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The paper shows that orthogonal Legendre polynomials in the interval [- 1, 1] can be effectively used
to filter noisy signals, including filtering interferograms and phase maps in digital holographic interferom-
etry. They can also be used to effectively approximate harmonic signals, and the approximation accuracy
increases with the number of polynomials used. Filtering is based on the use of the optimal number of Le-
gendre polynomials when approximating the signal. It is impractical to filter directly digital holograms and
phase maps, since in this case it is necessary to use several hundred polynomials, which significantly in-
creases the time of numerical calculations. Therefore, in digital holographic interferometry, it is necessary
to filter directly the field amplitudes calculated from the digital hologram. Interferograms and phase maps
can be calculated using filtered field amplitudes for different states of the object under study. If for the real
or imaginary part of the signal the minimum distance between adjacent local minima (maxima) is equal to
Al, then for a satisfactory approximation of such a signal by Legendre polynomials, 6/Al polynomials are
required. The efficiency of filtering by Legendre polynomials is higher if the noise signal contains harmonic
components with a frequency greater than the frequency of the useful signal.
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1. INTRODUCTION

In many areas of technology, as well as in scientific
research, the information noise contaminated signals
are received, and it is sometimes impossible to obtain
the necessary information with high wvalidity using
such noisy signals. They can be signals in the form of
low voltage or low current at the output of the electron-
ic circuit. It is known that elements of an electronic
circuit, in particular resistors, p-n junctions of semi-
conductor elements, are a source of noise and the aver-
age power of which may exceed the power of signal.

Noise is also present in optical systems which im-
pairs the visual perception of images. Besides, it is not
always possible to make a reliable quantitative esti-
mate in the presence of noise. Particularly intense
noises occur in optical holography and holographic
interferometry, because in most of cases the holograph-
ic process concerns objects with diffuse reflection [1].

Digital holography (DH) has an important place in
metrology for the study of deformations, displacements,
surface relief and visualization of phase inhomogenei-
ties [2, 3]. In DH, the first stage in obtaining a holo-
gram on a photosensitive medium is a purely optical
stage. Photosensitive arrays based on charge-coupled
devices (CCD) are usually used as a recording medium.
The next step is to reproduce the original image of the
research object with computer simulation of the inter-
action of the conjugate reference beam with a digital
hologram. The reproduced image is displayed on the
screen. It is obvious that the principles of DH are used
in digital holographic interferometry (DHI), in particu-
lar, in the two-exposure method. DHI compares two
reconstructed phase fields of one object which are rec-
orded after a certain time interval. The difference in
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phase distributions determines a phase map containing
phase jumps of 7. The quantitative values of the meas-
ured values (displacement, deformation, vibration, etc.
on the basis of the calculated phase pattern) are ob-
tained.

The speckle decorrelation occurring between two
digital holograms in the two-exposure method is in the
process of DHI. This leads to the appearance of charac-
teristic noise in the obtained phase pattern [4-6].
Speckle noise significantly distorts the quality of the
obtained DHI, which reduces the resolution and accu-
racy of measurements [1, 2].

To improve the quality of interferograms, it is nec-
essary to filter the noise, and filtering should be per-
formed without distorting the interferograms. Current-
ly, DHI consists of a number of developed approaches
to reduce speckle noise. They can be divided into two
types: optical and digital [7-11]. Moreover, several
digital filtering methods are used to reduce speckle
noise in DHI [12-15], in particular, wavelet filtering
[138] and frequency domain filtering using Fourier
transform [15].

In the articles [16, 17], the use of orthogonal Cheby-
shev polynomials [18] for DHI filtering in the case of
the simplest deformation of a rough reflecting surface,
for which the magnitude of the deformation depends on
only one coordinate, was proposed. The quality of DHI
and the corresponding phase maps was significantly
improved by filtering with Chebyshev polynomials.
However, the filtering of signals by orthogonal Cheby-
shev polynomials is complicated by the fact that the
weight factor has a singularity at x =+ 1 in the numeri-
cal integration belonging the interval [- 1, 1].

In this work, we studied the possibility of using or-
thogonal Legendre polynomials [18] to filter (improve
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the quality) of noise signals. They can be used for filter-
ing digital interferograms of reflective rough surfaces
due to deformation. The weight factor for these poly-
nomials is 1. Therefore, the problems which arise when
filtering by Chebyshev polynomials are eliminated.

2. LEGENDRE POLYNOMIALS AND THEIR
PROPERTIES

Legendre polynomials can be represented as the fol-
lowing recurrence relations [18, 19]:

Py(x)=1, P(x)=x,

2n+1 n
Pn+1 (x): n+1 xPn (x)_mpﬂ*1 (x)

Polynomials with paired numbers are described by
symmetric functions, and polynomials with odd num-
bers are described by antisymmetric functions. In addi-
tion, the polynomial number determines the number of
intersections of the abscissa axis by the polynomial in
the interval [- 1, 1].

