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In the presented article a relationship between the structure of defects in CdSexTe1 – x (x  0.4) and its 

kinetic properties is established. For the first time, a method for determining the energy spectrum, wave 

function, and self-consistent crystal potential in CdSe0.4Te0.6 at a predetermined temperature is proposed. 

Within the framework of the supercell method, the structure of defects is studied and the temperature de-

pendences of the ionization energies of various types of defects are determined. The proposed method also 

makes it possible to determine the temperature dependences of the optical and acoustic deformation poten-

tials, as well as the temperature dependence of electron scattering parameters on different types of crystal 

defects. Within the framework of the short-range scattering models, the dependences of the electron mobil-

ity and electron's Hall factor vs temperature are established. 
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1. INTRODUCTION 
 

The solid solution CdSexTe1 – x is widely used in the 

manufacturing of solar energy devices and infrared detec-

tors. This is due to the fact that this material has a re-

quired band gap and a large absorption coefficient. Such 

properties make it suitable for photovoltaic applications in 

solar energy converters. Therefore, the study of the quali-

ty of crystals of this solid solution attracts the attention of 

many researchers and is an important applied problem. It 

is known that the main factor determining the optical and 

electrical properties of the solid solution CdSexTe1 – x is 

crystal lattice defects of various types. The structure of 

crystal defects of this solid solution is systematically stud-

ied in works [1-13]. However, these works do not investi-

gate the relationship between the defect structure and the 

kinetic properties of CdSexTe1 – x. On the other hand, in 

work [14] an attempt is made to establish such a relation-

ship in the sphalerite n-CdSexTe1 – x (0.1  x  0.5) crystals 

by combining two theoretical methods: 1) application of 

the wave function and self-consistent potential obtained 

from first principles using the ABINIT code; 2) application 

of the short-range principle to consider the scattering of a 

charge carrier on different types of crystal defects [15-17]. 

However, there are certain shortcomings in this work: 1) 

the used wave function and self-consistent potential de-

scribe the ground state of the crystal (T  0) and therefore 

cannot be used to describe the crystal state at T  0; 2) the 

defects structure is described by a donor defect of an un-

known nature with the ionization energy ED  10 meV, 

which do not depend on temperature. To eliminate the 

above-mentioned shortcomings, the proposed work, for the 

first time, suggests a method for calculating the wave 

function and self-consistent crystal potential of the solid 

solution CdSexTe1 – x (x  0.4) with the sphalerite structure 

which will be used to describe the crystal state at T  0. In 

addition, here we consider the method of determining the 

structure of donor defects in CdSexTe1 – x (x  0.4), which 

will allow the temperature dependences of the ionization 

energies of various types of defects to be defined. These 

methods are used to describe the kinetic properties of the 

CdSe0.4Te0.6 solid solution. 

 

2. THE METHOD OF CALCULATING THE 

WAVE FUNCTION AND SELF-CONSISTENT 

CRYTAL POTENTIAL AT A GIVEN  

TEMPERATURE 
 

When calculating, a value of the lattice constant for 

each value of the composition of the solid solution was 

chosen so as to coincide with the experimental data. 

These values were used to calculate the wave functions 

and crystal potentials of CdTe and CdSe unit cells, as 

well as Cd8Te8 and Cd8Se8 supercells.  

The wave function and self-consistent potential of 

the ideal CdSe0.4Te0.6 solid solution were determined as 

follows. Initially, these values and the energy spectrum 

were calculated for the unit cells of the sphalerite CdTe 

and CdSe (note that Cd atoms are on the cell boundary, 

and Te or Se atoms are inside the cell). For this pur-

pose, previously selected GGA exchange-correlation 

potentials of Cd, Se, and Te were used as initial data. 

