Photoelectric Properties of the MnO$_2$/n-InSe Heterojunction

I.G. Tkachuk1,*, I.G. Orletskii2, V.I. Ivanov1, Z.D. Kovalyuk1, A.V. Zaslownik1, V.V. Netyaga1

1 Institute for Problems of Materials Science, Chernivtsi Branch, 5, I. Vilde Str., 58001 Chernivtsi, Ukraine
2 Yuriy Fedkovych Chernivtsi National University, 2, Kotysyubynsky Str., 58012 Chernivtsi, Ukraine

(Received 28 February 2023; revised manuscript received 15 April 2023; published online 27 April 2023)

Nowadays, thin films of semiconducting metal oxides are of considerable scientific and practical interest. Most vividly, such films reveal themselves in the field of manufacturing heterostructures of various types. They are able to efficiently absorb light in the region of fundamental absorption and remain transparent at photon energies smaller than the band gap. This determines their potential as materials for the manufacture of solar energy devices and optoelectronics. The development of the physics and technology of semiconductor heterojunctions is one of the main directions of research in the field of modern materials science and semiconductor device engineering [1]. This causes significant and undesired interest in semiconductor devices based on heterojunctions and the emergence of a significant volume of new scientific material regarding manufacturing methods and research into their electrical and photovoltaic properties. One of the main problems faced by researchers in the manufacture of heterojunctions is the difference in the parameters of the crystal lattices of the starting materials. As a result, mechanical stresses and broken interatomic bonds occur at the interface. The latter can effectively capture charge carriers and/or form additional barriers for carrier movement. In addition, such surface defects create energy levels in the middle of the band gap. They can work as recombination centers or traps, which have a significant effect on the electrical properties of semiconductor devices based on heterojunctions. Quite often, this leads to the fact that the experimenter has two promising materials with suitable energy parameters, and they do not produce a high-quality heterojunction. A possible solution to this problem is the use of layered 2D materials [2, 3]. The peculiarities of their crystal structure make it possible to obtain atomically smooth surfaces that do not contain broken bonds by simple mechanical chipping without the need for further mechanical or chemical processing. In addition, they are not so sensitive to the mismatch of crystal lattice parameters [4], which significantly expands the choice of materials for the manufacture of high-quality heterojunctions.

The layered structure of InSe crystals with a weak van der Waals bond between the layers and a strong ionic-covalent bond in the layers ensures their advantage over classical semiconductors in the manufacture of substrates for heterostructures. Ideal surfaces are obtained by simple mechanical chipping along the layers of the crystal. This allows you to exclude from the technological process such operations as cutting ingots and further mechanical and chemical processing. We also note that the resistance of InSe to radiation expands the scope of its use. The interest of researchers in InSe has grown significantly in recent years, various prototypes of electronic devices have already been manufactured on its basis [5-7].

This work is a continuation of research into the possibilities of constructing heterojunctions based on the contact of the InSe layered semiconductor with other semiconductors. We have already produced photosensitive heterojunctions on FeSe/InSe [8], Zno:ZnO/InSe [9], SnSe/InSe [10] and CuFeO$_2$/InSe [11], which show good straightening properties.

2. EXPERIMENTAL

MnO$_2$/n-InSe heterojunctions were produced by the method of low-temperature spray pyrolysis. The advantage of this technology is simplicity and cheapness.

*ivan.tkachuk.1993@gmail.com

PACS numbers: 73.40. – c, 78.66. – w
An aqueous solution of the appropriate composition was sprayed onto the InSe substrate, which was placed on the heater. The substrate was made of single-crystal n-InSe grown by the Bridgman method. From the InSe crystal ingot, plane-parallel plates were chipped along the cleavage plane, which were then cut to a size of 5 × 5 × 1 mm³. Chipping was carried out in the air. The substrates had perfect mirror surfaces.

The surface temperature of the substrate during pyrolysis was maintained at \(T_S = 350 \) °C. Spray pyrolysis took place under atmospheric pressure conditions. A solution with a concentration of 0.1 M of manganese dichloride MnCl₂·4H₂O in distilled water was used to create a finely dispersed aerosol over the substrates. As a result of the process of pyrolysis of MnCl₂ salt during interaction with atmospheric oxygen, a film of the binary bixbite compound \(a\)-Mn₂O₃ with \(n\)-type electrical conductivity and resistivity \(\rho \approx 10^6 \) Ω cm at room temperature is grown on the surface of the substrates. The band gap \(E_g \approx 2.12 \) eV of the obtained films is in good agreement with the values of \(E_g \) given in the literature sources \(E_g = 2.02 \) eV [12], \(E_g = 2.2-2.4 \) eV [13]. The \(n\)-Mn₂O₃ films grown by the spray-pyrolysis method have a high resistivity and a small electron diffusion coefficient \(D_e \approx 5 \times 10^{-3} \text{cm}^2\text{s}^{-1} \). The thickness of the Mn₂O₃ films was \(\approx 0.5 \) μm. It was determined by the displacement of the interference lines at the film-substrate interface using the Linnyk MII-4 multi-beam microinterferometer.