These polynomials are orthogonal with weight 1 in
the interval [- 1, 1], and the conditions of orthogonality
for them are the following [18-20]:

@

1
2
P P (x)de=——0,, 2
1,m=
where S, —{ " =7 s the Kronecker delta symbol.
NE

Therefore, the continuous function F(x) in the inter-
val [~ 1, 1] can be represented as an infinite linear
combination of Legendre polynomials Pn(x) with the
corresponding coefficients fm:

F(x) = mepm (x)’ (3)

0

which are calculated as follows [19]:

f,=[F(x)P (x)2m2+1dx. @

The sum in formula (3) is limited to a certain num-
ber for practical realization. This number should pro-
vide the desired error in representing the function F(x)
as a finite sum:

£, (x)= S 1.2, (). 6

Consider the following function
F(x) = exp(i27x) (6)

in the interval [- 1, 1]. Fig. 1 shows the real parts of
the differences Re[F(x) — Fu(x)] for M =11, 12, 13, and
Fig. 2 shows the imaginary parts of the differences for
the same values of M. Analysis of Fig.1 and Fig. 2
allows to conclude that the function F(x) = exp(i2mx) in
the interval [ 1, 1] can be represented with high accu-
racy as the sum (5) at M =13 (blue curve). Green
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curves (M = 15) almost coincide with the abscissa. The
real and imaginary parts of the function exp(i2zx) in-
tersect the abscissa axis 4 times in the interval [- 1, 1].
At the same time, Legendre polynomial Pi2(x) inter-
sects the abscissa 13 times, namely 3.25 times more

than the function.
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Fig. 1 —Real parts of the differences Re[F(x) — Fu(x)] for
M =11 (red line), M = 13 (blue line), M = 15 (green line)
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Fig. 2 - Imaginary parts of the differences Im[F(x) — Fu(x)] for
M =11 (red line), M = 13 (blue line), M = 15 (green line)

If we take the function F(x) = exp(i20m) (40 inter-
sections with the abscissa axis), then the error will be
significantly less than 0.0001 at M = 81 in the approx-
imate representation of this function (5). The ratio of
the number of intersections with the abscissa axis to
the corresponding functions is approximately equal to
2. If F(x) = exp(i50m) (100 intersections with the ab-
scissa axis), then the first 182 Legendre polynomials
are sufficient to represent this function in the form (5)
with an error of less than 0.0001. It should be noted
that the maximum error in the representation of the
functions F(x) by formula (5) is observed at the edges of
the interval [-1, 1], that is at x=+1. This is well
demonstrated in Fig. 1 and Fig. 2.

Let us analyze what is more rational for filtering
with Legendre polynomials in DHI: hologram, ampli-
tude (intensity in digital interferogram) or phase map.
We assume that the pixel size in the CCD camera is
10 um and it is necessary to have at least 2 samples
(and even better 5 samples) for one period of the holo-
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gram according to the sample theorem [18]. As a result,
there will be 400 stripes in the interval of 20 mm. It is
necessary to use 800 Legendre polynomials to accurate-
ly convey the wave amplitude in the hologram and,
accordingly, to filter the noise. That is, hologram filter-
ing requires significant mathematical calculations
according to formulas (4) and (5). It is also impractical
to filter phase maps with Legendre polynomials, since
in phase maps there are gaps of the first kind where
the phase jump is equal to 7z This will also require a
large number of Legendre polynomials for filtering in
order to accurately display phase maps.

The number of bands that can be placed in the in-
terval [- 1, 1] will be equal to N = 2/Al for an interfero-
gram obtained with DH at a minimum distance be-
tween the bands Al. Thus, it can be assumed that it is
necessary to use M= 3N =6/Al in order to adequately
convey the distribution of amplitudes (intensity) of
light in the interference pattern. On the other hand, it
is possible to estimate the average distance between
zeros of Legendre polynomials in the interval [- 1, 1]. If
M = 35, then the average distance between zeros will be
2/35 = 0.057. That is, at M = 35, it is possible to trans-
fer the interferogram quite accurately with Legendre
polynomials at a minimum distance between the inter-
ferogram bands Al =6/(M =0.171), 0.171/0.057 = 3.

3. SIGNAL FILTERING USING LEGENDRE
POLYNOMIALS

Consider the effect of Legendre polynomials on
functions of following types:

F,(x) = exp(ip7x), (7
F,(x)=exp [ia cos (p;zx)] , (8)

where i = «/—_1 , p and a are real numbers.

Function (7) can be related to additive noises that
appear, for example, in a photodetector due to current
fluctuations in pixels. Function (8) determines multi-
plicative noises that occur in DHI due to diffuse light
scattering from the research object.