Then a certain mixture of these exchange-correlation 

potentials and the Hartree-Fock exchange-correlation 

potential was chosen (this mixture is determined by the 

parameter )[17]. The value of the parameter  was 

chosen for the following reasons: at a given tempera-

ture, the theoretical value of the band gap should be 

equal to its experimental value, which was determined 

from the expression [18, 19]: 

 

 𝐸𝑔𝐶𝑑𝑆𝑒𝑇𝑒 = 𝑥 𝐸𝑔𝐶𝑑𝑆𝑒 + (1 − 𝑥)𝐸𝑔𝐶𝑑𝑆𝑒 − 0.9𝑥(1 − 𝑥)   𝑒𝑉, (1) 
 

Using such a method, it is possible to select, for a 

given solid solution composition, certain values of the 

parameter  that correspond to the width of the band 

gap at 0 K and 300 K. Herewith, the wave functions 

CdTe, CdSe and potentials UCdTe, UCdSe of the spha-lerite 

CdTe and CdSe unit cells at 0 K and 300 K are calculat-
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ed. The calculation results are presented in Table 1. 
 

Table 1 – Energy spectrum of CdTe and CdSe elementary cell 
 

𝑇 = 0, 𝐸𝑔 = 1.512 𝑒𝑉, ∆= 1.545∗  𝑒𝑉 

Energy levels of 

CdTe cell, eV 

𝐸𝑐−1 × (5.854) (0) 
𝐸𝑣−3 × (4.342) (2)∗∗ 

𝛼 = 0.08866 

Energy levels of 

CdSe cell, eV 

𝐸𝑐−1 × (4.309) (0) 
𝐸𝑣−3 × (2.797) (2) 

𝛼 = 1.1941 

𝑇 = 300, 𝐸𝑔 = 1.380 𝑒𝑉, ∆= 1.503  𝑒𝑉 

Energy levels of 

CdTe cell, eV 

𝐸𝑐−1 × (5.798) (0) 

𝐸𝑣−3 × (4.418) (2) 
𝛼 = 0.0309 

Energy levels of 

CdSe cell, eV 

𝐸𝑐−1 × (4.295) (0) 
𝐸𝑣−3 × (2.915) (2) 

𝛼 = 1.17045 

 

*  – a shift between the energy levels of ideal CdTe and CdSe 

elementary cells. 
** Recording 3  (4.342) (2) means that there is exist  

3-fold degenerate energy level with an occupation number 

equal 2. 

As can be seen from Table I, at a given temperature, 

the energy levels Ec and Ev in CdTe and CdSe cells do 

not match, i.e., there exist energy barriers in the tran-

sition between cells of different types. However, it is 

known from experiment that a solid solution 

CdSe0.4Te0.6 at a given temperature has the same band 

gap width in all parts of the crystal. To eliminate this 

contradiction between experiment and theory, we shall 

use the following technique: the energy levels of the 

CdSe cell is shifted up by the value , which is equal to 

the difference in the levels of the bottom of the conduc-

tion band Ec (or the top of the valence band Ev) in two 

different unit cells. Then we obtain a crystal that has 

the same band gap width in each of its parts (see 

Fig. 1). It should be noted that a similar result is ob-

tained if the energy levels of the CdTe cell are shifted 

down by the value . 
 

 
 

Fig. 1 – The location along the X axis of ideal CdTe and CdSe 

elementary cells and the corresponding positions of the energy 

levels for ideal elementary cells at T  0 K for CdSe0.4Te0.6. 
 

The above theoretical approach can be justified as 

follows: a) in the experiment, the width of the band gap 

Eg is measured, i.e., the difference in the energy levels, 

but not their absolute values. Therefore, the reference 

point of the energy in each cell can be chosen arbitrari-

ly; b) the coordinate systems in the cells of CdTe and 

CdSe are not related to each other. This means that in 

Fig. 1 point A is the reference point of the coordinate 

system (x  0, y  0, z  0) in the CdSe cell, and point B 

is the reference point of the coordinate system (x'  0, 

y'  0, z'  0) in the  CdTe cells. 

