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This research examines a squeezing flow with the characteristics of heat transfer in a viscous fluid. 

This fluid is squeezed between two parallel plates. The retrieved highly nonlinear equations are converted 

to a fourth-order single nonlinear differential equation for flow and a second-order differential equation for 

heat by using appropriate similarity transformation. A differential transform method (DTM) is applied to 

get the approximate solution of flow and heat transfer equations. The effect of different physical parame-

ters is also discussed and presented graphically. To show the accuracy and exactness of DTM, numeric 

values of the skin-friction coefficient and Nusselt number are compared with previously published works 

and numerical methods. 
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1. INTRODUCTION 
 

Because of many applications in different fields like 

edible industry, polymer processing, systems of lubrica-

tion, etc., squeezing flow is the most attractive research 

area among researchers. Squeezing flow plays a very 

powerful role in the field of chemical engineering. Stef-

an [1] investigated the basic theory of such a flow. 

Jackson [2] analyzed the squeeze flow of a liquid film 

between two parallel surfaces. Leider and Bird [3] and 

Singh et al. [4] discussed the same flow between paral-

lel disks and plates, respectively. Hayat et al. [5] used 

nanofluid flow in their model. They also discussed the 

magnetic effect of making that fluid electrically con-

ducting. Khan et al. [6] solved their model numerically 

by using the RKF4 method. Qayyum et al. [7] studied 

the asymmetric flow of a Jeffrey fluid. This fluid was 

compressed between two disks. They solved ODEs 

analytically by using HAM. Krishna and Chamkha [8] 

discussed such a flow in their model, where they used a 

nanofluid as a source fluid with water as a nanoparti-

cle, which is compressed between two parallel disks. 

Srinivasacharya and Sreenath [9] deliberated a mi-

cropolar fluid flow squeezed between equidistant and 

stretchable plates. 

Only some researchers obtained the exact solution 

because of the difficulty in solving the Navier-Stokes 

equation. So, to resolve this issue, the analytical solu-

tion is obtained by many mathematicians. DTM is a 

well-known method to get the solution of linear and 

nonlinear DEs. The basic theory of DTM is introduced 

by Zhou [10]. The base of this theory is the Taylor se-

ries. This method is developed on the electric circuit. 

DTM produced an analytical approximate solution in 

polynomial form. It has an iterative approach to get the 

approximate solution. Other analytical methods like 

HPM, HAM, and CM are also used to get the solution 

by many researchers. Hosseinzadeh et al. [11] investi-

gated squeezing flow with the hydrothermal property of 

nanofluid, which is compressed between two plates, by 

using the HPM and collocation method. Mustafa et al. 

[12] employed HAM to solve non-dimensional ODEs of 

heat and mass transfer. Agarwal [13] studied the flow 

of a micropolar fluid between two disks, which has 

uniform permeability for suction by using HPM. 

Shirkhani et al. [14] performed flow characteristics of a 

Newtonian fluid. They solved numerically as well as 

analytically and got the perfect match between the 

results. To solve equations analytically, they used 

HPM, HAM, and CM while employing the fourth order 

Runge-Kutta method for its numerical solution. 

Agarwal and Mishra [15] used HPM for solving differ-

ential equations for their mathematical model. So-

bamowo and Akinshilo [16] squeezed nanofluid be-

tween two parallel plates. They discussed the flow with 

the magnetic effect. They made nanofluid electrically 

conducting by inducing a magnetic field. Ahmad et al. 

[17] studied the Casson fluid flow and applied an ana-

lytical method to get the solution. Agarwal [18, 19] 

studied micropolar fluid and Reiner Rivlin fluid flow 

and used HPM to obtain its analytical solution. 

In the current article, flow and transfer are dis-

cussed for an electrically viscous fluid. This fluid is 

compressed between two parallel plates. The obtained 

PDEs (nonlinear) are reconstructed into ODEs (non-

linear) by using similarity transformation. DTM is 

used to solve converted ODEs. The impact of the 

squeeze parameter, magnetic field, Prandtl, and Eck-

ert number is discussed and shown in pictorial form. 

