
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ 

Vol. 14 No 5, 05007(5pp) (2022) Том 14 № 5, 05007(5cc) (2022) 

 

 

2077-6772/2022/14(5)05007(5) 05007-1  2022 Sumy State University 

Calculation of the Electron Wave Function and Crystal Potential in a Sphalerite  

Semiconductor at a Given Temperature 
 

O.P. Malyk 

 

Lviv Polytechnic National University, 12, S. Bandera St., 79013 Lviv, Ukraine 

 
(Received 22 August 2022; revised manuscript received 20 October 2022; published online 28 October 2022) 

 
The article deals with a method of determining the energy spectrum, the electron wave function and 

the crystal potential in CdTe at an arbitrary given temperature. Using this approach, the temperature de-

pendences of the ionization energies of intrinsic defects in cadmium telluride are calculated within the 

framework of the supercell method. The proposed method also makes it possible to define the temperature 

dependences of the optical and acoustic deformation potentials, as well as the temperature dependence of 

the parameters of electron scattering on ionized impurities, polar optical, piezooptical and piezoacoustic 

phonons. Within the framework of short-range scattering models, the temperature dependences of the elec-

tron mobility and Hall factor are considered. 
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1. INTRODUCTION 
 

Usually, ab initio calculations of the energy charac-

teristics of semiconductors make it possible to obtain 

the energy spectrum, wave function, and potential en-

ergy of an electron in a crystal. The obtained properties 

are assumed to describe the ground state of the crystal 

(T = 0). In the current work, the author proposes a 

scheme for determining the above characteristics of a 

sphalerite semiconductor for an arbitrary predeter-

mined temperature. The same characteristics of the 

semiconductor allow determining, at a given tempera-

ture, the parameters of electron scattering by defects of 

the crystal lattice, which in turn makes it possible to 

calculate the kinetic properties of the crystal at the 

same temperature. 

The proposed method will be tested on the example 

of n-type cadmium telluride. This material plays an 

important role in the production of high-efficiency, low-

cost, and thin-film solar cells. Therefore, the study of 

point defects in CdTe attracts widespread attention of 

researchers [1-7]. On the other hand, there are at-

tempts in the literature to describe the transport phe-

nomena in semiconductors, in particular in CdTe [8], 

which are based on DFT calculations [9-13]. However, a 

common shortcoming of these works is the lack of con-

nection between the structure of point defects and the 

kinetic properties of CdTe, which determine the elec-

tronic properties of the material. In this paper, this 

problem will be solved, namely, the temperature de-

pendence of the energy characteristics of the semicon-

ductor and its point defects will be established, which 

will allow the temperature dependence of the kinetic 

properties of the semiconductor to be determined. 

 

2. CALCULATION OF THE TEMPERATURE  

DEPENDENCES OF THE ELECTRON WAVE 

FUNCTION AND CRYSTAL POTENTIAL OF A 

SPHALERITE SEMICONDUCTOR 
 

The description of transport phenomena in n-CdTe 

is based on the models of short-range electron scatter-

ing [8, 14-16]. The scattering models mentioned above 

require the calculation of certain scattering constants, 

which in turn require the determination of the conduc-

tion band wave function and the crystal potential. Us-

ing preselected GGA exchange-correlation potentials 

for Cd and Te (pseudopotentials) and choosing a certain 

mixture of these conventional GGA exchange correla-

tion potentials and the Hartree Fock exchange poten-

tial (this mixture is determined by the "exchmix" pa-

rameter of the ABINIT code), one can obtain the totali-

ty of mathematical solutions of the Schrödinger equa-

tion corresponding to the value of the parameter "ex-

chmix" in the limits from 0 to 1. It should be noted that 

certain values of the "ecut" and "pawecutdg" parame-

ters of the ABINIT code were used for the accuracy and 

convergence of the calculations. The parameter "ecut" 

has an enormous effect on the quality of the calcula-

tion; basically, the larger the "ecut", the better the cal-

culation converges. The parameter "pawecutdg" defines 

the energy cut-off for the fine FFT grid, "pawecutdg" 

must be larger or equal to "ecut". The following values 

of these parameters were chosen in our calculations: 

"ecut" = 48 Ha, "pawecutdg" = 64 Ha. It should be noted 

that a further increase in these parameters leads to a 

change in the theoretical position of the energy levels of 

the electronic spectrum by approximately 1210 – 5 eV, 

which is far beyond the accuracy of the experiment. 