Based on the wave functions and crystal potentials of 

the unit cells, the wave functions and derivatives of the 

crystal potential with respect to the coordinates of the 

cell atoms can be calculated for the ideal CdSexTe1 – x 

solid solution [14]. Using these characteristics of the 

ideal CdSexTe1 – x solid solution and short-range scatter-

ing models [15-17], it is possible to calculate the electron 

scattering constants on crystal lattice defects [20]. These 

scattering constants are represented as integrals over 

the wave function (r)CdSeTe and the crystal potential 

U(r)CdSeTe. Since the functions (r)CdSeTe and U(r)CdSeTe 

are different at 0 K and 300 K, then, accordingly, the 

scattering constants are different, i.e., these scattering 

parameters depend on temperature. Assuming the sim-

plest, linear, temperature dependence, it is possible to 

obtain these dependences of the above-mentioned con-

stants: 
 

 𝐴𝑃𝑂 = (10.07 + 2 × 10−4 𝑇) × 10−20 𝑚2, (2a) 
 

 𝑑0 = −7.3 − 2 × 10−3 𝑇 𝑒𝑉, (2b) 
 

 𝐸𝐴𝐶 = −2.06 − 2.33 × 10−4 𝑇 𝑒𝑉, (2c) 
 

 𝐴𝐼𝐼 = (0.498 − 3.33 × 10−6 𝑇) × 1010 𝑚−1, (2d) 
 

The obtained temperature dependences of the scat-

tering constants make it possible to calculate the elec-

tron scattering probability on different types of crystal 

defects and, in turn, the kinetic coefficients of the 

CdSe0.4Te0.6 solid solution. 

 

3. CALCULATION OF THE TEMPERATURE 

DEPENDENCE OF THE IONIZATION ENER-

GY OF CRYSTAL DEFECTS 
 

This article considers the following intrinsic donor 

defects: CdTe , CdSe , VSe-CdSe. The energy spectrum of 

the defect structure was calculated using the supercell 

method [20]: for CdTe – supercell Cd9Te7; CdSe – super-

cell Cd9Se7; VSe–CdSe – supercell Cd9Se6. In addition, 

the energy spectrum of the ideal Cd8Te8 and Cd8Se8 

supercell were calculated. 

To calculate the energy spectrum of ideal and defec-

tive supercells, it is necessary to have pseudopotentials 

of Cd, Se and Te atoms. The pseudopotentials for these 

atoms were obtained by means of the AtomPAW 

(Atompaw v3.0.1.9 and AtomPAW2Abinit v3.3.1) code. 

The PAW functions have been generated for the follow-

ing valence basis states: 5s25p04d10 for Cd, 4s24p4 for Se 

and 4s24p65s25p4 for Te. The radii of the augmentation 

spheres rPAW have the following values: 2.2, 1.8 and 2.4 for 

Cd, Se and Te respectively. The exchange and correlation 

effects have been taken into account within density-

functional theory (DFT), namely in generalized gradient 

approximation (GGA) formalism. The output files of the 

AtomPAW code contain a full set of data which are input 

parameters for initiation of the ABINIT code. The result of 

calculations of energy spectra of ideal supercells for the 

CdSe0.35Te0.65 solid solutions is presented in Table 2. 

As can be seen from Table 2, the energy levels of the 

spectra of the ideal Cd8Te8 and Cd8Se8 supercells do not 

coincide, i.e., there are energy barriers between the 

Cd8Te8 and Cd8Se8 supercells. Therefore, as in the case 

of CdTe and CdSe unit cells, it is necessary to shift the 

energy levels of the Cd8Se8 supercell up (or the energy 

levels of the Cd8Te8 supercell down) by the value  

equal to the difference in the levels of the bottom of the 
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conduction band (or the top of the valence band) in two 

different supercells. As a result, we will get an ideal so-

id solution in which the ideal Cd8Te8 and Cd8Se8 super- 

cells are located in a certain way, for which the lattice 

constant and the theoretical value of the band gap 

coincide with the experiment.  
 

