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The task of this work is development of precision chaotic laser generation principles. Its implementa-

tion will contribute to evolution of telecommunication systems based on the chaotic generators synchroni-

zation effect and other chaotic technology. The key problem for practical use of chaotic regimes is their 

strong dependence on fluctuations of initial conditions and weak external influences. This is a fundamental 

property of dynamic chaos. To solve the stated problem, we analyze the semiclassical laser equations for 

the stable, unstable, and chaotic generation modes. A modified equation for chaotic radiation is obtained. It 

is supplemented with fluctuations of the pumping parameters, laser components characteristics, and ex-

ternal factors. The equation is the basis for studying of laser dynamics under various initial conditions and 

for providing of precision chaotic generation.We propose a definition for precision chaotic laser generation. 

It is the generation of laser radiation, the dynamics of which is classified as chaotic with a given accuracy 

and is reproducible within the boundaries of the phase portrait. The choice of the phase portrait. as the ob-

ject of study for precision, is due to the stability of chaotic solutions according to Lagrange. The precision is 

confirmed by comparing a phase portrait of the system with its reference portrait, obtained with controlled 

reference parameters of chaotic radiation. As the quantitative estimates of chaotic precision are chosen: 

the volume of attractor, Lyapunov exponents, and Hurst coefficient with allowable deviations. The preci-

sion of chaotic generation and control of chaotic dynamics are ensured by the precision of the pump param-

eters, by control and stabilization of the components and characteristics of laser, such as the size and dy-

namics of resonator, quality factor, radiation frequency, temperature, and others. 
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1. INTRODUCTION 
 

A laser is traditionally considered as a source of 

stable monochromatic radiation. Ideally, this is a de-

terministic system, in practice it is quasi-deterministic. 

Indeed, lasers used in information and measuring 

technology demonstrate high stability of radiation pa-

rameters over time. For example, for serial Helium-

Neon lasers, frequency stabilization in the time inter-

val of one minute is ± 1 MHz and more, radiation in-

tensity stabilization is ± 0.1 % and more. For lasers 

used as frequency standards, the degree of monochro-

maticity and parameter stability are much higher. 

Radiation stability is ensured by controlling the 

characteristics of laser parts and influence of external 

factors. This is ensured, for example, by thermal stabili-

zation and stabilization of pump parameters. From the 

point of view of the dynamic systems theories, a laser 

can be represented as an open nonlinear dynamic sys-

tem, that is influenced by as external so internal factors, 

which is the cause of fluctuations in the radiation pa-

rameters and affects the nature of processes dynamics. 

Thus, lasers can demonstrate both stable regular dy-

namics and stochastic ones. In this case, the second is 

considered as undesirable. However, under certain con-

ditions, the dynamics becomes not conditionally deter-

mined or random, but chaotic, difficult to manage and 

predict. The complexity of working with chaotic systems 

is due to the fundamental property of dynamic chaos 

that can be described as its strong dependence on fluctu-

ations in the initial conditions and external factors. 

The principles of the occurrence of chaotic laser 

generation were described by H. Haken in the work [1]. 

Today, a large number of papers have been published 

about generation and control of chaotic regimes in la-

sers. For example, the authors of the work [2-5] pro-

posed a chaotic regime control scheme by changing the 

linear dimensions of the generating system. The task of 

controlling chaotic generation remains relevant. In the 

work [6], a method for observing optical chaos in real 

time is presented. The issues of chaotic laser dynamics 

parameters measuring are the subject of Yu.P. Mache-

khin and his colleagues research [7-9]. 

Traditionally, for information and measuring tasks 

that require a high degree of stabilization of radiation 

parameters, both stochastic and chaotic modes have had 

a negative connotation. However, the unique properties 

of chaos have found application in secure optical com-

munication systems based on the work of L.M. Pecora 

and T.L. Carroll, who demonstrated the possibility of 

spontaneous synchronization of the transmitter and re-

ceiver of information operating in a chaotic mode [10-14]. 

For chaotic telecommunication systems, a controlled 

chaotic process is a necessary condition. The creation of 

lasers with given and reproducible parameters of chaotic 

radiation remains an urgent task. It can be implemented 

by developing technologies for generation a chaotic laser 

radiation using methods and tools of Nonlinear meas-

urement theory [7, 15]. In the articles [8, 9], we propose 

the models for measuring the parameters of chaotic laser 

radiation and the model for precision synchronization of 

chaotic dynamical systems, respectively. 

