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The problem of diffraction of E-polarized light at normal falling on a grating of infinitely thin metallic 

strips is solved. Light is represented as a flux of particles – photons. The problem of determining the psi-

function of a photon scattered by the grating is led down to the Riemann-Hilbert boundary problem. A 

strict solution is obtained in the form of a convergent infinite system of linear algebraic equations. The sys-

tem equations are valid for any relation between wavelength and period of the structure and any relation 

between slit width and strip width. As follows from a comparison of the de Broglie representation of the 

psi-function and its decomposition into Fourier series, the possible values of the photon momentum com-

ponent perpendicular to its initial direction of motion are determined by even values of the "quantum" of 

momentum, whose magnitude is determined by the grating period. Photons passed through or reflected by 

the grating get discrete values of momentum when interacting with the grating and deviate at discrete an-

gles. Numerical calculations show that the diffraction maxima are located in front of the slit and have 

some internal structure that depends on the ratio between the grating period and the photon wavelength. 

As the ratio of the grating period to the photon wavelength increases, the diffraction peak splits. When the 

ratio becomes less than unity, the diffraction pattern disappears, we have a uniform illumination. There-

fore, the value of the specified ratio, equal to one, is the threshold. 
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1. INTRODUCTION 
 

There has been continuous attention to the problem 

of electromagnetic wave scattering by a strip grating. 

This is explained by both the interest of theorists and a 

wide range of applications. In the given paper, the 

problem of diffraction of E-polarized photons in the 

case of normal incidence of a flux on a grating formed 

by an unlimited sequence of infinitely thin metal strips 

is resolved. In the quantum formulation, the problem of 

determining the -function of a photon passed and 

reflected by a grating is considered, which is lead down 

to the Riemann-Hilbert boundary value problem. The 

solution of the problem is presented in the form of an 

infinite system of linear algebraic equations for deter-

mining the Fourier coefficients of the -function. 

 

2. PROBLEM STATMENT 
 

A homogeneous flux of photons falls normally from 

above on a grating located in the XOY plane. The slit 

width is d, the grating period is l, so the strip width is 

l – d (Fig. 1). It is necessary to define the flux intensity 

(probability density 
2

 ) of photons above and below 

the grating. Scattering of E-polarized photons having 

Ex-component of the electric field is considered. In this 

case, the photon function according to de Broglie [1] 

can be represented as 
 

 ikz
x oE E e   . (1) 

 

A stationary process is considered, so the time multi-

plier i te    is absent in this expression. 

In the region above ( 0z  ) and below ( 0z  ) the 

grating, the -function of the scattered photon must 

satisfy the two-dimensional Schrödinger equation, 

which for a photon has the view: 
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Fig. 1 – Diffraction grating 
 

 
2 2

2

2 2
0k

y z

   
   

 
 (2) 

 

and coincides with the wave equation for an electro-

magnetic wave 2k   ,  is a wavelength. Due to the 

periodicity of the structure, the -function must be a 

periodic function with a period l in the direction of the 

Y-axis. Thus, it can be expanded in a Fourier series: 
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We will assume that photons cannot penetrate the 

metallic strips. In electromagnetic theory, in this case 

one speaks of the ideal conductivity of the metal. Thus, 

in metal slits  ≡ 0. 

According to the requirements of finiteness in the 

upper half-space, the -function will have the form 
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where the first constituent corresponds to the ampli-

tude of the probability of a photon falling on the grat-

ing, the second – to the remote one. 

In the lower half-space, the amplitude of the proba-

bility of a photon passed through a grating 
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Here, 
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 
 will count the value of the 

root, which has a positive imaginary part, and if it is 

equal to zero – a positive real part. 