Table 2 – Energy spectrum of ideal Cd8Te8 and Cd8Se8 supercells 
 

𝑇 = 0, 𝐸𝑔 = 1.512 𝑒𝑉, ∆= 1.23  𝑒𝑉 

Energy levels of 

ideal Cd8Te8 

supercell, eV 

𝐸𝑐−1 × (5.021) (0) 
𝐸𝑣−2 × (3.509) (2) 

𝛼 = −0.08165 

Energy levels of 

ideal Cd8Se8 

supercell, eV 

𝐸𝑐−1 × (3.791) (0) 
𝐸𝑣−2 × (2.279) (2) 

𝛼 = 0.93 

𝑇 = 300, 𝐸𝑔 = 1.380 𝑒𝑉, ∆= 1.216  𝑒𝑉 

Energy levels of 

ideal Cd8Te8 

supercell, eV 

𝐸𝑐−1 × (4.963) (0) 
𝐸𝑣−2 × (3.583) (2) 

𝛼 = −0.1243 

Energy levels of 

ideal Cd8Se8 

supercell, eV 

𝐸𝑐−1 × (3.747) (0) 
𝐸𝑣−2 × (2.367) (2) 

𝛼 = 0.7871 

 

A comparison of the energy spectra of the ideal (the 

energy levels of which are shifted by the appropriate 

value ) and defect (the origin energy levels of which 

are also shifted by the appropriate value ) supercells 

is presented in Table 3. Based on these data and using 

the method proposed in [20], it is possible to determine 

the ionization energies of various defects in the crystal 

lattice of CdSe0.4Te0.6 solid solution. The results of the 

calculations take the form. 

It should be noted that the above method for de-

scribing an ideal CdSe0.4Te0.6 crystal and the structure 

of its defects is a combination of the short-range princi-

ple (exchange of energy (electrons) occurs only between 

neighbouring crystal regions) and the first principles 

approach (calculation of the energy spectra of different 

regions of the crystal). 

 

Table 3 – Energy spectrum of ideal and defect supercell 
 

𝑇 = 0, 𝐸𝑔 = 1.512 𝑒𝑉 

Energy levels of 

ideal Cd8Te8 

(Cd8Se8), eV 

Energy levels of  

defect, eV 

Ionization 

energy, eV 

𝐸𝑐−1 × (5.021) (0) 
𝐸𝑣−2 × (3.509) (2) 

CdTe 
2 × (5.200) (0) 
1 × (4.957) (2) 

∆𝐸𝐷 = 0.064 

𝐸𝑐−1 × (5.021) (0) 

𝐸𝑣−2 × (3.509) (2) 
CdSe 

2 × (5.917) (0) 
1 × (5.555) (2) 

∆𝐸𝐷 = −0.534 

𝐸𝑐−1 × (5.021) (0) 
𝐸𝑣−2 × (3.509) (2) 

VSe –CdSe 
2 × (5.027) (0) 
1 × (4.964) (2) 

∆𝐸𝐷 = 0.057 

𝑇 = 300, 𝐸𝑔 = 1.380 𝑒𝑉 

𝐸𝑐−1 × (4.963) (0) 
𝐸𝑣−2 × (3.583) (2) 

CdTe 
2 × (5.211) (0) 
1 × (4.973) (2) 

∆𝐸𝐷 = −0.010 

𝐸𝑐−1 × (4.963) (0) 
𝐸𝑣−2 × (3.583) (2) 

CdSe 
2 × (5.930) (0) 
1 × (5.562) (2) 

∆𝐸𝐷 = −0.599 

𝐸𝑐−1 × (4.963) (0) 

𝐸𝑣−2 × (3.583) (2) 
VSe –CdSe 

2 × (5.035) (0) 
1 × (4.933) (2) 

∆𝐸𝐷 = 0.030 

 

 𝐶𝑑𝑇𝑒: ∆𝐸𝐷 = 0.064 − 2.47 × 10−4  𝑇, (3a) 
 

 𝑉𝑆𝑒 − 𝐶𝑑𝑆𝑒: ∆𝐸 = 0.057 − 9 × 10−5  𝑇, (3b) 

 