Using the calculation method described above, the 

physical solutions of the Schrödinger equation were 

separated from the totality of mathematical solutions of 

the Schrödinger equation for a sphalerite semiconduc-

tor (two different atoms in the unit cell). The criterion 

for selecting the physical solutions of the Schrödinger 

equation was chosen as follows: at a given temperature, 

the theoretical width of the band gap must coincide 

with its experimental value, which was determined 

from the experimental expression [17] for Hg1-xCdxTe 

solid solution: 
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For sphalerite CdTe, this calculation was performed 
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by adjusting the theoretical band gap corresponding to 

T = 0 K (exchmix = 0.397) and T = 300 K (exchmix = 

0.288). Herewith, the wave function of the electron in 

the conduction band and the potential energy of the 

electron in the crystal lattice at temperatures of 0 and 

300 K were obtained. Based on these wave functions 

and crystal potentials, as well as using short-range 

scattering models [8, 14, 15], the following scattering 

constants can be calculated at 0 and 300 K, namely: 

1) Electron-polar optical (PO) phonon, electron-

piezoacoustic (PAC) phonon and electron-piezooptic 

(POP) phonon scattering constants [8, 14, 15]: 
 

  . /*
  rd3rRAAA 22

POPPACPO           (2) 

 

The region of integration includes two atoms of dif-

ferent sorts, its volume is equal to 1/8 of the volume of 

the sphalerite elementary cell,   stands for the elec-

tron wave function in the sphalerite elementary cell. 

2) d0 is the optical deformation potential constant 

which was chosen as a maximum value among three 

optical deformation potential constants corresponding 

to one longitudinal and two transverse branches of the 

lattice optical vibrations: 
 

 ε0 0  d ,   =1,2,3d a     V r , (3) 

 

where the region of integration is the same as in the 

case of PO scattering;  denotes the unitary contravar-

iant polarization vector of the optical oscillations and 

the vector V is expressed in terms of the derivatives of 

the self-consistent electron potential energy over the 

coordinates of the atoms of the unit cell [15]. 

3) EAC is the acoustic deformation potential constant 

which was chosen as a maximum value among three 

acoustic deformation potential constants corresponding 

to one longitudinal and two transverse branches of the 

lattice acoustic vibrations [8]: 
 

 ;||AC 2I2I4IE 321   

  ;AC1 2I4I4IE 321   (4) 
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where 
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are the components of the vector V in the oblique coor-

dinate system created by the primitive vectors of the 

zinc blende structure and the region of integration is 

the same as in the case of PO scattering. 

4) The ionized impurity scattering constant 
 

 rd
r

1
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 , (5) 

 

where integration is carried out throughout the sphal-

erite elementary cell. 

As it is seen from (2)-(5), the scattering constants of 

the short-range models are represented as integrals 

over the wave function  and the crystal potential U. 

These integrals were evaluated using three-dimensional 

B-spline interpolation and the finite displacement meth-

od [8]. Since  and U depend on temperature, the scat-

tering constants also depend on temperature. Assum-

ing a linear temperature dependence, one can obtain 

the dependence of the scattering parameters on tem-

perature: 
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Using these relations, one can calculate the temper-

ature dependences of electron transition probabilities 

and the kinetic coefficients of cadmium telluride. 

 

3. DETERMINATION OF THE TEMPERATURE  

DEPENDENCES OF THE DONOR  

IONIZATION ENERGY OF DIFFERENT 

TYPES OF DEFECTS 
 

The proposed study considers the intrinsic donor de-

fects, namely, CdTe, TeCd, VTe, TeCd – CdTe, VTe – CdTe. 