The task of this work is to develop the principles of 

precision generation of chaotic laser radiation. To 

achieve the goal, the following tasks are solved in the 

work: analysis of a scenario for chaotic laser generation 

occurrence using semiclassical laser equations; re-

http://jnep.sumdu.edu.ua/index.php?lang=en
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search and evaluation of factors that influence on cha-

otic generation; fundamental substantiation for the 

concept of precision laser generation and development 

of principles and tools for its provision. 

 

2. LASER CHAOTIC GENERATION 
 

To describe chaotic laser generation, we use the equa-

tions of the lasers semiclassical theory for single-mode 

laser in the form: 
 

 ( ) ,
db

i b ig
dt
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      (1) 
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( ) 2 ( ),
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dt T



        (3) 

 

here: b  dimensionless complex electric field ampli-

tude,  cavity mode circular frequency,    resonator 

damping constant, g   coupling constant,   com-

plex dipole moment of atom ,  atomic (natural) 

line-width, 0d   unsaturated inversion of a single at-

om, d   inversion of atom , T   longitudinal relaxation 

time [1]. 

Equation (1) is a field equation whose dynamics can 

be described by a time function ( )b t . According to this 

equation, the reasons for the temporal change in the 

field amplitude (b ) are the oscillations and damping of 

the field in the resonator ( ( )i b   ), if there is no 

interaction between the field and active atoms, and 

also the action of dipole moments ( ig 


 ), as a force 

that forces the field to oscillate. Material equations (2) 

and (3) describe the dynamics of dipole moments and 

atomic inversion. 

Deterministic equations (1) - (3) under certain con-

ditions give chaotic solutions for the field ( )b t  parame-

ters. An analysis of the equations demonstrates that 

the nature of the laser dynamics is mainly influenced 

by the design and dynamics of the resonator, as well as 

the magnitude and dynamics of the pumping. Indeed, 

practice shows that chaotic laser generation can be 

provided in several ways, namely: time modulation of 

resonator losses ( )t , time modulation of inversion 

0( )d t , high pump power, injection of modulated coher-

ent electromagnetic radiation ( )p t , change a size 

( )L t  and geometry of resonator in time [1], [2]. De-

pending on the mechanism of chaotization, chaotic dy-

namics can be demonstrated by the intensity, phase, 

frequency, polarization, and periodicity of laser pulses. 

Of the above methods for obtaining chaotic radiation, 

the most interesting for us is the method of modulated 

pumping, which does not require intervention in the 

laser design. This is especially important for the imple-

mentation of chaotic communication systems using sem-

iconductor lasers [9]. To study this method, we introduce 

a control parameter into laser equations (1) - (3), which 

causes chaotic dynamics (modulated pumping pE ) and 

changes caused by summation over atoms: 
 

 ( )exp( )b E E t i t   , (4) 
 

 ( )exp( )P P t i t    , (5) 

 

  ,d D


 0 0.d D

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Equations (1) - (3) take the form: 
 

 ( ) ,p

dE
E igP

dt
      (7) 
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dP

P igED
dt
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dD
D D ig PE P E

dt
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here: ||   longitudinal relaxation constant. 

If we remove the component of the external field 

from equation (7), we obtain a stationary solution for 

the field intensity SE . In the presence of modulated 

pumping and the fulfillment of the condition 

||   , system (7) - (9) gives the following equa-

tion for the field strength normalized to a stationary 

value SE : 

 

  
 

2
0

2
1 ( ),

1
p

g DdE
i E E

d E
 

 

 
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 

 (10) 

 

here:    frequency mismatch, ( ) /p      ; 

p   external field frequency,    dimensionless time, 

t   [1]. 

Let us analyze equation (10) from the point of view 

of the laser radiation stability. 

First, consider the case of a constant external field 

p . Taking equal to zero the value of the time deriva-

tive of the field, we obtain: 
 

  
 

2
0

2
1 0.

1
p

g D
i E E

E




 
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 (11) 

 

In the case when the first term in brackets is more 

less than one, the equation has a stationary solution 

.E const  If this term is large, then an unstable gen-

eration mode takes place. The reason for the instability 

lies in the large value of the unsaturated inversion 0D  

due to the high value of the external field p . Howev-

er, there is no chaotic mode. According to (11), the laser 

dynamics is different depending on whether the laser 

operates above or below the generation threshold 
2

0 /D g . 