4. DISCUSSION 
 

Based on the theoretical assumptions presented in the 

two previous sections, the article considers the transport 

phenomena in the CdSe0.4Te0.6 solid solution in the tem-

perature range of 10  400 K and defects concentration 

ND  5  1014  5  1018 cm –3. When solving the neutrality 

equation, the transition of defects CdTe and VSe–CdSe into 

a fully ionized state, as well as complete ionization of the 

defect CdSe, was taken into account: 

 

 T < 224.9 K,  
 

 𝑛 − 𝑝 = (1 − 𝑥)𝑁𝐷/{1 + 2 exp [
𝐹−∆𝐸𝐶𝑑𝑇𝑒

𝑘𝐵𝑇
]} +

𝑥𝑁𝐷

2
+

1

2
𝑥𝑁𝐷/{1 + 2𝑒𝑥𝑝 [

𝐹−∆𝐸𝑉𝑆𝑒−𝐶𝑑𝑆𝑒

𝑘𝐵𝑇
]},  

 

 224.9 K < T,  
 

 𝑛 − 𝑝 = (1 − 𝑥)𝑁𝐷 +
1

2
𝑥𝑁𝐷 +

1

2
𝑥𝑁𝐷/[1 + 2𝑒𝑥𝑝 [

𝐹−∆𝐸𝑉𝑆𝑒𝐶𝑑𝑆𝑒

𝑘𝐵𝑇
]],  

 

The theoretical dependences of the electron mobility 

on temperature for different defects concentrations 

(donors and static strain (SS) centers) are shown in 

Fig.3. The electron mobility was calculated on the basis 

of short-range scattering models [14-17] using the exact 

solution of the Boltzmann kinetic equation. 

A comparison of two competing approaches (short-

range and long-range scattering models) in the descrip-

tion of transport phenomena in CdSe0.4Te0.6 is consid-

ered in Fig. 3a – 3e. Solid curves 1 correspond to short-

range scattering models and are obtained within the 

framework of the exact solution of the Boltzmann ki-

netic equation Dashed curves 2 and 3 correspond to 

long-range scattering models (relaxation time approxi-

mation): curve 2 describes the region of low tempera-

ture (ħ𝜔 ≫ 𝑘𝐵𝑇), curve 3 describes the region of high 

temperatures (ħ𝜔 ≪ 𝑘𝐵𝑇). As it can be seen, these 

curves demonstrate significant qualitative and quanti-

tative differences of the temperature dependences of 

the electron mobility throughout the studied range of 

defect concentrations and temperatures. Regarding the 

approximation of the relaxation time, the following 

remark should be made. It is known that for 

CdSe0.4Te0.6 the Debye temperature is equal to 

D  261 K. It means that the low-temperature region 

will be determined by the condition T  26.1 K, and the 

high- temperature region will be determined by the 

condition T  2610 K. From this point of view, the ap-

plication of the relaxation time approximation (elastic 

scattering) in the range of 26.1 K  T  2610 K is incor-

rect because in this temperature range the inelastic 

scattering occur. At the same time, the short-range 

scattering models allow a description of inelastic scat-

tering. Thus, it can be argued that the short-range 
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models give a more adequate description of the physical 

reality than the long-range models.  
 

 
 

Fig. 2 – Electron mobility versus temperature in CdSe0.4Te0.5 

with a different defects concentration. A – ND = 5  1014 cm – 3, 

NSS = 1  1015 cm – 3; B – ND = 5  1015 cm – 3, NSS = 3  1015 cm – 3; 

C – ND = 5  1016 cm – 3, NSS = 1  1016 cm – 3; D – ND =5  1017 cm– 3, 

NSS = 3  1016 cm – 3; E – ND = 5  1018 cm – 3, NSS = 8  1018 cm – 3 
 

 

 

 
 

Fig. 3 – Comparison of two theoretical approaches in 

CdSe0.4Te0.6 samples: 1– short-range scattering models; 2 and 

3 – relaxation time approximation 
 

The proposed method of calculation allows the tem- 

perature dependence of the electron’s Hall factor for 

CdSe0.4Te0.6 to be obtained (see. Fig. 4). As can be seen, 

at low temperatures in sample D the electron gas is in 

a degenerate state, while in samples A, B, C and D the 

electron gas is non-degenerate or in an intermediate 

(between degenerate and non-degenerate) state. At 

high temperatures, the minima of the curves are ob-

served in the region where the transition from the dom-

inance of one scattering mechanism to another takes 

place. The higher defect concentration in the crystal 

determines the higher temperature where the mini-

mum of dependence rH(T) is observed.  
 