The energy spectrum of the defect structure was calcu-

lated using the supercell method (112 sphalerite cu-

bic structure) based on the ABINIT code: for CdTe – 

supercell Cd9Te7; TeCd – supercell Cd7Te9; VTe – super-

cell Cd8Te7; TeCd – CdTe – supercell Cd8Te8; VTe – CdTe – 

supercell Cd9Te6. In addition, the energy spectrum of 

the ideal Cd8Te8 supercell was calculated. To calculate 

the energy spectrum of ideal and defective supercells, it 

is necessary to have pseudopotentials of Cd and Te at-

oms. The pseudopotentials for Cd and Te atoms were 

obtained by means of the AtomPAW (atompaw v3.0.1.9 

and AtomPAW2Abinit v3.3.1) code. The PAW functions 

were generated for the following valence basis states: 

5s25p04d10 for Cd and 4s25s24p25p4 for Te. The radii of 

the augmentation spheres rPAW have the following val-

ues: 2.2 and 2.4 for Cd and Te, respectively. The ex-

change and correlation effects were taken into account 

within the density functional theory (DFT), namely in 

generalized gradient approximation (GGA) formalism 

suggested by Perdew, Burke and Ernzerhof (PBE) [18]. 

The output files of the AtomPAW code contain the full 

set of data which are input parameters for initiation of 

the ABINIT code. The results of calculations of energy 

spectrums of these supercells are presented in Table 1. 

The idea of applying the method of supercells is as 

follows. Let the X axis be directed along the rib of an 

ideal (defective) supercell with length a0 (Fig. 1). Then 

the Y axis is directed along the rib of the supercell with 

length a0, and the Z axis is directed along the rib of the 

supercell with length 2a0. In the nodes of the ideal (de-

fective) supercell, located on the border of the supercell, 

there are Cd atoms, and Te atoms are inside the ideal 

(defective) supercell. The crystal defect is always locat-

ed inside the defective supercell. Next, for the point , 

the energy spectrum for the ideal and defective super-

cells is calculated using the corresponding value of the 

parameter exchmix of ABINIT code (see Table 1). It 

should be noted that the coordinate system used in 

each individual supercell is not related to the coordi-

nate system in the other supercell. The proposed meth-

od is very similar to the method used in Riemann ge-

ometry, namely a three-dimensional manifold (in our  
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Table 1 – Energy spectrum of ideal and defect supercells (112 sphalerite cubic structure) 
 

T = 0, Eg = 1.65 eV, exchmix = 0.09 T = 300 K, Eg = 1.48 eV, exchmix = 0.0182 

Energy levels of ideal 

Cd8Te8, eV 

Energy levels of 

defects, eV 

Ionization 

energy, eV 

Energy levels of ideal 

Cd8Te8, eV 

Energy levels of 

defects, eV 

Ionization 

energy, eV 

Ec = 1(4.194) (0) 

Ev = 2(2.541) (2)* 

CdTe 





 

ED = 0.065 
  

   

CdTe 





 

ED = – 0.024 

  

  

TeCd 





 

ED = 0.792 
  

   

TeCd 





 

ED = 0.698 

  

  

VTe 



) 

 

neutral defect 
  

   

VTe 



 

neutral defect 

  

  

TeCd – CdTe 





 

ED = 0.393 
  

   

TeCd – CdTe





 

ED = 0.313 

  

  

VTe – CdTe 





 

ED = 0.775 
  

   

VTe – CdTe 





 

ED = 0.735 

*Notation 2(2.541) (2) means that there exists a 2-fold degenerate energy level with an occupation number equal to 2 
 

 
 

Fig. 1 – Location along the X axis of ideal and defective super-

cells and the corresponding positions of the energy levels for 

ideal supercells and CdTe defect at T = 0 K. 1, 3 – ideal Cd8Te8 

supercell, 2 – defective Cd9Te7 supercell 
 

case a crystal) is described by a set of individual coor-

dinate systems used in a certain region of manifold (in 

our case a supercell). So, in this case, a crystal is a set 

of ideal supercells (for which the theoretical value of 

the band gap coincides with the experiment) and a cer-

tain number of defective supercells. 

