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Volterra integral equation method, based on integral equations equivalent to the Maxwell’s equations,
is an alternative to the differential formulation of the problem for modeling a wide range of electrodynam-
ics problems. The approximating functions method, a particular case of the finite element method, plays
the role of analytical-numerical component of Volterra integral equation method. It based on partitioning
the definition region of the problem by cells and on the approximation of the desired solution by orthogonal
polynomials. This process leads to constructing a system of nonlinear algebraic equations, which is the re-
sult of calculating the original Volterra integral equation at the mesh points. Its computational efficiency
can be significantly improved by dividing each equation of the system into a set of blocks that can be calcu-
lated in advance.

This article presents a modification of the approximating functions method for solving problems of elec-
trodynamics in one spatial dimension and time domain using the approach of Volterra integral equations.
The main purpose of the modification is to increase the speed of computations and reduce the consumption
of computer resources, which is especially important when considering problems with nonlinear media. It
is proved that the proposed modification does not violate the algorithm of the method and does not lead to
an increase in the error. The proposed method is applied to the problems of interaction of electromagnetic
pulses of three different types: simple Gaussian pulse, single cycle Gaussian pulse and oscillated Gaussian
pulse — incident on a layer with a second-order nonlinear medium, placed in a linear environment. The ob-
tained simulation results are analyzed, estimates of the reduction in computation time and errors are pre-
sented.
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Computational efficiency.
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1. INTRODUCTION

The study of the phenomena that appear during the
interaction of electromagnetic fields with planar-
layered structures with nonlinear media is of great
importance, since this is a fundamental process in sig-
nal conversion technologies that are used, for example,
in optical communication, nanocomputers and other
modern applications of electrodynamics, where elec-
tromagnetic waves interact in certain time with the
media in bounded spatial regions. The study and mod-
eling of such initial-boundary problems requires the
development of adequate mathematical models and the
construction of appropriate analytical, numerical or
hybrid analytical-numerical methods.

The Volterra integral equation method is an ap-
proach based on integral equations equivalent to the
original Maxwell's equations, with key features [1, 2]: a
natural description of non-stationary and nonlinear
properties of media inside and outside the inhomogenei-
ty in the environment, a unified definition of problems
inside and outside it, as well as the inclusion of the ini-
tial and boundary conditions in the same equation. To-
gether, they simplify problem formulation and solution.

Application of this method to non-stationary prob-
lems leads to the construction of the Volterra integral
equation of the second kind [3, 4], an approximate solu-
tion for which can be obtained using the approximating
functions method proposed in publications [5-7], which
is a further development of works [8, 9].
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The approximating functions method itself is a spe-
cial case of the finite element method [10, 11] in the
spatial and temporal domain [12] and therefore is
based on dividing the domain of the problem by a mesh
into cells and approximating the desired function by
four types of Lagrange polynomials of the second order
in each of them. Calculation of the resulting equation
at all points of the mesh reduces the solution of the
problem inside the inhomogeneity to finding the solu-
tion of a system of nonlinear algebraic equations, which
is solved by Newton's method [13].

Such generation of a separate equation for each
mesh point is very costly [14]. And with an increase in
the nonlinearity of the inhomogeneity, their influence
increase respectively. This article shows that the parts
of the equations that are used in this process and are
computationally intensive are common. Dividing each
equation into a set of blocks that can be calculated in
advance can reduce the consumption of computer re-
sources and increase the computational performance of
the process of constructing a system’s equations. Iden-
tifying these blocks and developing a way to calculate
them efficiently is the goal of this article.

2. FORMULATION OF THE PROBLEM

According to the Volterra integral equation method [5-
6], the problem of interaction of an electromagnetic wave
with a dielectric layer in the space-time domain is formu-
lated as an integral Volterra equation of the second kind:
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Equation (1) fully describes the evolution of the
electromagnetic field in the space-time domain
(t,x) €[0,00)x[0,L]. The unperturbed initial field out-
side the inhomogeneity [O,L] is described by E,(¢,x) ,
the unknown field inside it is described by E(t,x), and
P(t,x) is a polarization of medium of the inhomogenei-
ty. ¢ 1is the dielectric constant of the environment,
v=c/+Je and c is the speed of light in a vacuum. Also,
Equation (1) uses the SI system of units.

