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The internal combustion engine-based transportation system is causing severe problems such as rising levels 

of pollution, rising petroleum prices, and the depletion of natural resources.  To divide power between the engine 

and the battery in an effective manner, a sophisticated energy management system is required to be put into 

place. A power split strategy that is efficient may result in higher fuel economy and performance of Electric 

Vehicles (EVs). In this paper, we propose the reinforcement learning method using Deep Q learning (DQL), which 

is a novel Improved Swarm optimized Deep Reinforcement Learning Algorithm (IS-DRLA) designed for energy 

management control. To perform an update on the weights of the neural network, this method computes the use 

of a modified version of the swarm optimization technique. After that, the suggested IS-DRLA system goes 

through training and verification using high-precision realistic driving conditions, after which it is contrasted 

with the standard approach. The performance indices such as State of Charge (SOC) and fuel consumption and 

loss function are analyzed for the efficiency of the proposed method (IS-DRLA). According to the findings, the 

newly proposed IS-DRLA is capable of achieving a higher training pace with a lower overall fuel consumption 

than the conventional policy, and its fuel economy comes very close to matching that of the worldwide optimal. 

In addition to this, the adaptability of the suggested strategy is demonstrated by utilizing a different driving 

schedule. 
 

Keywords: Energy management, Electric vehicles, Improved Swarm optimized Deep Reinforcement Learning 

Algorithm (IS-DRLA). 
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1. INTRODUCTION 
 

Electric vehicles are environmentally friendly, green, 

sustainable, clean, and efficient. HEVs employ batteries to 

store electrical energy that is used to power the motor and 

small engine. It may provide higher fuel economy while 

emitting less harmful pollutants [1]. The HEV's two 

energy sources, “the engine and battery,” must be 

regulated in such a way that they operate within their 

efficient ranges while meeting the driver's power 

requirement [2]. As a result, an intelligent control 

approach that can efficiently split power between the 

engine and battery is necessary. There are several 

architectures available, including series, parallel, and 

power split. There is no mechanical connection between an 

electric motor and an engine in series architecture. The 

engine charges the battery via the generator, and the 

battery then powers the motor, which drives the wheels. 

For the car to operate properly, series hybrids require two 

independent energy conversion mechanisms. Parallel 

hybrids enable both power sources to operate concurrently 

for optimal performance [3]. The transmission and drive 

train, on the other hand, are more complex and expensive 
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components. The parallel arrangement is more difficult to 

implement than the series set up, but it offers numerous 

benefits not available with the series configuration. The 

power split arrangement was designed [4] as a means of 

compensating for the shortcomings that are inherent in 

both the series and parallel systems. It makes use of both 

electrical and mechanical power couplers in its 

configurations. In this configuration, the engine and 

battery can power the vehicle either independently or 

together, and the engine also can charge the battery at the 

same time.  

The remaining part of this research is organized into 5 

sections, section 2: literature survey, section 3: Problem 

Formulation of Energy Management, section 4: Proposed 

approach, section 5: Results from simulations and 

discussions on the proposed approach, and section 6: 

conclusion. 

 

2. LITERATURE SURVEY 
 

The scope of research [6] was to propose a hierarchical 

“Deep Reinforcement Learning (DRL)” approach for 

scheduling the energy consumption of “Distributed Energy 

http://jnep.sumdu.edu.ua/index.php?lang=en
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Resources (DERs)”, such as “Energy Storage Systems 

(ESS) and electric vehicles (EV)”. Study [7], conditional 

probability and Markov chains are used to simulate the 

PEV departure time and necessary energy consumption 

while driving. Additionally, the PVWatt model and the 

“Adaptive Neuro-Fuzzy Inference System (ANFIS)” each 

model the performance of the PV and the need for the 

home load. Then, by avoiding needless 

charging/discharging schemes, a “Model Predictive 

Control (MPC)” is made to reduce the cost of energy as well 

as make the PEV battery last longer. To get over battery 

constraints, this research [8] suggests a “hybrid EMS for 

the series-parallel PHEV” that makes use of a rule-based 

control method and a “Genetic Algorithm (GA)”-based 

optimization technique. The goal of the research presented 

is to suggest a new technique for recognizing driving 

behavior for a “P1-P2 series parallel electric vehicle 

utilizing a Long Short-Term Memory Recurrent Neural 

Network (LSTM RNN) in conjunction with an Energy 

Consumption Minimization Strategy (ECMS)”. By 

concentrating on effective driving mode transition rather 

than single mode optimization, novelty is attained. 