As an example, the calculation of ionization energy 

of the defect will be used for the CdTe defect. Comparing 

at T = 0 K the energy levels of the ideal Cd8Te8 struc-

ture with the energy levels of the defect, the transition 

of the electron from the defect level 1(4.129) (2) to the 

conduction band level of the ideal structure 1(4.194) (0) 

(with ionization energy ED = 0.065 eV) is seen to be 

most probable (Fig. 1 and Table 1). The remaining elec-

tronic transitions are unlikely due to very high ioniza-

tion energy. At T = 300 K, the electrons from the defect 

level 1 (4.132) (2) will pass to the level of the conduc-

tion band 1 (4.108) (0), i.e., there occurs a complete 

ionization of the defect (ionization energy is negative 

and equal to ED = – 0.024 eV). Other electron transi-

tions are unlikely due to high ionization energy. Assum-

ing a linear temperature dependence of the defect ioni-

zation energy, this dependence can be determined. Simi-

larly, the temperature dependences of the ionization 

energy of other types of defects can be analyzed. Analyt-

ical expressions for these dependences have the form: 
 

 CdTe: ED = 0.065 – 2.96710 – 4 T, (7a) 

 TeCd: ED = 0.792 – 3.13310 – 4 T, (7b) 

 TeCd – CdTe: ED = 0.393 – 2.66710 – 4 T, (7c) 

 VTe – CdTe: ED = 0.775 – 1.33310 – 4 T. (7d) 
 

It should be noted that for CdTe the level of the dis-

crete defect merges with the conduction band at T = 

219 K. For other types of defects, with the temperature 

increasing, there is only a decrease in ionization energy 

without merging with the conduction band. 

 

4. DISCUSSION 
 

Theoretical calculations were compared with exper-

imental data for undoped cadmium telluride [19]. Only 

defects with the lowest ionization energy were taken 

into account in the calculations, as they make the dom-

inant contribution to the transport phenomena. As can 

be seen from (7a), for undoped cadmium telluride such 

a defect is CdTe. Given the merger of this defect level 

with the conduction band, an electroneutrality equation 

for the Fermi level can be written in the form: 

1) 





















 


Tk

EF
21Npn

B

D
D exp  at T < 219 K; 

2) DNpn   at T > 219 K. 

The temperature dependences of the electron mobil-

ity were calculated on the basis of short-range scatter-

ing models [8, 14, 15] within the framework of the exact 

solution of the Boltzmann kinetic equation [20]. 
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Fig. 2 – Temperature dependences of electron mobility in un-

doped n-CdTe. Experimental data – [23] 
 

For undoped samples, the following defect concen-

tration values were obtained: sample A – ND=51014 

cm-3, NSS=81014 cm-3 (concentration of the static strain 

(SS) centres); sample B – ND=51015 cm-3, NSS=2.51015 

cm-3; sample C – ND=51016 cm-3, NSS=1.11016 cm-3. 

The defect concentration values give a sufficiently good 

coinciding with experimental temperature dependences 

of electron mobility (see Fig. 2). However, at low tem-

peratures and low defect concentrations, some devia-

tion of the theoretical curves from the experimental 

data is observed. This can be explained by the insuffi-

ciently successful choice of the initial pseudopotentials 

of cadmium and tellurium. 
 

 
 

Fig. 3 – Temperature dependence of the electron Hall factor in 

undoped n-CdTe. The notations of the curves correspond to the 

crystals in Fig. 2 
 

The abovementioned method of calculation allows 

the temperature dependence of the electron’s Hall fac-

tor for undoped samples to be obtained (Fig. 4). These 

dependences have minima corresponding to the tem-

perature at which the transition from the SS-scattering 

mechanism to the PO-scattering mechanism occurs. 

From Fig. 3, it is seen that the higher the concentration 

of defects, the higher the transition temperature. 