 

3. SOLUTION OF THE PROBLEM 
 

On metal strips, the -function equals to zero, and 

on slits – the -function and its derivative are continu-

ous. And therefore, the right parts of expressions (4), 

(5) must be identically equal at z  0 on the full period, 

from which equality (6) follows, which is valid on the 

entire period 
 

 1 ,o o n nb a b a   , (6) 

 

and equalizations (on metal) 
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As the derivative 
z




 is continuous on the slit, we 

also get (on the slits) 
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Equalizations (7), (8), are reduced to the Riemann-

Hilbert problem, the exact solution of which is repre-

sented as an infinite system of linear algebraic equa-

tions relative to the coefficients bn [2] 
 

 

 

 

 

1

1

1

2 ,

0 2 ,

2 ,

1, 2, 3... , ,

o o n n
o o n n

n

o o n n
o o o n n o o o

n

o o n n
m o m m n n m m m

n

n n

b i b V i V x V V cR

i b V i V x V V cR

x i b V i V x V V cR

m x b n

      

  

  
















     

    

    

 







  (9) 

 

where 
2

2
1 1n i

n


    , n nx nb , 

l



 . 

Expressions for the , , , , , ,o o n o n
o m m o mV V V V V R R   coeffi-

cients in the Legendre polynomials are represented in 

the work [3]. Due to the parameter n  tending to 0 as 

20(1 / )n n  , at n  system (9) converges and al-

lows to apply the reduction method. 

4. DISCUSSION OF THE OBTAINED RESULTS 
 

Here we must make a reservation comparing the 

representations of the -function for the E- and H-

polarizations [2]. They have the same form, and the 

same conclusions follow from their analysis. Let us 

represent the -functions (4), (5) in the de Broglie form 
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where pz, py are the z- and y-components of the photon 

momentum, respectively, 
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The following conclusions follow from analysis (10). 

In classical electrodynamics [3], the field of plain wave 

scattering on a grating is interpreted as a sum of spa-

tial harmonics (4), (5) with amplitudes an, bn. Each of 

them propagates at an angle, the tangent of which is 

determined by the relation 
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After simple trigonometric transformations we get 

from expressions (11) the known diffraction grating 

equation [3]: 
 

 sin nl n  . (12) 

 

According to (10), relation (11) can be represented as 
 

 tg
y

n

z

p

p
  . (13) 

 

Expression (13) can be explained as follows. A pho-

ton passed through the slit receives a momentum com-

ponent in the direction perpendicular to its primary 

direction of motion as a result of elastic collision with 

an electron of a strip. An expression that coincides with 

equation (12) was also obtained in [4] for the diffraction 

of photons by two slits when slit width d  0. In this 

case, the approach was based on application of laws of 

conservation of energy and momentum at the elastic 

collision of a photon with an electron moving in the 

strip (what can be considered as practically free move-

ment in an infinitely deep potential well [5]). As noted 

in [2], the result follows from the analysis of the y-

component of the momentum py, which can be exam-

ined as some rule of selection of possible values of the 

y-component of the photon momentum acquired as a 

result of collision with an electron. The final one is de-

termined by the even values of the "quantum" of the 

momentum ħ/l of an electron moving in the metal 

strip. It should be noted that in [4] it was assumed that 

the width of the potential well is equal to the width of 

the metal strip l – d. But the results obtained in this 
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work and in [2] clarify this assumption. The width of 

the potential well is determined by the grating period. 

Concerning the diffraction pattern, we emphasize 

once again that photons passing through the slit ac-

quire discrete values of the momentum upon collision 

with electrons deviating by discrete angles determined 

by (12) or (13). So, we have intensity maxima at some 

spots where photons came, and intensity minima in the 

spots where photons did not come. 

It should be noted that the results obtained clearly 

confirm the dual nature of particles. So, when deter-

mining the possible values of the electron momentum 

in a metal strip (which we treated as a potential well), 

we use the wave properties of the electron. The phe-

nomenon of interaction of a photon with an electron is 

based on the corpuscular properties of particles. In the 

end, the dual nature of particles is contained in the de 

Broglie representation (see (10)), according to which it 

is both a plane wave and a particle with momentum. 

