX JAedeKTiB KprcTaia. B paMrax GJIM3bKOIIIOUMX MOesIeil PO3CITHHSA BCTAHOBJIEHO 3aJIEIKHOCTI PY-
XJIMBOCTI €JIEKTPOHIB 1 parTopa XoJIa eJIeKTPOHIB Bl TEMIIEPATyPH.

Knrouori ciiopa: CdSeTe, ITepenecenns emexrponiB, Tourosi gederrn, Ab initio pospaxyrox, [IpuaHIn

GJIM3BKO/II.
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