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Diffraction of E-polarized Photons on Periodic Grating of Metal Strips
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The problem of diffraction of E-polarized light at normal falling on a grating of infinitely thin metallic
strips is solved. Light is represented as a flux of particles — photons. The problem of determining the psi-
function of a photon scattered by the grating is led down to the Riemann-Hilbert boundary problem. A
strict solution is obtained in the form of a convergent infinite system of linear algebraic equations. The sys-
tem equations are valid for any relation between wavelength and period of the structure and any relation
between slit width and strip width. As follows from a comparison of the de Broglie representation of the
psi-function and its decomposition into Fourier series, the possible values of the photon momentum com-
ponent perpendicular to its initial direction of motion are determined by even values of the "quantum" of
momentum, whose magnitude is determined by the grating period. Photons passed through or reflected by
the grating get discrete values of momentum when interacting with the grating and deviate at discrete an-
gles. Numerical calculations show that the diffraction maxima are located in front of the slit and have
some internal structure that depends on the ratio between the grating period and the photon wavelength.
As the ratio of the grating period to the photon wavelength increases, the diffraction peak splits. When the
ratio becomes less than unity, the diffraction pattern disappears, we have a uniform illumination. There-
fore, the value of the specified ratio, equal to one, is the threshold.
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1. INTRODUCTION

There has been continuous attention to the problem
of electromagnetic wave scattering by a strip grating.
This is explained by both the interest of theorists and a
wide range of applications. In the given paper, the
problem of diffraction of E-polarized photons in the
case of normal incidence of a flux on a grating formed
by an unlimited sequence of infinitely thin metal strips
is resolved. In the quantum formulation, the problem of
determining the Y-function of a photon passed and
reflected by a grating is considered, which is lead down
to the Riemann-Hilbert boundary value problem. The
solution of the problem is presented in the form of an
infinite system of linear algebraic equations for deter-
mining the Fourier coefficients of the ¥-function.

2. PROBLEM STATMENT

A homogeneous flux of photons falls normally from
above on a grating located in the XOY plane. The slit
width is d, the grating period is /, so the strip width is
I —d (Fig. 1). It is necessary to define the flux intensity

(probability density “{"2) of photons above and below

the grating. Scattering of E-polarized photons having
E-component of the electric field is considered. In this
case, the photon function according to de Broglie [1]
can be represented as

Y=E =Ee¢™. eY)

A stationary process is considered, so the time multi-
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Fig. 1 — Diffraction grating
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and coincides with the wave equation for an electro-
magnetic wave k=2z/1, 1is a wavelength. Due to the

periodicity of the structure, the ¥Y-function must be a
periodic function with a period / in the direction of the
Y-axis. Thus, it can be expanded in a Fourier series:

.27n
=)

¥(x,y)= X E,(z)e | . 3)

n=-ow

We will assume that photons cannot penetrate the
metallic strips. In electromagnetic theory, in this case
one speaks of the ideal conductivity of the metal. Thus,
in metal slits ¥= 0.

According to the requirements of finiteness in the
upper half-space, the ¥-function will have the form

. (1) -
plier e is absent in this expression. ¥ (y ,z) -
In the region above (z<0) and below (z>0) the 2 |y (27n 2 om ) @
grating, the ¥-function of the scattered photon must =e "+ ; a,exp| i,[k” - N 2 |-exp lTy
satisfy the two-dimensional Schrédinger equation, A
which for a photon has the view:
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where the first constituent corresponds to the ampli-
tude of the probability of a photon falling on the grat-
ing, the second — to the remote one.

In the lower half-space, the amplitude of the proba-
bility of a photon passed through a grating

‘P(”) (y,z):
© , 2 6))
= ; bexp| —i kz—(%Tnj z vexp[i%lmy}

2
Here, 7, = ,[k* _[Q%n] will count the value of the

root, which has a positive imaginary part, and if it is
equal to zero — a positive real part.