Now let us compare expressions (10) with the repre-

sentations of the components of electromagnetic waves 

in classical optics. Based on the quantum concepts for-

mulated above, the coherence conditions introduced in 

wave optics acquire a different meaning. Let us consid-

er the classical form of receiving coherent beams with 

the help of the Young experiment, a description of 

which can be founded in [3]. As known, two beams are 

coherent if their phase difference  is constant in 

time, and the interference maximum is observed when 

  2m. In terms of quantum mechanics, the phase 

difference   2m corresponds to the difference be-

tween the y-components of the momenta of any two 

photons determined by the expression 
2

Δp m
l


  (see 

representations (10)). 

To obtain a distinguishable interference pattern in 

the Young installation, the distance L between the 

screen and the sources must be much greater than the 

distance b between the sources (two slits in the non-

transparent screen). In this case, the position of the 

intensity maxima is observed at the value of the x coor-

dinate, according to [2], equal to 
 

 
L

b
mxmax  , m = 0, 1, 2, … (14) 

 

Here   0/n, 0 is the light wavelength in vacuum, 

n is the refractive index of the medium. Let us trans-

form (10), so 
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or finally tg = ± m. 

At small diffraction angles , the obtained expres-

sion coincides with (12). So, we see that in this case we 

are dealing with a classical example of the diffraction 

phenomenon. It can be concluded that the phenomenon 

of interference for particles does not exist. This conclu-

sion agrees with the experimental results on diffraction 

of electrons represented in [6]. According to the results 

of this experiment, there can be no question of interfer-

ence of each electron reached the screen individually. 

We now turn to a discussion of the numeral results. 

First at all, we are interested in the dependence of the 

coefficients bn, and then the diffraction pattern on the 

wavelength and slit width, or more precisely on   l/ 

and the fill factor d/l. 

Numerical calculations were performed using a 

computer program that allows to obtain the basic char-

acteristics of the grating within a wide range of change 

of the parameters. Substituting n  0 into the system 

of equations (9) for all n  , it is possible to get from (9) 

the limiting system. The computer program allows cal-

culation within d/l from 0 to 1, and within  from 0 to 

4.1. The psi-function of a photon passed throw the grat-

ing is represented by expression (5). At a large distance 

from the grating plane z  l in the sum (5), there will 

be only those coefficients bn for which n   
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where N = . For all other coefficients with n , all n 

become imaginary and disappear at a great distance 

from the grating. It should be noted that relation (16) 

holds at a large distance between the grating and the 

screen. 

Fig. 2 and Fig. 3 show the dependences of 
2

  on 

the y-coordinate (y/l) for one period of the structure, 

since the diffraction pattern is repeated with period l. 

Fig. 2 represents 
2

  at   1.9 and different values of  

the fill factor d/l. Fig. 3 shows 
2

  at d/l = 0.5 and dif-

ferent values of . 
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Fig. 2 – Diffraction patterns of distribution 
2

  at different 

values of the fill factor d/l: 1 – 0.9; 2 – 0.5; 3 – 0.1; at l/ = 1.9 
 

As evident from the charts in Fig. 2, the diffraction 

pattern has one maximum over the period length locat-

ed opposite the slit. The value of the maximum depends 

on the ratio between the slit width and the grating pe-

riod. With an increase in the slit width, the height of 

the maximum grows. 

From a comparison of the dependences for different 

d/l ratios, the probability of photon passage through 

the grating decreases with a decrease in the slit width, 

and when 0d , 0
2
 . 
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Fig. 3 – Diffraction patterns of distribution 
2

  at different 

values of l/: 1 – 2.1; 2 – 3.1; 3 – 4.1; at d/l = 0.5 
 

From a comparison of the dependences for different 

d/l ratios, the probability of photon passage through 

the grating decreases with a decrease in the slit width, 

and when 0d , 0
2
 . 

Glance at Fig. 3 give the possibility to analyze the 

dependence diffraction pattern on the parameter l/. In 

contrast to H-polarization [2], the bifurcation of the 

maximum begins with the value  = 2 and not with 

 = 1. 