Contacts to the InSe base material and to the \(n\)-Mn₂O₃ film were formed using silver-based conductive paste. The current-voltage characteristics of the Mn₂O₃/n-InSe heterostructures were studied on a Solartron 1255 measuring complex (265-321 K). The photosensitivity spectra were measured at room temperature on an MDR-3 monochromator with a resolution of 2.6 nm/mm. The spectra were normalized with respect to the photon flux.

3. RESULTS AND DISCUSSION

Fig. 1 shows the straight lines of the I-V characteristics of the Mn₂O₃/n-InSe heterojunction, measured at different temperatures. To analyze the obtained graphs, we will use a well-known formula that takes into account the influence of series and shunt resistances [15]:

\[
I = I_s \left[\exp \left(\frac{e(V - IR_s)}{nkT} \right) - 1 \right] + \frac{V - IR_s}{R_{sh}},
\]

where \(I_s \) is the saturation current, \(n \) is the imperfection coefficient, \(R_s \) is the series resistance, \(R_{sh} \) is the shunt resistance. Solid curves in Fig. 1 represent the results of approximation using formula (1). The value of the differential resistance of the heterojunction \((R_{diff}) \) (see Fig. 2) was taken as the initial values of \(R_s \) and \(R_{sh} \) at high voltages \(V \) in the saturation region and at \(V \approx 0 \), respectively. A good match between experimental data and theoretical calculations confirms the validity of the selected model and allows us to evaluate the characteristics of the heterojunction \(n \), \(R_s \) and \(R_{sh} \). The found values of the fitting parameters are given in the Table 1.

![Graph showing I-V characteristics](image)

Table 1 – Fitting parameters

<table>
<thead>
<tr>
<th>(T), K</th>
<th>(I_s), 10⁻¹² A</th>
<th>(n)</th>
<th>(R_s), Ohm</th>
<th>(R_{sh}), 10⁶ Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>0.7</td>
<td>6</td>
<td>2600</td>
<td>7</td>
</tr>
<tr>
<td>281</td>
<td>5</td>
<td>5.4</td>
<td>1800</td>
<td>4</td>
</tr>
<tr>
<td>301</td>
<td>6</td>
<td>6</td>
<td>1350</td>
<td>2</td>
</tr>
<tr>
<td>321</td>
<td>8</td>
<td>2.9</td>
<td>950</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The large value of the shunt resistance indicates that our technology allows to grow high-quality heterojunctions, in which there is no shorting on the sides or through conduction channels in the interface area.

The \(R_s \) value in Mn₂O₃/n-InSe heterostructures is determined by the resistance of the thick InSe base region.

In InSe in the region of the investigated temperatures, the electron concentration increases with \(T \) due to electron transitions from a deep uncompensated donor level, and the mobility is determined by optical phonon scattering: \(n \sim T^{3/4} \exp(-E_g/2kT) \), \(\mu \sim T^{-3/2} \) [16]. Taking this into account, the temperature dependence of electrical conductivity is described by the expression
\(\sigma(T) \sim T^{-3/4} \exp(-E_d/2kT) \). Using this formula, it is possible to estimate the depth of the donor level \(E_d \) by the slope of the graphical dependence \(\ln(\sigma T^{3/4}) \) on \(1/T \) (see Fig. 3): \(E_d = 0.3 \) eV.

![Fig. 2](image1.png)
Fig. 2 – Dependence of differential resistance of Mn\(_2\)O\(_3\)/\(n\)-InSe heterojunction on voltage at different temperatures

![Fig. 3](image2.png)
Fig. 3 – Dependence of \(\ln(\sigma T^{3/4}) \) of Mn\(_2\)O\(_3\)/\(n\)-InSe heterojunction on \(10^3/T \)

The value of the energy barrier of the heterojunction \(\phi_0 \) is an approximation of the linear section of the \(I-V \) characteristic to the intersection with the abscissa axis. Its temperature dependence (see Fig. 4) is linear:

\[
\phi_0(T) = \phi_0(0) - \beta_\phi T, \tag{2}
\]

where \(\beta_\phi = 0.016 \) eV K\(^{-1} \) is the temperature coefficient of the height of the potential barrier, and \(\phi_0(0) = 6.1 \) eV is the height of the potential barrier at \(T = 0 \) K.