3. SOLUTION OF THE PROBLEM

On metal strips, the ¥-function equals to zero, and
on slits — the Y-function and its derivative are continu-
ous. And therefore, the right parts of expressions (4),
(5) must be identically equal at z= 0 on the full period,
from which equality (6) follows, which is valid on the
entire period

b =1+a, b,=a,, (6)
and equalizations (on metal)
.27n
anexp(LTyj =0. @)

As the derivative hd is continuous on the slit, we
z

also get (on the slits)
27n Y 2rn
-k+3b, kz—(%j -exp(i%yjzo. (8

Equalizations (7), (8), are reduced to the Riemann-
Hilbert problem, the exact solution of which is repre-
sented as an infinite system of linear algebraic equa-
tions relative to the coefficients b, [2]

~b, =i6b,V2 ~i6V2 + 3 x,7, (V2 +V," )+ 2R, ,
n=1

0=isbV°—isVo+ S x y (V' +V"+2R. ),
o0 (] n;_l nZn( o o O) (9)

x,, =160,V ~isV + 3 2,7, (Vi +V," )+ 2R, .
n=1

(m=1,2,3.),

. |82 l
where y, =1+i,|—-1, x,=nb,, 6=—.
n A

Expressions for the V',V V' V° V' R R, coeffi-
cients in the Legendre polynomials are represented in
the work [3]. Due to the parameter y, tending to O as

x,=bn,

Xn =0(1/n% , at n—>o system (9) converges and al-

lows to apply the reduction method.
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4. DISCUSSION OF THE OBTAINED RESULTS

Here we must make a reservation comparing the
representations of the Y-function for the E- and H-
polarizations [2]. They have the same form, and the
same conclusions follow from their analysis. Let us
represent the ¥-functions (4), (5) in the de Broglie form

i
Y, = Zanexp%(—pzz + pyy),
(10)

Y, = anexp%(pzz +pyy),

where p., py are the z- and y-components of the photon
momentum, respectively,

2
znh 9 (27n
pyZZT’pz:h k —(T] .

The following conclusions follow from analysis (10).
In classical electrodynamics [3], the field of plain wave
scattering on a grating is interpreted as a sum of spa-
tial harmonics (4), (5) with amplitudes an, bx. Each of
them propagates at an angle, the tangent of which is
determined by the relation

2znll
tga, = —F—7m—. (11)

B2 2rzn ’
l
After simple trigonometric transformations we get

from expressions (11) the known diffraction grating
equation [3]:

lsina, =ni. 12)
According to (10), relation (11) can be represented as

tga, = By . (13)

z

Expression (13) can be explained as follows. A pho-
ton passed through the slit receives a momentum com-
ponent in the direction perpendicular to its primary
direction of motion as a result of elastic collision with
an electron of a strip. An expression that coincides with
equation (12) was also obtained in [4] for the diffraction
of photons by two slits when slit width d — 0. In this
case, the approach was based on application of laws of
conservation of energy and momentum at the elastic
collision of a photon with an electron moving in the
strip (what can be considered as practically free move-
ment in an infinitely deep potential well [5]). As noted
in [2], the result follows from the analysis of the y-
component of the momentum p,, which can be exam-
ined as some rule of selection of possible values of the
y-component of the photon momentum acquired as a
result of collision with an electron. The final one is de-
termined by the even values of the "quantum" of the
momentum 7/l of an electron moving in the metal
strip. It should be noted that in [4] it was assumed that
the width of the potential well is equal to the width of
the metal strip /—d. But the results obtained in this
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work and in [2] clarify this assumption. The width of
the potential well is determined by the grating period.

Concerning the diffraction pattern, we emphasize
once again that photons passing through the slit ac-
quire discrete values of the momentum upon collision
with electrons deviating by discrete angles determined
by (12) or (13). So, we have intensity maxima at some
spots where photons came, and intensity minima in the
spots where photons did not come.

It should be noted that the results obtained clearly
confirm the dual nature of particles. So, when deter-
mining the possible values of the electron momentum
in a metal strip (which we treated as a potential well),
we use the wave properties of the electron. The phe-
nomenon of interaction of a photon with an electron is
based on the corpuscular properties of particles. In the
end, the dual nature of particles is contained in the de
Broglie representation (see (10)), according to which it
is both a plane wave and a particle with momentum.