Computational and experimental verification of the 

proposed approach to assess power-sharing superiority 

based on battery SOC is described, demonstrating the 

results. The proposed method has been discussed and 

compared to the standard DTC method, and now it has 

been experimentally validated.  

 

3. PROBLEM FORMULATION OF ENERGY 

MANAGEMENT 
 

Enhancing the electric vehicle's performance and 

efficiency through energy management is the primary 

focus of this strategy. “As described below, the cost 

function, a trade-off between fuel economy and sustainable 

electric quantity, is employed as the evaluation indicator 

to measure the efficacy of the energy management 

technique”: 
 

 𝐽 = ∫ {𝛼 ∙ 𝑓𝑟̇𝑎𝑡𝑒(𝑡) + 𝛽 ∙ [𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶(𝑡0)]
2}

𝑡

𝑡0
𝑑𝑡 (1) 

 

The instantaneous fuel consumption rate across the 

period [t0, t] is represented by the term “frate,” where “” 

and “” are both positive weighting factors. Additionally, 

the inequality constraints should be satisfied in the 

manner described below to guarantee dependability and 

safety: 
 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝑉(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (2) 
 

 𝑃𝑏,𝑚𝑖𝑛 ≤ 𝑃𝑏(𝑡) ≤ 𝑃𝑏,𝑚𝑎𝑥 (3) 
 

 𝑛𝑔,𝑚𝑖𝑛 ≤ 𝑛𝑔(𝑡) ≤ 𝑛𝑔,𝑚𝑎𝑥 (4) 
 

 𝐼𝑔,𝑚𝑖𝑛 ≤ 𝐼𝑔(𝑡) ≤ 𝐼𝑔,𝑚𝑎𝑥 (5) 
 

 𝑇𝑒𝑛𝑔,𝑚𝑖𝑛 ≤ 𝑇𝑒𝑛𝑔(𝑡) ≤ 𝑇𝑒𝑛𝑔,𝑚𝑎𝑥 (6) 

 

 

 

4. PROPOSED APPROACH 
 

In this study we propose the reinforcement learning 

method using Deep Q learning (DQL), a novel Improved 

Swarm optimized Deep Reinforcement Learning 

Algorithm (IS-DRLA) intended for energy management 

control, and it employs an improved swarm optimization 

algorithm to update the neural network weights. 

 

4.1 Vehicle Model  
 

A moving vehicle experiences a variety of forces, 

such as rolling resistance, slope resistance, and 

aerodynamic drag, which all work against the 

movement of the vehicle and lower its speed. Theorems 

acting on the car are usually denoted by equation (7). 
 

 𝐹𝑟 =
1

2
𝜌𝐴𝑓𝐶𝐷(𝑉 − 𝑉𝑊)

2 + 𝑃𝑓𝑟 +𝑀𝑔𝑠𝑖𝑛𝛼 (7) 

 

where P is the force acting on the center of a stationary 

tyre, fr is the rolling resistance,  an is the road angle, 

Af is the frontal area of the vehicle, the CD is the 

aerodynamic drag of the vehicle's body, p is the density 

of the air, V is the speed of the vehicle, and Vw is the 

wind speed component in the direction in which the 

vehicle is moving. The wheels of a hybrid electric vehicle 

(HEV) are driven by a motor, charged by the generator, 

which is part of the hybrid electric vehicle's (HEV) 

planetary gear system (PGS). The PGS has a carrier, a 

sun, a ring gear, and several pinion gears. The 

generator is linked to the sun, the engine to the carrier, 

and the final drive to the ring gear. The governing 

equations between the various gear ratios and circle 

diameters are written as equation (8) 
 