The coefficient of skin friction and Nusselt number are 

tabulated and compared with the literature to validate 

the results of DTM. 

 

2. MATHEMATICAL FORMULATION 
 

Let us contemplate an incompressible and unsteady 

flow of a viscous fluid between two infinite parallel 

plates. Both the plates are at a distance 𝐷 apart, where 

𝐷 = ±𝓈(𝑡) = ±ℓ(1 − 𝛼𝑡)
1

2⁄  and ℓ is the distance be-

tween plates at a time 𝑡 = 0. Here, 𝛼 represents a 

squeeze parameter and it is inversely proportional to 

time 𝑡, i.e., 𝛼 ∝
1

𝑡
. When 𝛼 > 0, it means both plates are 

compressed to each other, and 𝛼 < 0 shows that both 
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plates are going away from each other. The effect of the 

viscous dissipation function is maintained in the model 

as heat generation at the moment of friction, which is 

produced by shear in the flow. Since the source fluid is 

extremely viscous and its speed is too high, then high 

Eckert number (≫ 1) is considered to visualize the 

importance of the viscous dissipation function. A con-

stant magnetic field of the strength 𝑀𝑛 is induced ver-

tically on plates. No other electric field acting on the 

plates is assumed. 

The governing equations are 
 

𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
= 0,     (1) 

𝜕𝑢𝑥

𝜕𝑡
+ 𝑢𝑥

𝜕𝑢𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑢𝑥

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝛾 (

𝜕2𝑢𝑥

𝜕𝑥2
+

𝜕2𝑢𝑥

𝜕𝑦2
) −

𝜎𝐵0
2𝑢𝑥

𝜌
,

      (2) 

 
𝜕𝑣𝑦

𝜕𝑡
+ 𝑢𝑥

𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝛾 (

𝜕2𝑣𝑦

𝜕𝑥2
+

𝜕2𝑣𝑦

𝜕𝑦2
), (3) 

𝜕𝑇

𝜕𝑡
+ 𝑢𝑥

𝜕𝑡

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝑐𝑝
(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) +

𝛾

𝑐𝑝
[4 (

𝜕𝑢𝑥

𝜕𝑥
)

2
+

(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑣𝑦

𝜕𝑥
)

2

].     (4) 

 

Here, velocities along the 𝑥 and 𝑦 axes are taken as 

𝑢𝑥 and 𝑣𝑦, 𝑇 and 𝑃 denote the temperature and pres-

sure, respectively, 𝜌 is the density of the fluid, 𝜅 is the 

thermal conductivity, 𝛾 is the kinematic viscosity, 𝑐𝑝 

denotes the specific heat, 𝐵0 is the magnitude of the 

induced magnetic field. 

The problem is supported by the following condi-

tions: 
 

𝑢𝑥 = 0, 𝑣𝑦 = 𝑣𝜔 =
𝑑𝓈

𝑑𝑡
, 𝑇 = 𝑇𝑆, at 𝑦 = 𝓈(𝑡), 

𝜕𝑢𝑥

𝜕𝑦
= 0, 𝑣𝑦 = 0,  

𝜕𝑇

𝜕𝑦
= 0, at 𝑦 = 0. (5) 

 

Wang [20] introduced transformation for 2D flow, 

which is as follows: 
 

𝑢𝑥 =
𝛼𝑥

2(1−𝛼𝑡)
𝐹′(𝜉), 𝑣𝑦 = −

𝛼ℓ

2(1−𝛼𝑡)1 2⁄ 𝐹(𝜉). (6) 

 

Here, 𝜉 =
𝑦

ℓ(1−𝛼𝑡)1 2⁄  is a dimensionless parameter.  