 

5. CONCLUSIONS 
 

In the given paper, the problem of diffraction of E-

polarized photons by an infinite grating of infinitely 

thin metallic strips at the normal falling is solved for 

an arbitrary ratio between the slit width and the struc-

ture period, and an arbitrary ratio between the wave-

length and the grating period is obtained. The solution 

is based on a strict method for solving boundary-value 

problems – the Riemann-Hilbert method. The exact 

solution for the probability amplitude  of the trans-

mission of E-polarized photons during diffraction by a 

grating is represented as an infinite system of linear 

algebraic equations with respect to the Fourier expan-

sion coefficients. At n   , the system converges, its 

coefficients tend to zero as 1/n2, and the reduction 

method can be applied. 

It is demonstrated that the condition of coherence 

in optics is reduced in quantum mechanics to the condi-

tion of possible discrete values of momentum acquired 

by a photon as a result of its interaction with a grating. 

So, in terms of quantum mechanics, the phenomenon of 

interference for particles does not exist. This conclusion 

is consistent with the electron diffraction experiment 

[6], in which the time of flight of an electron from the 

screen with a hole to the observation screen was signif-

icantly less than the time interval between the appear-

ance of two electrons sequentially following one after 

the other. So, the diffraction phenomenon is a conse-

quence of the quantum nature of light. 

The numerical results allow to assert that the prob-

ability of a photon arriving to any point of the screen 

located behind the grating has some maxima, the num-

ber of which depends on the relation between the wave-

length and the structure period. 

It should also be noted that this theory, in addition 

to optical phenomena, can to some extent qualitatively 

help explain the behavior of the resonant absorption of 

high-frequency waves in various crystals [7]. 
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Дифракція Е-поляризованих фотонів на нескінченній ґратці металевих стрічок 
 

А.В. Безуглий, О.М. Петченко, Г.О. Петченко, Г.Я. Дульфан 
 

Харківський національний університет міського господарства імені О.М. Бекетова,  

вул. Маршала Бажанова, 17, 61002 Харків, Україна 

 
Розв’язана задача про дифракцію Е-поляризованих фотонів при нормальному падінні на ґратку, 

утворену необмеженою послідовністю нескінченно тонких металевих стрічок. Світло представляється 

як потік частинок – фотонів. Задача знаходження псі-функції фотона, розсіяного ґраткою, зводиться 

до граничної задачі Рімана-Гільберта. Розв’язок задачі отримано у вигляді нескінченної системи лі-

нійних алгебраїчних рівнянь, що сходиться. Система придатна для будь-яких співвідношень між до-

вжиною хвилі та періодом структури та будь-яких співвідношень між шириною щілини та періодом 

ґратки. Як витікає із порівняння де Бройлівського представлення псі-функції з її розкладом у ряд 

Фур’є, можливі значення складової імпульсу фотона, перпендикулярної до первинного напрямку ру-

ху, визначаються парними значеннями "кванта" імпульсу, величина яких залежить від періода ґрат-

ки. Фотони, пропущені або відбиті ґраткою, отримують дискретні значення імпульсу внаслідок взає-

модії з ґраткою і відхиляються на дискретні кути від первинного напрямку. Як випливає з чисельних 

розрахунків, дифракційні максимуми розташовуються перед щілиною і мають деяку внутрішню стру-

https://doi.org/10.21272/jnep.13(1).01002
https://doi.org/10.21272/jnep.13(1).01002
https://doi.org/10.1119/1.16104
https://doi.org/10.1119/1.16104
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ктуру залежно від співвідношення між довжиною хвилі та періодом ґратки. При збільшенні відно-

шення періоду ґратки до довжини хвилі дифракційний пік розділяється. Дифракційна картина спо-

стерігається, коли це відношення більше одиниці. Коли воно стає менше одиниці, дифракційна кар-

тина зникає, маємо однорідну освітленість. Отже, значення вказаного відношення рівне одиниці є по-

роговим. 
 

Ключові слова: Дифракція, Ґратка, Квант, Псі-функція, Амплітуда ймовірності, Дифракційна кар-

тина, Фотон. 