 𝜔𝑟 ∗ 𝑟𝑟 = −𝜔𝑠 ∗ 𝑟𝑠 + 𝜔𝑐(𝑟𝑠 + 𝑟𝑟) (8) 
 

mr, ms, mc are the radii of the ring and the sun, and the 

angular velocity of the carrier, respectively. Torques 

exerted on the sun, rr, rs ring, and carrier can be 

approximated using the equation (9) 
 

 𝑇𝑐 = −𝑘𝑦𝑠𝑇𝑠 = −𝑘𝑦𝑟𝑇𝑟 (9) 
 

The torque acting on the carrier, sun, and ring gears 

are denoted by 𝑇𝑐 , 𝑇𝑠, 𝑎𝑛𝑑 𝑇𝑟 respectively; 𝑘𝑦𝑟 = (1 + 𝑖𝑔)/

𝑖𝑔 and 𝑘𝑦𝑠 = (1 + 𝑖𝑔) ang ig is the gear ratio. At a given 

velocity, the relationship between the engine speed me, 

the motor speed mm, and the generator speed mg is 

given by equation (10). 
 

 
𝑁𝑟

𝑁𝑠+𝑁𝑟
∗ 𝜔𝑚 +

𝑁𝑠

𝑁𝑠+𝑁𝑟
∗ 𝜔𝑔 = 𝜔𝑒 (10) 

 

In a Toyota Prius, the tooth numbers Nr and Ns refer 

to the ring and sun gears, respectively. Prius's Nr  78, 

and Ns  30. 

 

4.2 Objective Purpose Formula and Restrictions 
 

Here, the objective function provided in equation 

(11) is applied to optimize HEV performance.  
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 𝐽 = 𝑚𝑓𝑡 (11) 
 

Where mft is the overall fuel consumption rate for a 

certain time interval. The fuel efficiency is expressed by 

the equation, where Pb is the power drawn from the 

batteries equation (12) 
 

 𝑃𝑏 = 𝑉𝑂𝐶 ∗ 𝐼𝑏 − 𝐼𝑏
2 ∗ 𝑅𝑏 (12) 

 

𝑉o𝑐 – open-circuit voltage, 𝑅𝑏 – battery resistance, and 𝐼𝑏 
– battery current. The time rate of SOC can be 

represented by the equation (13): SOC. (14) 
 

 𝑆𝑂𝐶 = −
𝐼𝑏

𝑄𝑏
 (13) 

 

 𝑆𝑂𝐶 =
𝑉𝑜𝑐√𝑉𝑜𝑐

2−4𝑃𝑏𝑅𝑏

2𝑃𝑏𝑄𝑏
 (14) 

 

Quantity of batteries denoted 𝑄𝑏. The equation 

below describes the relationship between the MG1/MG2 

ratio, the engine, and the desired torques and speeds 

equation (15). 
 

 

𝑇𝑀/𝐺1 = −
1

1+𝑅
[𝑇𝑒]

𝜔𝑀/𝐺1 = −𝑅𝜁𝜔𝑟𝑒𝑞 + (1 + 𝑅)𝜔𝑒

𝑇𝑀/𝐺2 = −
1

(1+𝑅)
[
(1+𝑅)𝑇𝑟𝑒𝑞

𝜁
+ 𝑅𝑇𝑒]

𝜔𝑀/𝐺2 = 𝜁𝜔𝑟𝑒𝑞 }
 
 

 
 

 (15) 

 

It is important to take into account the constraints 

listed in eq. while numerically calculating the objective 

function for the EV equation (16). 
 

 

{
 
 
 

 
 
 

𝜔𝑒,𝑚𝑖𝑛 ≤ 𝜔𝑒 ≤ 𝜔𝑒,𝑚𝑎𝑥
𝜔𝑚𝑔1,𝑚𝑖𝑛 ≤ 𝜔𝑚𝑔1 ≤ 𝜔𝑚𝑔1,𝑚𝑎𝑥
𝜔𝑚𝑔2,𝑚𝑖𝑛 ≤ 𝜔𝑚𝑔2 ≤ 𝜔𝑚𝑔2,𝑚𝑎𝑥

𝑇2,𝑚𝑖𝑛≤ 𝑇𝑒≤𝑇𝑒,𝑚𝑎𝑥
𝜔𝑚𝑔1,𝑚𝑖𝑛 ≤ 𝜔𝑚𝑔1 ≤ 𝜔𝑚𝑔1,𝑚𝑎𝑥
𝜔𝑚𝑔2,𝑚𝑖𝑛 ≤ 𝜔𝑚𝑔2 ≤ 𝜔𝑚𝑔2,𝑚𝑎𝑥
𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