Using the transformation given in Eq. (6), we rewrite 

Eqs. (2)-(4), by eliminating the term of pressure and get 

the following: 
 

𝐹𝑖𝑣 − 𝑆𝑞(𝜉𝐹′′′ + 3𝐹′′ + 𝐹′𝐹′′ − 𝐹𝐹′′′) − 𝑀𝑛
2𝐹′′ = 0, (7) 

𝜃′′ + 𝑃𝑟𝑆𝑞(𝐹𝜃′ − 𝜉𝜃′) + 𝑃𝑟𝐸𝑐(𝐹′′2
+ 4𝜖2𝐹′2

) = 0 (8) 
 

with modified conditions at the boundary 
 

𝐹(0) = 0, 𝐹′′(0) = 0, 𝜃′(0) = 0, 

𝐹(1) = 1, 𝐹′(1) = 0, 𝜃(1) = 0, (9) 
 

where 𝑆𝑞 [=
𝛼ℓ2

2𝛾
] is the squeeze parameter with the 

property 𝑆𝑞 > 0 when plates are going away and 𝑆𝑞 < 0 

when plates are coming closer to each other. 𝑃𝑟 [=
𝜇𝑐𝑝

𝜅
] 

is the Prandtl number and 𝐸𝑐 [=
1

𝑐𝑝
(

𝛼𝑥

2(1−𝛼𝑡)
)

2
] is the 

Eckert number. 𝑀𝑛
2 [=

𝜎ℓ2

𝜌𝛾
𝐵0

2] is the magnetic parame-

ter and 𝜖 [=
ℓ

𝑥
] is a dimensionless parameter. It must be 

noted that the Eckert number equals to zero in the 

absence of the viscous dissipation effect. 

The skin-friction coefficient is defined by 
 

𝐶𝑠𝑓 =
𝜇(

𝜕𝑢𝑥
𝜕𝑦

)
𝑦=ℎ(𝑡)

𝜌𝑣𝜔
2 , 

 

its non-dimensional form is 
 

(1 − 𝛼𝑡)
𝑥2

ℓ2 𝑅𝑜𝐿𝐶𝑠𝑓 = 𝐹′′(1). (10) 

 

Here, 𝑅𝑜𝐿 [=
𝛼ℓ5𝜌

2𝜇𝑥3√(1−𝛼𝑡)
] is the local Reynolds number. 

The Nusselt number is 𝑁𝑢 = −
ℓ(

𝜕𝑇

𝜕𝑦
)

𝑦=ℎ(𝑡)

𝑇𝑆
, its non-

dimensional form is 
 

√(1 − 𝛼𝑡)𝑁𝑢 = −𝜃′(1).  (11) 

 

3. METHODOLOGY OF DTM 
 

𝑘 times differentiation of 𝑓(𝑥) in this method is giv-

en by 
 

𝐹(𝑘) =
1

𝑘!
(

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
)

𝑥=𝑥0

.    (12) 

 

The inverse transformation of 𝐹(𝑘) is defined by 
 

𝑓(𝑥) = ∑ 𝐹(𝑘)∞
𝑘=0 (𝑥 − 𝑥0)𝑘.   (13) 

 

𝑓(𝑥) can be shown in the form of finite series and 

hence Eq. (13) can be expressed as 
 

𝑓(𝑥) = ∑ 𝐹(𝑘)𝑛
𝑘=0 (𝑥 − 𝑥0)𝑘.   (14) 

 

From Eq. (12) and Eq. (13), we get 
 

𝑓(𝑥) = ∑ (𝑥 − 𝑥0)𝑘∞
𝑘=0

1

𝑘!
(

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
)

𝑥=𝑥0

, 

 

which represents the Taylor series form of 𝑓(𝑥) at 𝑥 =
𝑥0. The following theorems 𝑇𝑖  (𝑖 ≤ 10) can be concluded 

from Eq. (12) and Eq. (13): 
 

𝑇1: If 𝑓(𝑥) = 𝑔(𝑥) ± ℎ(𝑥), then F(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘). 