Now let us compare expressions (10) with the repre-
sentations of the components of electromagnetic waves
in classical optics. Based on the quantum concepts for-
mulated above, the coherence conditions introduced in
wave optics acquire a different meaning. Let us consid-
er the classical form of receiving coherent beams with
the help of the Young experiment, a description of
which can be founded in [3]. As known, two beams are
coherent if their phase difference Ag is constant in
time, and the interference maximum is observed when
Ap=27am. In terms of quantum mechanics, the phase
difference Ap=27zm corresponds to the difference be-
tween the y-components of the momenta of any two

photons determined by the expression Ap = @m (see

representations (10)).

To obtain a distinguishable interference pattern in
the Young installation, the distance L between the
screen and the sources must be much greater than the
distance b between the sources (two slits in the non-
transparent screen). In this case, the position of the
intensity maxima is observed at the value of the x coor-
dinate, according to [2], equal to

b
Xpgy = £M El,m=0, 1,2, ... (14)

Here A = Ao/n, Ao is the light wavelength in vacuum,
n is the refractive index of the medium. Let us trans-
form (10), so

= tga, (15)

or finally tga =+ mA.

At small diffraction angles «, the obtained expres-
sion coincides with (12). So, we see that in this case we
are dealing with a classical example of the diffraction
phenomenon. It can be concluded that the phenomenon
of interference for particles does not exist. This conclu-
sion agrees with the experimental results on diffraction
of electrons represented in [6]. According to the results
of this experiment, there can be no question of interfer-
ence of each electron reached the screen individually.
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We now turn to a discussion of the numeral results.
First at all, we are interested in the dependence of the
coefficients b, and then the diffraction pattern on the
wavelength and slit width, or more precisely on &= 1/1
and the fill factor d/I.

Numerical calculations were performed using a
computer program that allows to obtain the basic char-
acteristics of the grating within a wide range of change
of the parameters. Substituting y» =0 into the system
of equations (9) for all n > J, it is possible to get from (9)
the limiting system. The computer program allows cal-
culation within d/! from 0 to 1, and within ¢ from O to
4.1. The psi-function of a photon passed throw the grat-
ing is represented by expression (5). At a large distance
from the grating plane z >> [ in the sum (5), there will
be only those coefficients b, for which n < &

N
y/(ll)(y,z): Y bnexp[— i27” 52 _p2 zj : cos[ZTm yj (16)
n=0

where N = é. For all other coefficients with n> &, all
become imaginary and disappear at a great distance
from the grating. It should be noted that relation (16)
holds at a large distance between the grating and the
screen.

Fig. 2 and Fig. 3 show the dependences of |'}’|2 on

the y-coordinate (y/l) for one period of the structure,
since the diffraction pattern is repeated with period I.

Fig. 2 represents |'2”|2 at = 1.9 and different values of

the fill factor d/I. Fig. 3 shows |‘z"|2 at d/l = 0.5 and dif-

ferent values of 6.
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Fig. 2 — Diffraction patterns of distribution |l,//| at different
values of the fill factor d/l: 1 —0.9; 2—-0.5; 3-0.1; at /A1=1.9

As evident from the charts in Fig. 2, the diffraction
pattern has one maximum over the period length locat-
ed opposite the slit. The value of the maximum depends
on the ratio between the slit width and the grating pe-
riod. With an increase in the slit width, the height of
the maximum grows.

From a comparison of the dependences for different
d/l ratios, the probability of photon passage through
the grating decreases with a decrease in the slit width,

and when d -0, |’1”|2 0.
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Fig. 3 — Diffraction patterns of distribution |ly| at different
valuesof //A4: 1-2.1;2-3.1;3—4.1; at d/l=0.5

From a comparison of the dependences for different
d/l ratios, the probability of photon passage through
the grating decreases with a decrease in the slit width,

and when d —0, |'1V|2 —0.

Glance at Fig. 3 give the possibility to analyze the
dependence diffraction pattern on the parameter I/A. In
contrast to H-polarization [2], the bifurcation of the
maximum begins with the value §=2 and not with
5=1.