 
 

Fig. 4 – Electron’s Hall factor versus temperature in 

CdSe0.4Te0.6 samples with a different defects concentration. 

The notation of the samples is the same as on Fig. 2 
 

It should be noted that the proposed above calcula-

tion method can be applied to ternary, quaternary and 

higher multicomponent solid solutions with sphalerite 

structure. Indeed, if in the case of the binary solid solu-

tion CdSexTe1 – x, it was necessary to apply the supercell 

method to two supercells Cd8Te8 and Cd8Se8, then, for 

example, in the case of the ternary solid solution 

CdSeSTe one more supercell Cd8S8 should be added. 

Further, by carrying out the calculation proposed 

above, it is possible to determine the type of defects, as 

well as the temperature dependence of their ionization 

energies. By modifying electroneutrality equations, it is 

possible to determine the Fermi level and, accordingly, 

calculate the kinetic coefficients of the CdSeSTe solid 

solution. The same can be done in the case of higher 

multicomponent solid solutions. 

 

5. CONCLUSION 
 

In the presented paper, for the first time, a method 

for calculating the energy spectrum of electrons, wave 

function, and self-consistent potential of the CdSexTe1-x 

(x  0.4) solid solution for a predetermined temperature 

is proposed. The application of this method to an ideal 

unit cell made it possible to determine the temperature 

dependences of the electron scattering constants on crys-

tal defects. This made it possible to calculate the proba-

bility of electron scattering on crystal defects and, ac-

cordingly, to identify the kinetic coefficients of 

CdSe0.4Te0.6. The application of the same method for 

Cd8Te8 and Cd8Se8 supercells made it possible to define 

the structure of defects, as well as to calculate the tem-

perature dependence of the ionization energies of crystal 

defects. Within the framework of the short-range scatter-

ing models, the dependences of electron mobility and 

electron's Hall factor on temperature were established. A 

comparison of the theoretical curves (T) obtained with-

in the framework of two competing approaches was 

made: a) short-range scattering models; b) long-range 

scattering models (approximation of the relaxation time). 

It was established that the short-range scattering mod-

els more adequately describe the transport phenomena 

in the solid solution CdSexTe1 – x. The possibility of apply-

ing the proposed calculation method not only for other 

binary solid solutions, but also for ternary, quaternary 

and higher multicomponent solid solutions with the 

sphalerite structure is substantiated. 
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Кінетичні властивості CdSe0.4Te0.6: зв’язок ab initio підходу з принципом близькодії  
 

О.П. Малик 
 

Національний університет «Львівська політехніка», 12, вул. С Бандери, 29013 Львів, Україна 
 

У статті встановлено зв'язок між структурою дефектів у CdSexTe1 – x (x  0,4) та його кінетичними влас-

тивостями. Вперше запропоновано метод визначення енергетичного спектру, хвильової функції та самоу-

згодженого кристалічного потенціалу в CdSe0.4Te0.6 при заданій температурі. У рамках методу суперкомі-

рки досліджено структуру дефектів і визначено температурні залежності енергій іонізації різних типів 

дефектів. Запропонований метод також дає змогу визначити температурні залежності оптичного та акус-

тичного потенціалів деформації, а також температурну залежність параметрів розсіювання електронів на 

різних типах дефектів кристала. В рамках близькодіючих моделей розсіяння встановлено залежності ру-

хливості електронів і фактора Холла електронів від температури. 
 

Ключові слова: CdSeTe, Перенесення електронів, Точкові дефекти, Ab initio розрахунок, Принцип 

близькодії. 
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