 (16) 

 

where 𝜔e,𝑚i𝑛, 𝜔e,𝑚𝑎𝑥, 𝜔𝑚g1,𝑚i𝑛, 𝜔𝑚g1,𝑚𝑎𝑥, 

𝜔𝑚g2,min, 𝜔𝑚g2,𝑚𝑎𝑥, 𝑇e,min, 𝑇e,𝑚𝑎𝑥, 𝑇𝑚g1,𝑚i𝑛, 

𝑇𝑚g1,𝑚𝑎𝑥, 𝑇𝑚g2,𝑚i𝑛, 𝑇𝑚g2,x, 𝑆𝑂𝐶min,  and 𝑆𝑂𝐶𝑚𝑎𝑥 

are the lowest and highest numbers for the engine's 

speed, MG1, and MG2's torque, and the SOC's 

limiting range, correspondingly. 

 

4.3 Energy Management Strategy Based on 

Improved Swarm Optimized Deep 

Reinforcement Learning Algorithm (IS-DRLA) 
 

To create a very effective method, optimization 

using particle swarm only requires a few elementary 

steps. To arrive at an optimal solution, PSO first selects 

a set of parameters that are statistically likely to yield 

success and then multiplies those numbers by a 

standard random term. The algorithm avoids the 

problem of impulsive convergence, which plagues most 

search procedures. Particles created at the outset of 

PSO continue to exist until a solution is located. Two 

primary aspects control the particle motion: 1) a global 

best result between particles and 2) an iteration-to-

iteration best solution between particles. After 

gathering data from successive iterations, the “pbest” is 

the best answer the algorithm has considered so far. 

The best results visited by any particle are stored in a 

variable named gbest, which is passed from particle to 

particle. The cognitive and social elements, denoted by 

“pbest” and “gbest,” are responsible for optimal 

performance. If a new, superior solution is identified at 

each iteration, the “pbest” and “gbest” values for each 

particle are updated. With each iteration, the process of 

identifying “pbest” and “gbest” continues until either 

the required outcomes are achieved or it is determined 

that no further viable solutions can be discovered 

within the application search area. Both the speed and 

the distance a particle travels are determined by its 

velocity. Each particle in the D-dimensional space is 

described by the PSO as Xi  (𝑥i1, 𝑥i2,…, 𝑥i𝐷), where i 

denote the particle number and xiD is the number of 

parameters used to define the solution. A velocity in 

each dimension is calculated separately using the 

formula 𝑉i  (𝑣i1, 𝑣i2, …, 𝑣i𝐷), whereas the position in 

space is given by 𝑃i  (𝑝i1, 𝑝i2, …, 𝑝i𝐷). At the end of each 

cycle, the particle's best possible location (pbest) is 

compared to the best possible position (gbest) 

throughout the whole simulation, and the particle is 

moved in a random direction toward pbest or gbest. 

Velocity is updated as given by equation (17). 
 

𝑉𝑖𝑑
(𝑡+1)

= 𝜔 ∗ 𝑉𝑖𝑑
(𝑡+1)

+𝑈[0,1] ∗ 𝜓1 ∗ (𝑝𝑖𝑑
(𝑡)
− 𝑥𝑖𝑑

(𝑡)
) + 𝑈[0,1] ∗

𝜓2 ∗ (𝑝𝑔𝑑
(𝑡)
− 𝑥𝑖𝑑

(𝑡)
)  (17) 

 

The position is updated using this velocity (𝑡 + 1) and 

given as equation (18),  
 

 𝑋𝑖𝑑
(𝑡+1)

= 𝑋𝑖𝑑
(𝑡)
+ 𝑉𝑖𝑑

(𝑡+1)
 (18) 

 

In this equation, U[0, 1] represents a uniform random 

distribution, t is a time index, and 1 and 2
 
represent the 

respective weights of the local best and global best 

solutions' trade-offs and implications on the particle's total 

velocity. 