If we compare the theoretical curves obtained by 

the above method with the theoretical curves obtained 

in the relaxation time approximation (Fig. 4 for un-

doped samples), one can see that the relaxation time 

approximation gives theoretical curves that are much 

less consistent with experiment (curve 1 corresponds to 

the low-temperature region ћ ≫ kBT and curve 2 cor- 

 
 

 
 

 
 

Fig. 4 – Comparison of the theoretical curves obtained in the 

framework of long-range (curves 1 and 2) and short-range 

(curve 3) scattering models for undoped samples. Here, (a) 

sample A: ND = 51014 cm – 3; NSS = 81014 cm – 3; (b) sample B: 

ND = 51015 cm – 3; NSS = 2.51015 cm – 3; and (c) sample C: 

ND = 51016 cm – 3; NSS = 1.11016 cm – 3 
 

responds to the high-temperature region ћ ≪ kBT in 

the relaxation time approximation) especially in the 

region of high defect concentrations. For CdTe, the De-

bye temperature is D = 239 K. This means that the 

low-temperature region will be determined by the con-

dition T < 24 K, and the high-temperature region will 

be determined by the condition T > 2400 K. Therefore, 

24 K ≪ T ≪ 2400 K temperature region corresponds to 

inelastic scattering, where the relaxation time approx-

imation is not valid. On the other hand, the short-range 

scattering models allow to describe inelastic scattering. 

This indicates that the method proposed in this article 

more adequately describes the defect structure of crys-

tals and their kinetic properties. 
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5. CONCLUSIONS 
 

The author proposes a new scheme for calculating 

the energy spectrum, wave function and potential en-

ergy of an electron in a crystal at a given temperature. 

Based on this, the temperature dependences of defect 

parameters and kinetic coefficients are calculated. It 

should be noted that the proposed calculation method 

can be applied to all semiconductors with a sphalerite 

structure. The difference between the calculations car-

ried out in the work will be the use of other pseudopo-

tentials of atoms of the basic substance and impurities. 
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Розрахунок електронної хвильової функції та потенціалу кристала в напівпровіднику  

зі структурою сфалериту при заданій температурі 
 

О.П. Малик 
 

Національний університет «Львівська політехніка, вул. С. Бандери, 12, 29013 Львів, Україна 
 

У статті розглянуто метод визначення енергетичного спектру, хвильової функції електрона та 

кристалічного потенціалу в CdTe при довільно заданій температурі. За допомогою цього підходу в 

рамках методу суперкомірки розраховано температурні залежності енергій іонізації власних дефектів 

в телуриді кадмію. Запропонований метод також дає змогу визначити температурні залежності опти-

чного та акустичного потенціалів деформації, а також температурну залежність параметрів розсію-

вання електронів на іонізованих домішках, полярних оптичних, пєзооптичних та пєзоакустичних 

фононах. У рамках близькодіючих моделей розсіяння розглядаються температурні залежності рухли-

вості електронів і фактора Холла. 
 

Ключові слова: CdTe, Перенесення електронів, Точкові дефекти, Ab initio розрахунок. 

https://doi.org/10.1002/pssa.201800887
https://doi.org/10.1103/PhysRevB.66.155211
https://doi.org/10.1103/PhysRevB.66.155211
https://doi.org/10.1103/PhysRevB.83.245207
https://doi.org/10.1103/PhysRevB.83.245207
https://doi.org/10.1088/0268-1242/31/8/083002
https://doi.org/10.1016/j.tsf.2012.10.027
https://doi.org/10.1002/pssb.201800219
https://doi.org/10.1002/pssb.201800219
https://doi.org/10.1039/C6TA09155E
https://doi.org/10.1016/j.commatsci.2017.07.039
https://doi.org/10.1103/PhysRevB.85.%20115317
https://doi.org/10.1103/PhysRevB.85.%20115317
https://doi.org/10.1063/1.3147189
https://doi.org/10.1063/1.3147189
https://doi.org/10.1088/1367-2630/16/10/105009
https://doi.org/10.1103/PhysRevB.87.115418
https://doi.org/10.1103/PhysRevB.92.075405
https://doi.org/10.1007/s11664-018-6068-1
https://doi.org/%2010.1007/s11664-020-07982-6
https://doi.org/10.1139/cjp-2013-0075
https://doi.org/10.1063/1.330018
https://doi.org/10.1063/1.330018
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRev.129.2471
https://doi.org/10.1016/j.jallcom.2003.07.033