𝑇2: If 𝑓(𝑥) = 𝑐𝑔(𝑥), then 𝐹(𝑘) = 𝑐𝐺(𝑘), where 𝑐 is a 

constant. 

𝑇3: If 𝑓(𝑥) =
𝑑𝑚𝑔(𝑥)

𝑑𝑥𝑚 , then 𝐹(𝑘) =
(𝑘+𝑚)!

𝑘!
𝐺(𝑘 + 𝑚). 

𝑇4: If 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), then 𝐹(𝑘) = ∑ 𝐺(𝑘1)𝐻(𝑘 −𝑘
𝑘1=0

𝑘1). 

𝑇5: If 𝑓(𝑥) = 𝑒𝑖𝑥, then 𝐹(𝑘) =
𝑥𝑘

𝑘!
. 

𝑇6: If 𝑓(𝑥) = 𝑥𝑛, then 𝐹(𝑘) = 𝛿(𝑘 − 𝑛), where 𝛿(𝑘 − 𝑛) =

{
1,    𝑘 = 𝑛
0,     𝑘 ≠ 𝑛

 

𝑇7: If 𝑓(𝑥) = 𝑔1(𝑥)𝑔2(𝑥) … … … . 𝑔𝑛(𝑥), then 𝐹(𝑘) =

∑ ∑ ∑ 𝐺1(𝑘1)𝐺2(𝑘2 − 𝑘1) … 𝐺𝑛(𝑘 − 𝑘𝑛−1)
𝑘2
𝑘1=0

𝑘𝑛−1
𝑘𝑛−2=0

𝑘
𝑘𝑛−1=0 . 

𝑇8: If 𝑓(𝑡) = (1 + 𝑡)𝑚, then 𝐹(𝑘) =
𝑚(𝑚−1)………(𝑚−𝑘+1)

𝑘!
. 

𝑇9: If 𝑓(𝑡) = sin(𝜔𝑡 + 𝛼), then 𝐹(𝑘) =
𝜔𝑘

𝑘!
sin (

𝜋𝑘

2
+ 𝛼). 

𝑇10: If 𝑓(𝑡) = cos(𝜔𝑡 + 𝛼), then 𝐹(𝑘) =
𝜔𝑘

𝑘!
cos (

𝜋𝑘

2
+ 𝛼). 

 

4. APPLICATION OF DTM 
 

Initially, we will transform Eq. (7) and Eq. (8) un-

der the above-mentioned theorems. Then we get the 

following iterative equations: 
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(𝜆 + 4)(𝜆 + 3)(𝜆 + 2)(𝜆 + 1)𝐹(𝜆 + 4) − 𝑆𝑞[(𝜆 + 2)(𝜆 +

1)𝜆𝐹(𝜆 + 2) + 3(𝜆 + 2)(𝜆 + 1)𝐹(𝜆 + 2) + ∑ (𝑛 +𝜆
𝑛=0

1)𝐹(𝑛 + 1)(𝜆 − 𝑛 + 2)(𝜆 − 𝑛 + 1)𝐹(𝜆 − 𝑛 + 3)] −

𝑀𝑛
2(𝜆 + 2)(𝜆 + 1)𝐹(𝜆 + 2) = 0,   (15) 
 

(𝜆 + 2)(𝜆 + 1)𝜃(𝜆 + 2) + 𝑃𝑟𝑆𝑞[∑ 𝐹(𝑛)(𝜆 − 𝑛 + 1)𝜆
𝑛=0 𝜃(𝜆 −

𝑛 + 1) − 𝜆𝜃(𝑛)] + 𝑃𝑟𝐸𝑐[∑ (𝑛 + 2)(𝑛 + 1)𝐹(𝑛 + 2)(𝜆 −𝜆
𝑛=0

𝑛 + 2) (𝜆 − 𝑛 + 1)𝐹(𝜆 − 𝑛 + 2)    + 4𝜖2 ∑ (𝑛 + 1)𝐹(𝑛 +𝜆
𝑛=0

1)(𝜆 − 𝑛 + 1)𝐹(𝜆 − 𝑛 + 1)] = 0   (16) 
 

with the following transformed boundary conditions: 
 