When the external field is modulated with a fre-

quency m : 
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 ( ) cos( ), 0,p p m p p mt E E E E       (12) 

 

and 
mE  has a sufficiently large value, according to the 

solution of equation (10), a chaotic generation mode 

arises. This regime has such properties as: a broadband 

radiation spectrum, a strong dependence on the initial 

conditions, weak external influences and fluctuations 

in the system parameters, the phase portrait is a 

strange attractor, topological mixing and a dense ar-

rangement of periodic trajectories are observed. In ad-

dition to the above qualitative signs of chaos, there are 

also quantitative ones, such as non-zero Lyapunov ex-

ponents, the Hurst coefficient tends to 0.5, and the 

fractal dimension tends to 1.5 [7]. 

Note that equation (10) is a model one and does not 

take into account the influence of external factors on 

the dynamics of lasers, while one of the striking char-

acteristics of chaos is a strong dependence on the initial 

conditions and the influence of even weak factors on 

the dynamics [16-18]. Let us consider the factors that 

should be taken into account to ensure the generation 

of precision chaotic laser generation. 

For the described scenario of chaos, the control pa-

rameter is the external field (12). Let us represent the 

fluctuations of the components pE , mE and also the 

frequency p  in the form pE , mE , p . Now the 

external field can be represented as: 
 

 ( , ) ( ) ( ),p p pE E E       (13) 

 

here: ( )p    deviation of the external field from the 

given ( )p t : 
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p p p
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p m p

d d d
E

d dE d
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  



    
                 

 

For the case of external field modulation, according to 

(12), we obtain: 
 

2 2 2( ) [cos( ) ] [ sin( ) ] .p p m m m p pE E E E            (14) 

 

According to (10), the laser dynamics also depends 

on the frequency mismatch ,  which depends on the 

frequency of the external field p  and cavity mode 

circular frequency  . Fluctuations p  have already 

been taken into account in (14). Consider the fluctua-

tions of natural frequency  . 

There are long-term (time interval more than 1 s) 

and short-term (time interval less than 1 s) frequency 

fluctuations. The long-term fluctuations are associated 

with changes in the length of the resonator and the 

refractive index of the active medium due to heating or 

pressure changes in the surrounding atmosphere. The 

short-term fluctuations are associated with oscillations 

of the resonator mirrors, which leads to a change in the 

length of the resonator or to modulation of the refrac-

tive index of air and the active medium. In solid-state 

lasers with modulated optical pumping (12), power 

fluctuation leads to temperature fluctuations and, as a 

consequence, to fluctuations in the resonator size and 

refractive index, which are related to frequency. In la-

sers with frequency stabilization such fluctuations are 

minimized by stabilization systems. However, the 

strong dependence of the chaotic regime on weak fluc-

tuations makes it necessary to take into account small 

changes in frequency. 

Let us consider the case of frequency fluctuation 

due to a change in the resonator length ( L ) or laser 

heating (  ), which is a natural scenario. Its value 

can be given by the expression: 
 

 | | ,
L

T
L

  


    (15) 

 

here    thermal expansion coefficient for the material. 

The expression for the frequency mismatch takes 

the form: 
 

 
| |

.
p  



 
   (16) 

 

In addition to the fluctuations of the parameters de-

scribed in (14) - (15), other parameters entering into 

the laser equation (10) fluctuate also. However, the 

stabilization of the frequency and external field leads 

to their stabilization as well. The considered parameter 

fluctuations can be measured and controlled without 

interfering in laser construction. 

Using the results (13) - (16), we obtain the laser 

equation (10) in an augmented form suitable for provid-

ing precision chaotic laser radiation: 
 

 
 

2
0

2
1 ( , ).

1
p

g DdE
i E E

d E


 

 
        
 
 

 (17) 

 

The modified laser equation (17) can be used to model 

and study the laser dynamics for different values of the 

control parameter and laser characteristics, directly or 

indirectly present in the equation, and it is the basis for 

developing the principles of precision chaotic laser gener-

ation. 

 

3. PRECISION CHAOTIC GENERATION 
 

Implementation of lasers with chaotic dynamics for 

information tasks requires the development of the the-

ory and practice of precision chaotic generation, identi-

fication and measurement of the dynamic characteris-

tics. The precise chaotic laser generation is generation 

of laser radiation, the dynamics of which is classified as 

chaotic, characterized by parameters with a given ac-

curacy, and is reproducible within the boundaries of a 

phase portrait (in the case of chaotic dynamics, phase 

portrait is a strange attractor). 