 

4.4 Characteristics of Deep Reinforcement Learning 
 

Proposed techniques for reinforcement learning that 

make use of discontinuous system parameters are one-step 

Q-learning and enhanced swarm. That once concentration 

of the separate points approaches the cutoff, there is a 

chance that the “curse of dimensionality” issue will 

manifest. The value function in the suggested algorithm is 

built using a neural network that performs a comparable 

purpose. A Q network receives state variables as inputs 

and directly generates control actions. The only difference 

between the proposed algorithm's settings for state 

variables, control actions, and rewards is that the DQL 

approach's states are constant. 

There are connecting different layers that make up the 
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neural net: the input layer, the hidden layers, and the 

output layer. Each deep learning model has 32 neurons, 

and the number of layers for input and output can be 

adjusted by system parameters and other control methods. 

Using an evaluation network and a target network, both 

of which are neural networks, the optimal control method 

can be determined. The Q-value used for evaluation is the 

result of Input 1, whereas the Q-value needed for success 

is the result of Input 2. The loss function can be written in 

terms of the mean-variance expectation of Q-values as 

follows: 
 

 𝐿(𝑤) = [𝐸(𝑟 + 𝛾𝑚𝑎𝑥
𝑎′
𝑄(𝑠′, 𝑎′, 𝑤′) − 𝑄(𝑆, 𝐴,𝑊))2] (19) 

 

Where 𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

 the goal Q-value is represented by 

𝑄(𝑠′, 𝑎′, 𝑤′), and the evaluation Q-value is represented by 

𝑄(𝑆, 𝐴,𝑊). The weights of the evaluation network and the 

target network, respectively, are denoted by the letters 𝑤 

and𝑤′, and optimizing weights results in the optimization 

of the neural network. In the emergence, we indicated that 

earlier research in deep RL for EM generally used the 

gradient descent technique to change weight values using 

the minimization of the error function as the optimization 

problem. Given the strong inter-sample correlations, the 

training efficiency of the evaluation network is increased 

by randomly selecting batches of data from the replay 

buffer to be used for a fixed number of timesteps in the 

training procedure. The foregoing description of the 

training process's optimization strategy is in-depth. In 

addition, Table 1 introduces the DQL algorithm's primary 

parameters. 
 

Table 1 – DQL algorithm's primary parameters 
 

Main Parameters  Value  

Sample batches size  64 

Learning rate  0.0001 

Replay buffer capacity  1200 

Amount to be discounted 0.95 

Aspect e of Initial Exploration 1.0 
 

Algorithm 1 contains the DQL algorithm's pseudo-code.  
 

Algorithm 1: Deep Q-Learning Algorithm  

Randomly weight Q evaluation network 

Initialize 𝑄̂ with w  w 

Start replay buffer B with N 

For occurrence = 1 𝑡𝑜 𝑀  
 Reorganize early state 𝑠1 = (𝑆𝑂𝐶

1𝑛𝑔
1 , 𝑃𝑑𝑒𝑚

1 ) 

For 𝑡 = 1 𝑡𝑜 𝑇 

𝑎𝑡 ← 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 (𝑠𝑡, 𝑄)  
Execute 𝑎𝑡; 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑠𝑡+1𝑎𝑛𝑑 𝑟𝑡 
Store the vector (𝑠𝑡 ,  𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in reply buffer B  

Sample random batch of (𝑠𝑡,  𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) from B  

If terminal 𝑆𝑗+1 

Set 𝑌𝑗 = 𝑟𝑗 

Else  

Set 𝑌𝑗 = 𝑟𝑗 + 𝛾𝑚𝑎𝑥 𝑎𝑗+1𝑄̂(𝑆𝑗+1, 𝑎𝑗+1, 𝑤
′) 

End if  

Calculate loss function 𝐿(𝑤) = 𝐸[(𝑦𝐽 − 𝑄(𝑠𝑗 , 𝑎𝑗 , 𝑤))
2] 

Performance optimization method improved swarm base 

on 𝐿(𝑤). 