𝐹(0) = 0, 𝐹(1) = 𝑎, 𝐹(2) = 0, 

𝐹(3) = 𝑏, 𝜃(0) = 𝑐, 𝜃(1) = 0, 
 

where 𝑎, 𝑏, 𝑐 are evaluated by applying appropriate 

conditions mentioned in Eq. (9). We will get the approx-

imate solution of 𝐹(𝜉) and 𝜃(𝜉) by using iteration from 

Eq. (15) and Eq. (16). 

 

5. RESULTS AND DISCUSSION 
 

In this segment, the author highlights the impact of 

various parameters on the radial velocity 𝐹′(𝜉), axial 

velocity 𝐹(𝜉), and temperature profile 𝜃(𝜉). For the 

validation of the DTM, the author presented compara-

tive data of the outcomes calculated by DTM with the 

outcomes evaluated by the numerical method, as well 

as results available in previous studies. This compari-

son is tabulated in Table 1 and Table 2. 

The impact of 𝑀𝑛 on both profiles is pictured in 

Fig. 1-Fig. 3 by keeping other parameters fixed 𝑆𝑞 =

𝑃𝑟 = 𝐸𝑐 = 1, 𝜖 = 0.1. Fig. 1 defines the behavior of 𝐹′(𝜉) 
for distinct values of 𝑀𝑛. This graph tells that velocity 

declines with rising in 𝑀𝑛 up to the middle of the entire 

gap length while escalating with a rise in 𝑀𝑛. The ef-

fect of 𝑀𝑛 on the axial velocity is shown in Fig. 2, which 

describes the continuous increment in the velocity from 

the lower boundary to the upper boundary. A decre-

ment in the velocity profile with rising the magnitude 

of 𝑀𝑛 can also be observed from this figure. The profile 

of temperature for the various numeric values of the 

magnetic parameter is graphed in Fig. 3. This figure 

elucidates that temperature gets down by increasing 

the values of the parameter while near the upper plate; 

its behavior is not significant. 

The effect of the squeeze parameter (𝑆𝑞) is dis-

cussed in Fig. 4-Fig. 9. Two cases of the squeeze pa-

rameter are presented here, when 𝑆𝑞 is positive, i.e.,  
 

       
 

Fig. 1 – Influence of 𝑀𝑛            Fig. 2 – Influence of 𝑀𝑛 
 

     
 

Fig. 3 – Influence of 𝑀𝑛       Fig. 4 – Influence of 𝑆𝑞(> 0) 
 

both the plates are moving away and when 𝑆𝑞 is nega-

tive, i.e., both plates are moving toward to each other. 

The first case, when 𝑆𝑞 > 0, is pictured in Fig. 7-Fig. 9 

by taking 𝑀𝑛 = 𝑃𝑟 = 𝐸𝑐 = 1, 𝜖 = 0.1. The nature of the 

radial velocity for the distinct values of the squeeze 

parameter is shown in Fig. 4 and Fig. 7. In both fig-

ures, the nature of the flow is similar. These figures 

interpret that velocity goes down near the lower plate 

and it goes up near the upper plate after increasing the 

gap between both the plates. Fig. 5 and Fig. 8 illustrate 

the nature of the axial velocity for both above-

mentioned cases. In both graphs, velocity increases 

rapidly in the entire gap length from the lower to the 

upper boundary. One more observation that velocity 

falls with increasing magnitude of the squeeze parame-

ter can also be observed. From Fig. 6 and Fig. 9, it can 

be noted that the squeeze parameter and temperature 

are inversely proportional to each other. In other words, 

the temperature reduces by increasing the magnitude 

of the squeeze parameter. Fig. 10 explains that tem-

perature escalates with the rise in the values of the 

Prandtl number under the fact that temperature ∝ 
Prandtl number. According to Fig. 11, on rising the 

values of the Eckert number, the temperature gets up. 
 