The choice of a phase portrait as a tool for ensuring 

precision is due to the fact that the solutions of the dy-

namic equation of the form (7) - (9), (17) in the case of 

chaos are unstable according to Lyapunov due to the 

exponential divergence of phase trajectories, but stable 

according to Lagrange, which requires that all solu-

tions do not go beyond the boundaries of a certain area 

- an attractor. From a physical point of view, an attrac-
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tor is a state of a dynamic system, to which it tends in 

the process of its movement (development). In the case 

of the problem of chaotic generation, chaos with given 

parameters is a desired state of the system and it is 

characterized by a strange attractor. 

A phase portrait can be characterized with the vol-

ume of an attractor (VA). For conservative systems, this 

value is constant, but for dissipative systems, it varies 

depending on many factors. Calculating the value of VA 

can be approximated by the problem of calculating the 

volume of an n-dimensional parallelepiped. It should be 

noted that strange attractors have a fractal structure, 

which shows itself in the fractional dimension of the 

figures. Therefore, in the future, it is necessary to de-

velop principles and methods for calculating the fractal 

figures volumes. 

To ensure precision chaotic laser generation, it is nec-

essary to obtain a reference phase portrait of a system 

that generates chaotic laser radiation ( )еE   (where the 

superscript e means the reference value) with specified 

parameters. To do this, we fix the values of the controlled 

pump parameters ( , )e e
p   (14), and the laser parame-

ters , ,е е еL T    (15), form the reference phase portrait 

and calculate its volume e
AV . During next generations, 

the attractor volume is also calculated and is compared 

with the reference value: 
 

 e
A AV V V   . (18) 

 

If 0V   the reference dynamics maintains. If 0V   

the chaotization decreases. If 0V   the chaotization 

grows. The value V  is a measure of precision and 

serves as information for correcting laser parameters 

that affect generation. 

When constructing a chaotic attractor, we have a 

problem with the number of measurements of the laser 

parameters that let us information about all states of the 

system that is necessary for building of full attractor. 

The number of points M (the number of joint measure-

ments of variables that form the phase portrait) must 

be sufficiently large, but finite. According to the formu-

la proposed in [19] we have: 
 

 2 0.4
min 10 ADM M 

  , (19) 

 

here DA – dimension of the attractor. 

To construct a phase portrait, it is necessary to simul-

taneously measure the quantities of radiation parame-

ters. In [9], a scheme was presented for the synchronous 

measurement of laser radiation parameters with a sub-

sequent assessment of the measurement uncertainty. 

The scheme can be used to measure at the same time 

intensity, phase, polarization, pulse duration and rate.  

As the numerical characteristics of the entire system 

dynamics we use the group of Lyapunov exponents: 
 

 
1

lim lni i
t

u
t




 , (20) 

 

here: ui – divergence of two close phase trajectories 

values. 

Their number corresponds to dimension of system. 

The totality of all Lyapunov exponents forms the Lya-

punov spectrum. The presence of at least one positive 

and limited exponent in the spectrum indicates chaotic 

dynamics. 

These parameters can be used also to forecast of dy-

namics. The maximum Lyapunov exponent max  is relat-

ed to the forecast time forT  for the dynamics of system: 

 

 
max

1 1
( ) log

| |
forT

u



 . (21) 

 

According to (21) for a deterministic process 0  , the fore-

cast time forT  ; for a chaotic process 0  , the forecast 

time has a limited value max1/forT  ; for a random process 

  , the forecast time tends to zero 0forT  . 

To assess the dynamics of a separate dynamic varia-

ble, in our case ( )E  , we propose to use the Hurst coeffi-

cient H for the time series: 
 

 
(

ln ( )
=
ln 2)

R S
H

M
, (22) 

 

here R - range of cumulative time series ( )E  , S – series 

standard deviation [20].  

If H takes values from the interval 0.5  H  1, the 

dynamics of studied parameter ( )E   is chaotic, corre-

sponding to chaotic laser generation. We can choose the 

reference value of the coefficient eH  when the refer-

ence chaotic mode of laser operation is. This is a persis-

tent process, with memory and 0forT  . If 0.5H   the 

dynamics is completely stochastic and 0forT  , the 

generation is stochastic. If 1H  , the process is deter-

ministic with a long prediction time, corresponding to 

stable laser generation. 

After the numerical description of the reference 

chaotic generation, the permissible values of parame-

ters deviations which are acceptable for precision con-

dition must be introduced in the form: ( , )e e
p   , e

AV , 

e , eH . 