Straight branches of the current-voltage characteristics of the heterojunction in semi-logarithmic coordinates at different temperatures are shown in Fig. 1. As can be seen from the figure, straight sections are observed in the area of direct displacements \(V > 3kT/e \).

![Fig. 4](image3.png)
Fig. 4 – Temperature dependence of the height of the potential barrier of Mn\(_2\)O\(_3\)/\(n\)-InSe heterojunction

![Fig. 5](image4.png)
Fig. 5 – Reverse \(I-V \) characteristics of Mn\(_2\)O\(_3\)/\(n\)-InSe heterojunction at different temperatures
The analysis of the straight branches of the I-V characteristics of the MnO$_2$/n-InSe heterostructures built on a semi-logarithmic scale showed that the dependence $\ln I = f(V)$ consists of two straight sections, which indicates the exponential dependence of the current on the voltage. The calculated by formula $\Delta \ln I / V = -eFkT$ values of the non-ideality coefficient are $n \approx 3.5$ ($V < 1$ V) and $n \approx 7$ ($V > 1$ V). A large value n and a weak slope of the dependences $\ln I = f(V)$ at high voltages is evidence of the tunneling nature of the current transfer mechanism.

The expression for the tunnel current with reverse bias in the case of a sharp heterointerfaces has the form [1]:

$$I_{rev} \approx a_0 \exp \left(\frac{b_0}{\sqrt{\phi_0(T) - eV}} \right),$$

where a_0 and b_0 are voltage-independent parameters.

The fact that the reverse branches of the I-V characteristics in Fig. 5 are straight lines in the coordinates $\ln I = f(\phi_0 - eV)^{1/2}$, according to equation (9), confirms the dominance of the tunnel mechanism of current transfer in the region of reverse displacements $|V| > 3kT/e$.

Fig. 6 — Spectral characteristics of the MnO$_2$/n-InSe heterostructure.

REFERENCES

Фотоелектричні властивості гетеропереходу Mn₂O₃/n-InSe

І.Г. Ткачук¹, І.Г. Орлецький², В.І. Іванов¹, З.Д. Ковалюк¹, А.В. Заслонкін¹, В.В. Нетяга¹

¹ Інститут проблем матеріалознавства ім. І.М. Францевича НАН України, Чернівецьке відділення, вул. І. Вільде, 5, 59001 Чернівці, Україна
² Чернівецький національний університет ім. Юрія Федьковича, вул. Коцюбинського, 2, 58012 Чернівці, Україна

Методом низькотемпературного спрей-піролізу виготовлено фотоочутливі гетеропереходи Mn₂O₃/n-InSe. На нагріту підкладку з шаруватого кристалу n-InSe розпилювався водний розчин відповідного складу. В результаті чого на його поверхні утворювалась тонка плівка Mn₂O₃. Використання шаруватих напівпровідників дозволяє отримувати якісні інтерфейси, навіть при значній розбіжності параметрів кристалічних граток контактуючих матеріалів. Фронтальний шар з широкозонного напівпровідника Mn₂O₃ є прозорим в області максимального поглинання світла у InSe. Це дозволяє ефективно експлуатувати фотоелектричні властивості останнього. Проведено дослідження фотоелектричних та оптичних властивостей отриманого гетеропереходу, побудовано відповідні графічні залежності: вольт-амперні характеристики та диференційний опір при різних температурах, температурна залежність висоти потенційного бар’єру, спектральна залежність відносної квантової ефективності в інтервалі енергій фотонів 1.2–3.2 eV. Запропоновано теоретичні моделі, що описують отримані результати. На основі аналізу температурних залежностей прямих і зворотних гілок вольт-амперних характеристик визначено енергетичні параметри гетеропереходу. Проведено оцінку величин послідовного та шунтового опорів. Визначені механізми формування прямого та зворотного струмів крізь енергетичний бар’єр Mn₂O₃/n-InSe.

Ключові слова: Селенід Індію, Mn₂O₃, Гетероструктури, Вольт-амперні характеристики, Фоточутливість.