5. CONCLUSIONS

In the given paper, the problem of diffraction of E-
polarized photons by an infinite grating of infinitely
thin metallic strips at the normal falling is solved for
an arbitrary ratio between the slit width and the struc-
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dudpaxnia E-nonapusosanux (pOTOHIB HA HECKIHYEHHIN I'PaTIii METAJI€BUX CTPIYOK

A.B. Beayrumii, O.M. Iletuenko, I.O. [letuenxo, I'.d. Jlynsdau

Xapriecorull HauloHAILHUL YHI8epcumem micvbko2o 2ocnodapcemaa imeni O.M. Bexemosa,
eyn. Mapwana Bascarnosa, 17, 61002 Xapkis, Yrpaina

Posp’sizana samaua mpo mudpakiiio E-mosaspu3oBaHux OTOHIB IPU HOPMAJILHOMY IIAIIHHI Ha IPaTKY,
YTBOPEHY HeOOMEesKeHOIO ITOCJIIIOBHICTI0O HECKIHYEHHO TOHKAX METAJeBUX CTPidoK. CBITJIO IIpeCcTaB/IsAETHCS
SIK TIOTIK YaCTUHOK — (POTOHIB. 3ajava 3HAXOKEHHs ICi-(PYHKITT pOTOHA, PO3CITHOTO IPATKOI0, 3BOIUTHCS
o rpaunyHOi 3amaui Pimana-['ns6epra. Poss’sizox 3amayl oTprMaHO y BUTJISAI HECKIHYEHHOI CHCTEMH JIi-
HIMHUX aJrebpaiyHuX pIBHSAHB, IO cxoauThesa. Cucrema mpumaTHa JIst OyIb-SIKUX CITIBBIIHOINEHD MIK J10-
BIKMHOIO XBHJIL TA IePIOJIOM CTPYKTYPH Ta OyIb-sIKUX CIIBBLIHOIIEHH MIK IIHPHHOI IIIJIMHU Ta IepiogoM
rpaTku. K BHUTIKAe 13 MOPIBHAHHSA e BpPOMJIIBCHKOrO IIpeACTaBIeHHA MCi-QYHKINI 3 Ii PO3KIAIOM Y PSII
Dyp’e, MOKINBIL SHAUEHHSA CKJIAI0BOI IMIIYJIbCY (DOTOHA, HMEPIEHINKYJIAPHOIL 10 MEePBUHHOTO0 HAIPAMKY PY-
Xy, BUSHAYAIOTHCA MAPHUMN 3HAYEHHAMHA "KBaHTA" IMIIyJIbCy, BEJIMYNHA AKUX 3aJI€KUTD BIJ mepioma rpat-
ku. @ortonm, mpomyineri abo BigOKTI IPATKOIO, OTPUMYIOTh OMCKPETHI 3HAUYEHHSA IMITyJIbCYy BHACJIIOK B3ae-
Mol 3 IPATKOIO 1 BIAXUJIAIOTHECA HA OTUCKPETHI KYyTH BiJ IIEPBUHHOIO HAIPAMKY. SIK BUILINBAE 3 YMCEIBHUX
PO3paxyHKIB, AUPPAKIINHI MAKCHIMYMA PO3TALIOBYIOTHCA IIepe] IIIJINHOK 1 MAIOTh AeAKY BHYTPIIIHIO CTPY-
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KTypy 3aJIe’KHO BiJ CITIBBIIHOIIEHHS MIiK JTOBYKMHOI0 XBHJIL Ta II€pPioJoM IpaTku. Ilpu 301iabIIeHH] BiTHO-
IIIeHHS Iepioay IPATKU J0 JOBYKUHHU XBUJI NUQPPAKIIAHUN MK po3auiserbes. Judpakiiiina kapTuHa cIo-
cTepiraerbes, KOJIU Iie BIAHOIIEHHS Oiblre omuuuill. Kom BOHO cTae MeHIle OMUHUILN, TudpaKIiiiHa Kap-
THHA 3HUKAE, MAEMO OJHOPIIHY OcBiT/IeHicTh. OTske, 3HAUEHHSA BKA3AHOTO BIIHOIIEHHS PIBHE OJUHMUIII € TI0-
POTOBUM.

Kmouogi cnosa: Mudpaxrmis, Iparka, Keant, Ilci-gysrmis, Ammaityga fimoipHocti, Judpakiiiiaa kap-
tuHa, DoToH.
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