Integration over the spatial coordinate using § (Di-
rac delta function) with the introduction of dimension-
less variables (1,5) eI:O,oo)XI:O,I:I gives the following

equation:

E(7.)=E(v.¢)-
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r=vt/L, é=x/L and 7% =max(0,7-¢),

where -
o2 =max(0,7+&-1).

Equation (2) has nonlinearity, which is introduced
by the expression for the polarization P, which de-
scribes the nonlinear features of the medium in the
inhomogeneity. In dimensionless variables polarization
has a form:

P(r,&) =&y (6,~1)E(z,&)+ 22 VE(0.8),

where ¢ is the permittivity and y, are nonlinear sus-

ceptibilities of the i-th order of the inhomogeneity.

3. INTRODUCTION OF GENERAL EXPRES-
SIONS

To continue let us introduce the functions for the
first and the second part in Equation (2):

IL(T,g‘,F):% ZT[ F(r,é-r+7)de, 4)
IH(T,§,F):£ i F(r,é+r-7)dr, (5)

Tmm

where
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F(r,f) =

LM

7E (1,8) (6)

with 7, =(& —¢)/e and 7, =y,/(&5,) for i>2.

In this notations Equation (2) will be written in the
next short form:

E(7.8)=E(r.¢)-

1

. (7
—§[IL (2.6 F)+1,(2.6,F)]

4. THE APPROXIMATING FUNCTIONS METH-
OD MODIFICATION

According to approximating functions method [5-6],
the domain of problem statement D of Equation (7)
should be divided into a mesh of semi-closed squares
with side A:

D=uD,,
D; ={ih<t<(i+1)h, jh<&<(j+1)h}, 8

Y

i=0n-1, j=0,m-1

An approximate solution to Equation (7) in each
square D, is constructed as a piecewise smooth func-
tion E’i, (7.9, which is constructed from four interpola-

tion polynomials multiplied by the corresponding coef-
ficients c; ;:

N 1 1
E,; (7.6)= d,zzo dZZZO Cird o, Tfﬂ d, (.¢). 9)

Interpolation polynomials 7'(-) are in the form of

Lagrange polynomials of the second order and are con-
tinuous with their first derivatives on the cells border
[5-6], and in general can be written as follows:

T (8T TS o)

+18—1h

T¢ (s) = (1-d)+(-1)’ Sod=01. (1

Obviously, the advantage of these polynomials is
that they represent an explicit form of the product of
simple polynomials, each of which depends on only one
variable, which makes them relatively easy to use in
analytical operations, including integration and differ-
entiation.

The complete approximate solution to Equation (7)
has the form of the sum of Equation (9) for all cells in
the mesh Dij :

E(n)~E(rne)-5 %

i=0 j=0

E, (r.&) 12)

Substitution of Equation (12) and (9) in Equation
(7) and calculation of the resulting function at all mesh

vertexes (ri,§j), iz(),i,ij,m gives the system of

algebraic equations {lPi, j} for the unknown coefficients
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i which is solved by Newton method.

Let’s write the resulting system of nonlinear equa-
tions in the form of Equation (7):

WY ci,j—EO(ri,fj)+
R R (13)
+%[IL(ri,§j)+IH(ri,§j)]:0,
where jL’H:IL’H(T,f,FA’) =0,n, j=0, F is the

Equation (6) that depends on ( )

5. SEPARATION COMMON BLOCKS IN EX-
PRESSIONS

Let’s rewrite the minimal time values from absolute
coordinates to index ones:

L ..
. 0, <
R R T (14)
h i—7, i>]
H . .
. ] 0, 1<m-—
zﬁn{’m%{. . S )
h i+j—m, i>m-—j

where m = Ll/ hJ is the width of inhomogeneity in in-
dex units (from Equation (8)). And then let us consider
the jL (z’i,fj) and fH (ri,fj) integrals and split their

H
min? Ti:| to

whole integration intervals [Tnﬁin,fJ and [z’

the sum of segments of length A on the mesh:

[k | =ULRA,(R+1)R], k=il i-1,  (16)

H
[Tmin T :|

Then each integral will be represented as a sum of
integrals for each segment. The first integral in this

-1. (@17

mm ’

U kA, (k+1)R], k=

sum has a lower limit 7, that can be equals O or de-

pends on the position of the point (ri,fj) as it shown in

Equation (2), and has a constant upper limit. The last
integral in the sum has a constant lower limit and 7 as
upper limit. All integrals in the middle have the both
constant limits.