Rest 𝑄̂ with weight w  w 

End for  

 

First, initializing sets up two networks and the replay 

buffer. Then a nested loop is used, with the “inside loop 

designating the time-steps inside a training episode and 

the outside loop designating the training episodes”. The 

inner loop is where control actions are carried out and 

neural networks are updated. 

 

4. RESULTS AND DISCUSSIONS 
 

In this research, we proposed the IS-DRLA is intended 

for energy management control, and it employs an 

improved swarm optimization algorithm to adjust the 

neural network values. The existing methods such as 

“Federated Reinforcement Learning (FRL)” [16] and 

“Hybrid Convolutional Neural Network- Long- and Short-

Term Memory (HCNN-LSTM)” [17] are used to analyze 

the performance indices such as State of Charge (SOC) and 

fuel consumption and loss function.  

Fig. 1 displays the fuel consumption curves over 

episodes for the proposed and existing approaches. 

Naturally, the proposed strategy's rate of convergence is 

significantly higher than that of existing techniques, and 

its fuel consumption is likewise lower than that of the 

latter. The outcome demonstrates that by removing 

unproductive control, the heuristic planning method can 

enhance the speed and effectiveness of the energy 

management strategy. Furthermore, using the algorithm 

for real-time control is made simpler by the method's need 

for fewer training episodes. 
 

 
 

Fig. 1 – Fuel consumption 
 

Fig. 2 shows the SOC trajectories for the three distinct 

control strategies. The SOC curves for each strategy show 

that they are all capable of keeping SOC levels relatively 

constant within the range of 0.61 to 0.72. SOC version of 

IS-DRLA is more similar to existing approaches, which 

suggests that “the proposed algorithm is closer to the 

global optimal solution”. Heuristic planning, which omits 

undesirable control actions during training, is said to have 

had an impact on the trajectory differences between 

traditional methods. 
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Fig. 2 – SOC trajectories for three different control techniques 
 

 
 

Fig. 3 – Overall reward trajectories for the proposed and existing 

approaches 
 

In addition Fig. 3 depicts the total rewards' trajectories 

for the two methods, and “we can see that the reward for 

the IS-DRLA optimizer reaches its maximum value 

sooner”, supporting its speed. Locally magnified views of 

the finest reward levels imply that the new approach saves 

energy and improves optimization. 

The particular driving cycle that was employed to train 

the neural network validates the speed and optimality of 

the IS-DRLA. However, driving cycles in the actual world 

are unpredictable and changeable.  

 

5. CONCLUSION 
 

To better regulate energy consumption, we present the 

IS-DRLA, a neural network whose weights are updated via 

an enhanced swarm optimization technique. These 

strategies are designed to maximize efficiency. It is 

possible to conclude that the new variant of the technique, 

which goes by the proposed, performs significantly better 

than the traditional method when it comes to the 

quickness and optimality of solving the problem of energy 

management. The recommended DQL methodology with 

the upgraded swarm optimizer achieves faster learning 

speed and lower fuel usage than the normal DQL strategy 

and is near the optimum solution. Deep reinforcement 

learning may be adapted to various operating modes. The 

goal of the ongoing research is to develop a novel approach 

that can be applied to the problem of energy management, 

allowing for better sample selection and training. This is 

being done as a reaction to the foregoing analysis of the 

possible problem of insufficient samples collected during 

the planning portion of the suggested technique. In 

addition, future studies will concentrate on the 

architectural examination of neural network models in 

deep reinforcement training. The system's efficacy will be 

verified using both an equipment test setup and actual 

road-going automobiles. 

 

 

REFERENCE 
 

1. L. Hu, Q. Tian, C. Zou, J. Huang, Y. Ye, X. Wu, Renew. 

Sustain. Energy Rev. 162, 112416 (2022). 

2. U. Rehman, K. Yaqoob, M.A. Khan, Int. J. Electrical Power 

Energy Syst. 134, 107358 (2022). 