If the parameters of laser radiation deviate from the 

reference ones, the possibility of correction should be 

provided. The condition for precision laser generation is 

the control of the laser parameters directly or indirectly 

included in the main equation (17). The principles of 

controlling a chaotic regime can be built on the para-

digm that the absorption of energy generates a chaotic 

regime, and its dissipation decreases chaos. An analy-

sis of equation (17) shows that the radiation regime can 

be managed both by controlling the pumping system 

(13) and the laser parameters (15). As about a control 

mechanism, we can talk about control for the resonator 

quality factor (Q-factor): 

 2
fullW

Q
W


losses

, (23) 

 

here fullW   full energy in the resonator, W losses  ener-

gy loss in one period. 

The quality factor (22) is related to the parameters 
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included in the laser equation (17) by the expressions: 
 

 
2

cQ
c


 

 
   , (24) 

here c   photon lifetime in a resonator 2 ,c   c  –

speed of light [21]. 

In addition, we recall the connection between the 

radiation parameters, the length of the resonator and 

its dynamics, as well as with temperature (15). 

Thus, the precision of chaotic laser generation is 

ensured by the pumping components precision and the 

stabilization of its characteristics, such as radiation 

frequency, temperature, and others. The dynamics and 

parameters of the chaotic regime can be corrected both 

by changing the control parameter (pumping system) 

and by changing the Q-factor and resonator dynamics. 

 

4. CONCLUSSIONS 
 

The paper proposes the foundations for ensuring pre-

cision chaotic laser generation. 

An analysis of semiclassical laser equations is per-

formed and an equation of chaotic generation is obtained, 

supplemented by components describing fluctuations of 

pumping parameter components, laser parameters, and 

external factors. 

A definition of precision chaotic laser generation is 

proposed as generation of laser radiation, the dynamics of 

which is classified as chaotic, is determined by parame-

ters with a given accuracy, and is reproducible within the 

boundaries of the phase portrait. The concept of a refer-

ence phase portrait corresponding to a generation with 

given parameters is introduced. 

Quantitative estimates of precision are: attractor vol-

ume, Lyapunov exponents, Hurst coefficient. 

The precision and control of chaotic laser generation 

is ensured by the precision and control of pumping sys-

tem, stabilization and control of laser characteristics 

(temperature, frequency) and elements (resonator, active 

medium). 
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Прецизійна хаотична лазерна генерація 
 

Ю.С. Курський, О.С. Гнатенко 

 

Харківський національний університет радіоелектроніки, пр. Науки, 14, 61166 Харків, Україна 
 

Завданням роботи є розробка принципів прецизійної лазерної хаотичної генерації. Її реалізація сприяє 

розвитку інформаційних систем, що базуються на принципі синхронізації хаотичних генераторів. Ключова 

проблема практичного використання хаотичних режимів обумовлена фундаментальною властивістю ди-

намічного хаосу – сильною залежністю від флуктуацій початкових умов. У роботі виконано аналіз напівк-

ласичних лазерних рівнянь щодо виникнення нестійких і хаотичних режимів генерації. Отримано рівнян-

ня хаотичного випромінювання, доповнене компонентами флуктуацій параметра, що управляє, характе-

ристик лазера і зовнішніх факторів. Рівняння є основою для дослідження лазерної динаміки за різних по-

чаткових умов та забезпечення прецизійної хаотичної генерації. Запропоновано визначення прецизійної 

хаотичної лазерної генерації як генерації лазерного випромінювання, динаміка якого із заданою точністю 

класифікується як хаотична і є відтвореною в межах фазового портрета. Вибір фазового портрета як об’єкт 

дослідження на прецизійність обумовлений стійкістю хаотичних рішень щодо Лагранжу. Прецизійність 

підтверджується порівнянням фазового портрета з еталонним портретом системи, отриманим при контро-

льованих параметрах хаотичного випромінювання. Кількісними оцінками хаотичної прецизійності обрано: 

обсяг атрактора, показники Ляпунова, коефіцієнт Херста з допустимими відхиленнями. Прецизійність ви-

промінювання забезпечується прецизійністю накачування і стабілізацією характеристик лазера, таких як 

частота випромінювання, температура та інші. Динаміка та параметри хаотичного режиму коригуються 

шляхом зміни керуючого параметра (система накачування), механізмами зміни добротності та динаміки 

резонатора. 
 

Ключові слова: Напівкласичні лазерні рівняння, Хаотичний лазерний режим, Об’єм атрактора,  

Показники Ляпунова, Коефіцієнт Херста. 
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