Graphically the path of integrating for I L (z’i,(fj)
and jH (z’i,rfj) from the Equation (13) on the mesh from

Equation (8) can be represented as shown on Fig. 1.
Formatting of the lines on Figure 1 means the con-

stant or variable limits in iL (ri,fj) and iH (‘ri,fj) in
the cell (i,

yellow solid line — lower limit depends on 7 and &,

j) : blue dot-line — both limits are constant;

upper limit is constant; red dash line — lower limit is
constant, upper limit is 7 ; yellow-red solid-dash line —

both limits depends on 7 or &. Separation line, where
the lower limit of the first integral in the sum becomes
from 0 to some function M(z,&) represented as a gray
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dash-dot “diagonal” line on Fig. 1: if the start point of
integration lies to the left of the “diagonal” (cases “a”,
“b”, “c”) the lower limit equals 0, otherwise it depends

on 7 and & (cases “d”, “e”, “D).

In special one-cell cases (“a” and “f” lines on Fig. 1)
there will be a single integral with the lower limit as in
the first integral in the sum and the upper limit as in
the last one. Also if interval is a point on the area bor-
der: (7,0) or (0,&) — then the integral equals 0.
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Fig. 1 — Integration paths for I . (left) and I g (right) on the

same area of inhomogeneity

Let’s introduce the general functions ® as a one-
cell part of jL (Ti,é:j) and iH (Ti,éj) :

o my Tf)
ol &) =— | F ,E—r+7')dr’ (18)
L ( J) or m.l(r é) ( ) =it
&=jh
mz(f 'f)
[ ,mz] _ i [ ’ o ’
ol (ri,fj) = m,(J;,f)F( o, é+r—7)dr . (19)
é=jh
Then fL (ri,éj) for one-cell case will be written as
. o™ (7, £), i<j
I (.8 = HE] 2 @O
Uy ('fiafj)’ 1>]
For other cases it will have the form:
I}“ (z’i,gj) = j}f (z’i,éj)+
21)

N ff cI)[L}eh,(kn)h](Ti’{:j%_ [(i- 1hr]( L,§ ),

where
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() - R S
Jj cDLr—é,(i,f;m"'l)h} (Ti’gj)’ i> ‘]

Finally the whole expression can be written in form
that depends on index coordinates:

0, 1=0,j=0,m
or 1>21,j=0
jL(Ti’gj): i?(ri’gj); l:1,]:1,m (23)
or 1>2,j=1
I (r.8), i22,j=2m

For the 1 H (ri,(fj) same will be written in form

0, i=0,j=0,m
ori>l,j=m

Iy (z8) =115 (5.8), i=Lj=0m-1 (24

ori>2j=m-1

I (.8), i22,j=0m-2

where
N L R
ju e)e i’Sj , (25)
H(T 5/) (D[I_rIJré—l,T](Ti’éj_)’ i>m—j
I8 (5,8) = 15 (8 ) +
* (izz )q)geh’(kﬂ)h](Ti,ﬁfj)“Lq’in_l)hyr](Ti’gi)7 =
=(if +1
oy <m-j
A ® 7,,&;), 1<m-—j
Iz(ri’é:j): 1_15_1(;‘” +£)h} J) e
o T (,g) P> me

The integration limits in @, explicitly can have one
of the next m, (r, 5) e {0, th,t —.f} and
my (T, §) IS {ih,r} . The same for @, will be
my(7,&) €{0,ih,r+&£-1} and my(7,&)efih,z}. Or in

general form:

values:

mLZ(r,é):a-r+b-§+c, (28)

where ae {0,1} , be {—1,0,1} , c= {—l,O,ih} . In other

words, the integration limits are polynomials of the
first degree.