    
 

Fig. 5 – Influence of 𝑆𝑞(> 0)       Fig. 6 – Influence of 𝑆𝑞(> 0) 
 

     
 

Fig. 7 – Influence of 𝑆𝑞(< 0)       Fig. 8 – Influence of 𝑆𝑞(< 0) 
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Fig. 9 – Influence of 𝑆𝑞(< 0)        Fig. 10 – Influence of 𝑃𝑟 
 

Table 1 – Comparative data of the coefficient of skin-friction 

and Nusselt number when 𝑀𝑛 = 0, 𝑃𝑟 = 𝐸𝑐 = 1, 𝜖 = 0.1 
 

𝑆𝑞 −𝐹′′(1) −𝜃′(1) 

 [12] Present [12] Present 

– 1 2.170090 2.170067 3.319899 3.318904 

– 0.5 2.614038 2.617401 3.129491 3.129454 

0.01 3.007134 3.007134 3.047092 3.047092 

0.5 3.336449 3.336453 3.026324 3.026259 

2 4.167389 4.167643 3.118551 3.109581 

 
 

Fig. 11 – Influence of 𝐸𝑐 on temperature 
 

Table 2 – Comparative data of the coefficient of skin-friction 

and Nusselt number when 𝑀𝑛 = 1, 𝑃𝑟 = 𝐸𝑐 = 1, 𝜖 = 0.1 
 

𝑆𝑞 −𝐹′′(1) −𝜃′(1) 

 DTM NM DTM NM 

– 1 2.424458 2.424488 3.235517 3.236036 

– 0.5 2.836849 2.836852 3.103296 3.103284 

0.01 3.201236 3.201236 3.052358 3.052359 

0.5 3.512310 3.512305 3.048463 3.048652 

1 3.799759 3.799720 3.070164 3.071676 

 

6. CONCLUSIONS 
 

Squeezing flow in an electrically conducting viscous 

fluid and attributes of the temperature are examined 

between two equidistant plates. Nonlinear ODEs for 

flow and temperature profiles are achieved by using 

appropriate transformations. DTM is applied to get the 

analytical solution. A comparative data of the coeffi-

cient of skin friction and the Nusselt number in the 

absence of the magnetic field with literature is tabulat-

ed, which validates the accuracy and validity of DTM. 

The value in the existence of a magnetic field is com-

pared with the results evaluated by the numerical 

method. The influence of various parameters is dis-

played by graphs along with a detailed discussion. 
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Стиснення MHD потоку разом із теплопередачею між паралельними пластинами  

за допомогою методу диференціального перетворення 
 

R. Agarwal 

 

University of Petroleum and Energy Studies, Dehradun 247001, India 

 
У дослідженні вивчається стискаючий потік із характеристиками теплопередачі у в’язкій рідині. 

Ця рідина затиснута між двома паралельними пластинами. Отримані сильно нелінійні рівняння пе-

ретворюються на єдине нелінійне диференціальне рівняння четвертого порядку для потоку та дифе-

ренціальне рівняння другого порядку для тепла за допомогою відповідного перетворення подібності. 

Для отримання наближеного розв’язку рівнянь потоку та теплопередачі застосовано метод диферен-

ціального перетворення (DTM). Вплив різних фізичних параметрів також обговорюється та представ-

лено графічно. Щоб показати точність і безпомилковість DTM, числові значення коефіцієнта поверх-

невого тертя та числа Нуссельта порівнюються з результатами раніше опублікованих робіт та чисель-

них методів. 
 

Ключові слова: Стискаючий потік, Метод диференціального перетворення, Паралельні пластини, 

Магнітогідродинаміка (MHD), Теплообмін. 