3. P. Xie, L. Jin, G. Qiao, C. Lin, C. Barreneche, Y. Ding, Renew. 

Sustain. Energy Rev. 160, 112263 (2022). 

4. Z. Dimitrova, W.B. Nader, Energy 239, 121933 (2022). 

5. A.G. Abo-Khalil, M.A. Abdelkareem, E.T. Sayed,  

H.M. Maghrabie, A. Radwan, H. Rezk, A.G. Olabi, Int. J. 

Thermofluid. 13, 100134 (2022). 

6. S. Lee, D.H. Choi, Sensors 20 No 7, 2157 (2020). 

7. M. Yousefi, N. Kianpoor, A. Hajizadeh, M. Soltani, 2019 IEEE 

28th International Symposium on Industrial Electronics 

(ISIE), 2201 (2019). 

8. N. Ding, K. Prasad, T.T. Lie, Int. J. Energy Res. 45 No 2, 1627 

(2021).

 

  

https://doi.org/10.1016/j.rser.2022.112416
https://doi.org/10.1016/j.rser.2022.112416
https://doi.org/10.1016/j.ijepes.2021.107358
https://doi.org/10.1016/j.ijepes.2021.107358
https://doi.org/10.1016/j.rser.2022.112263
https://doi.org/10.1016/j.rser.2022.112263
https://doi.org/10.1016/j.energy.2021.121933
https://doi.org/10.1016/j.ijft.2022.100134
https://doi.org/10.1016/j.ijft.2022.100134
https://doi.org/10.3390/s20072157
https://doi.org/10.1109/ISIE.2019.8781471
https://doi.org/10.1109/ISIE.2019.8781471
https://doi.org/10.1109/ISIE.2019.8781471
https://doi.org/10.1002/er.5808


 

M.A. JAWALE, A.B. PAWAR, SACHIN K. KORDE, ET AL. J. NANO- ELECTRON. PHYS. 15, 03004 (2023) 

 

 

03004-6 

Управління енергією в електричних транспортних засобах з використанням 

вдосконаленого алгоритму глибокого підсилення 
 

M.A. Jawale1, A.B. Pawar2, Sachin K. Korde3, Dhananjay S. Rakshe4, P. William3, Neeta Deshpande5 

 
1 Department of Information Technology, Sanjivani College of Engineering, SPPU, Pune, India 
2 Department of Computer Engineering, Sanjivani College of Engineering, SPPU, Pune, India 

3 Department of Information Technology, Pravara Rural Engineering College, SPPU, Pune, India 
4 Department of Computer Engineering, Pravara Rural Engineering College, SPPU, Pune, India 

5 Department of Computer Engineering, R H Sapat College of Engineering, Management Studies and Research, SPPU, 

Pune, India 
 

Транспортна система на основі двигуна внутрішнього згоряння створює серйозні проблеми, такі як 

зростання рівня забруднення атмосфери та виснаження природних ресурсів. Для ефективного розподілу 

енергії між двигуном і батареєю необхідна складна система управління енергією. Ефективна стратегія 

розподілу потужності може призвести до кращої економії палива та продуктивності електромобілів (EV).  

У статті ми пропонуємо метод навчання з підкріпленням з використанням глибокого навчання Q (DQL), 

який є новим алгоритмом з підкріпленням (IS-DRLA), оптимізованим для групи Improved Swarm, 

розробленим для контролю управління енергією. Щоб виконати оновлення вагових коефіцієнтів нейронної 

мережі, цей метод обчислює використання модифікованої версії методу оптимізації роя. Після цього 

запропонована система IS-DRLA проходить навчання та перевірку з використанням високоточних 

реалістичних умов водіння, після чого вона порівнюється зі стандартним підходом. Індекси продуктивності, 

такі як стан заряду (SOC) і функція витрат і втрат палива, аналізуються на ефективність запропонованого 

методу (IS-DRLA). Відповідно до висновків, нещодавно запропонований IS-DRLA здатний досягати вищого 

темпу навчання з нижчим загальним споживанням палива.  
 

Ключові слова: Енергоменеджмент, Електричні транспортні засоби, Удосконалений алгоритм глибокого 

підсилення навчання (IS-DRLA). 

 