Equation (18) and (19) with simple constant or pol-
ynomial limits and polynomial integrand, which we can
get explicitly by substitution Equation (9) into Equa-
tion (6), are always can be evaluated into a polynomial
expression. The form of final expressions will depend
on the form of the polarization defined by Equation (3).

So, for a particular form of Equation (3), Equation
(18) and (19) can be explicitly calculated in general
form, without substituting exact values of index coor-
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dinates (,j), in advance, and will only have simple

arithmetic operations, which are the fastest for calcu-
lating in computer software (for example, as shown in
[15]). After storing these final expressions, the building
process of Equation (23) and Equation (24) (and hence
also system of Equation (13)) will be faster and less
demanding on resources because of using of pre-
calculated polynomial blocks.

6. APPLICATION AND VERIFICATION OF THE
METHOD

The method was tested using the mathematical
package Wolfram Mathematica [16] with its built-in
caching capabilities for calculated expressions.

To validation, the developed approach was applied to a
known problem of interaction of a plane electromagnetic
wave with a dielectric layer that has an exact solution as
well as the exact values of the reflection and transmission
coefficients. The following parameters was used: & =3,

c=1, 76[0,40], mesh step h=0.02. The error of the

obtained values of the coefficients is 0.0011%.

To verification the accuracy of the approach in the
case of nonlinear problems, it was applied to the prob-
lems of passing the several Gaussian pulses through
the layer with the quadratic nonlinear medium de-
scribed by the Equation (3) with y, >0. The following
electromagnetic characteristics was used for the medi-
um and the layer: ¢ =11, £=9, mesh step A =0.005.
The correctness of the solution was checked by energy
imbalance (general expressions taken from [5]), which,

if the solution is correct, should tend to zero.
The evolution of simple Gaussian

E(7,) = exp(~(r -7, -&)*/20%)  in
16[0,15] and with y, =1 is shown on Fig. 2, where

pulse

time interval

multiple reflections from the layer boundaries and
pulse broadening due to the nonlinearity of the layer
medium are visible.

1.0 g
0.8
0.6

0.41

0.0
0

3 4 6 8 10 12 14
¥

Fig. 2 — The transformation of the simple Gaussian pulse

The energy flow imbalance maximum is 6.71 % with
a median of 1.63 %. This agrees well with the results
from [5], and the speed of calculating the problem has
increased 12 times compared to it.

The single cycle Gaussian pulse

E(,H)=—(r—1,— §)/62 exp(—(7 -7, — £)? /20'2) was
modeled in time interval 7 EI:O,lO:I with nonlinear pa-
rameter of the layer medium p,=0.3. The result is

shown on Fig. 3, where presents much more beam dif-
fusion after each reflection from the layer boundaries
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and pulse form distortion due to the nonlinearity of the
layer medium.

1.0
0.8
0.6

04

: 2

Fig. 3 — The transformation of the single cycle Gaussian pulse

After each reflection the pulse shape becomes more
and more similar to the Airy pulse [17]. Also the speed
of wave propagation in the layer slows down.

The energy flow imbalance maximum is 6.07 % with
a median of 1.05 %.

The evolution of oscillated Gaussian pulse

E(1,) = cos(n(t — 7, — &) exp(~(z — 7, — £)*/267) in time
interval re[O,lO] with y, =1 and normalized fre-

quency 77 =10 is shown on Fig. 4.

/a

T
Fig. 4 — The transformation of the oscillated Gaussian pulse

The speed of wave propagation in the layer also
slows down. Each reflected wave loses its incident
structure and takes a "sawtooth" shape with beam dif-
fusion. The energy flow imbalance maximum is 5.24 %
with a median of 1.17 %.

7. MATERIALS AND METHODS

To implement the calculation experiments, Wolfram
Mathematica [16] system was used, since this software
is one of the most versatile solutions for modeling dy-
namic processes of various natures [15, 18].
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IIpo ogHe BOOCKOHAIEHHA METOAy AllPOKCUMYUYNX PYHKIIIN IJ1a 3amad
3 HEJIIHIHHUMH CepeaoBUIaMu

J1.0. Bomorapros
Xapriscoruil HauloHAbHUT YHI8epcumem paodioesniekmporiku, np. Hayrku, 14, 61166 Xapris, YVipaina

Merton iHTerpa/JbHHX PIBHSAHL BoJsibTeppa, 3aCHOBAHHMI HA IHTETPaJIbHUX PIBHAHHAX, €KBIBAJICHTHUX
piBEsHEAM MakcBesia, € aJIbTepHATABOI TU(QEPEHIIAHIA ITOCTAHOBII 3a1a4l JJIS MOIEII0BAHHS IIIHPOKOI0
3arasty 3amad esiekrponuHaMiku. MeTon anpoKCcHMyoounX (DYHKILM, [0 € OKPEeMUM BUIIAJKOM METOIy KiH-
IIeBUX €JIEMEHTIB, BIIrpae poJib aHATITHKO-YHNCEJIBHOI CKJIAI0BOI METOIY IHTerpaJbHUX PiBHAHL BosbTeppa
Bin 3acHoBaHwmil Ha Po36UTTI 006J1aCTI BUSHAYEHHS 3a7a4i CITKOI Ha OCEPEeIKH Ta AllPOKCHMAIIi] IIyKAHOI0
PpillIeHHS OPTOTOHAJIBHUMH IosriHoMaMu. [le# mporiec mpru3BOAUTD 10 ITO0YI0BY CUCTEMU HEJIIHIMHUX aJireo-
palyHuX PIBHSHB, SKa € Pe3yJIbTATOM O0YMCIIeHHS BUXIHOTO IHTErpaabHOro piBHsHHS Bosbreppa y Byamax
cirgn. Horo 00YNCITIOBAIPHY €(PeKTUBHICTh MOKHA 3HAYHO ITIIBUINUTH, PO3OMBININ KOKHE DIBHSIHHS CHCTe-
MU Ha HaOIp OJIOKIB, STK1 MOYKHA O0YMCIIUTH 3a3/aJIeTiIb.

¥V 1iif craTTi npescTaBIIeHO MOAUMIKAIIII0 METOLY allPOKCHMYIOUNX (PYHKINH A1 BUPIIIEHHS 3a1a4 eJle-
KTPOAMHAMIKE B OJHOBHMIPHI# IIPOCTOPOBIH Ta YacCOBiif 00JacTi METOOM 1HTErpaIbHUX PIBHSIHD Bosbrep-
pa. OcHoBHOI0 MeTo MoauIKAIli € 301JIbIIeHHS IBUIKOCTI O0UUCIIEHDb Ta SHUMKEHHS CIIOSKUBAHHS pecyp-
C1B KOMIT'I0TEpA, 10 0COOJIMBO BAYKJIMBO I Yac POIIVIAAY 3aJa4 13 HesnHIHHuMEu cepefoBuinamu. Jlosemero,
110 3aIPOIIOHOBAHA MOAU(DIKAIIISA He MOPYIIye aJI'OPUTM METOAY 1 He IMPU3BOIUTH A0 301IbIIeHHS MOXUOKI.
3anpornoHoBaHu METO/ 3aCTOCOBAHUM 10 3a7a4 B3A€MOJIl eJIEKTPOMATHITHUX IMIIYJIBCIB TPHOX PI3HUX THU-
MiB: IIPOCTUM IayCiBCHKMUHI IMITyJIbC, OMHOTAKTHUMN rayCiBCHbKUI IMITyJIbC TA OCIIAJIIOIOYNM rayCiBCHKUAMN 1MILy-
JIbC, — IO MAJAI0THh HA MIApP 3 HEJIHIMHUM CepeIOBUINEM JIPYroro MOPSAKY, HOMIIIeHUN y JIHIAHE cepejo-
Bute. [IpoanasnizoBaHo oTpUMaHi Pe3yIbTATH MOJEIIOBAHHS, HAJAHO OI[IHKU CKOPOYEHHS 4acy O0UMCIIeHb
Ta MOMUJIOK.

Knrouori ciopa: Hemniiiunit menexkrpuyununii map, Mertox anporcumyrounx dyHkIiin, Meros iHTerpais-
Horo piBHsHHSA Bonbreppa, EderrrnBHicTs 00uncieHb.
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