The filtering efficiency of functions (7) and (8) for
different p using Legendre polynomials can be estimat-
ed using the following formula:

[[FE)a Srre
A S v ©)

P 1
J. ‘F(x)‘z dx ™°
=1

p

1
In (9), it is taken into account that .HF(x)‘Z dx =2
=1

if F(x) is defined by formula (7) or (8). If p =20, M = 35,
then for function (7) P20 = 0.1755.

Fig. 3 shows the dependences of P, on p for func-
tions (7) and (8). Py quickly goes to zero with increasing
p for function (7) already at p >11. The picture is
slightly different for function (8). In particular, the
beginning of a rapid fall depends on a, and there is
saturation with increasing a, and the amount of satu-
ration decreases with increasing a.
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Fig. 3 — Dependences of P, on p for functions of type (7) (red
curve) and for functions of type (8): a=1 (green curve), a =3
(dark blue curve), a = 6 (light blue curve)

The noise function can be defined as follows:

200

noise = 0.022 exp[i (pﬂx +4, )} . (10)

The phase ¢ was determined randomly with a uni-
form distribution on the interval [~ z, 7] for each har-
monic component with index p. The results of numeri-
cal simulations showed that the noise strongly distorts
the signal.

Fig. 4 shows the difference between the real part of
the filtered signal using 13 Legendre polynomials and
the real part of the useful signal, which is described by
the formula Fi(x) = exp(ipx). The figure shows that the
maximum difference is approximately 0.07. This rather
large difference is explained by the fact that the noise
contains harmonic components with p =1...13, which
are practically not filtered in accordance with Fig. 3
(red curve). We also see a sufficiently large error at the
points x =+ 1, which is consistent with Fig. 4. If we
take another implementation of random noise, then
again we get a large filtering error at the points x =+ 1,
and the corresponding difference as a functional de-
pendence on x in the interval [~ 1, 1] will change.
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Fig. 4 — Difference between the real part of the filtered signal
using 13 Legendre polynomials and the real part of the useful
signal described by the formula Fi(x) = exp(ip zx)
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It should be assumed that the filtering efficiency
will improve if the noise signal has harmonic compo-
nents with a higher frequency than the frequency of
the useful signal. The noise function was determined as
follows:

250

noise =0.02 " exp[i(pzrx+¢p)} (11)
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Fig. 5 — Difference between the real part of the filtered signal
with noise using 13 Legendre polynomials and the real part of
the useful signal described by the formula Fi(x) = exp(ipx)

Fig. 5 shows the difference between the real part of
the filtered signal using 13 Legendre polynomials and
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Bukopucrauns oprorouassuux moainomie Jleskauapa aia ginprpanii samyMJIeHUX CUTHAIIIB
Ha O0MEe)KeHOMY iHTepBaJIi B IIPOCTOPi KOOpaUHAT

B.M. @itwol, I'.A. Ilerposcrxkal, d.B. Bobumpkmiil-2

1 Hauionanvruil ynisepcumem «J/Ivsiscorka nonimexuira, eyn. C. Bandepu, 12, 71013 Jlveis, Yikpaina
2 Konedore npupooruuux nayk Incmumymy gisuru Kewyscoroeo yrisepcumemy, gyn. C. Ilicons 1,
385-310 Kewys, Ionvwa

¥ poGori mokasamo, 10 OPTOroHAbHI mosriHomu Jleskauapa B iHTepBaii [— 1, 1] MoxkHa e(peKTUBHO BH-
KOPMCTOBYBATH IS (DLIBTPAIIi] 3aIIyMJIEHUX CUTHAJIIB, Y TOMY YHCJII s (iabTpalrii inTepdeporpam i dga-
30BUX KapT y udpoBiit rosorpadgiunii inTepdepomerpii. Takox 3 iX JOITOMOromn MoxkHA eeKTHBHO aIlpPOK-
CHMyBATH TAPMOHIYHI CUTHAJIH, IPUYOMY TOUHICTH AIIPOKCUMAIII] 3pocTae 31 30LIbIIeHHAM KIJIBKOCTI BUKO-
pucrauux mosriHoMiB. OLIBTpAIlia IPYHTYeThCSI Ha BUKOPHUCTAHHI OIITUMAJIBLHOI KiJIbKOCTI moJriHoMiB Jlesxa-
HIpa IIPY aIpoOKCHMAIlll CUTHAJLY. 3IiACHIOBATH (PLIBTPAIIi0 6e3IocepeHbo I POBUX ToJIorpaM i pazoBux
KapT HEJOIIIHHO, TAK SK MPH ITbOMY HEOOXITHO BUKOPHWCTOBYBATH KIJIbKa COTEHB ITOJIIHOMIB, IO 1CTOTHO
301/IBIITy€e Yac YHUCeJIFHUX Po3paxyHkKiB. ToMy B 1rdpoBiit rosorpadivuniit iHTepdepomerpii HeoOXiTHO Qiab-
TpyBaTu 0€3II0CePeIHRO AMILTITYIN II0JIIB, 10 PO3PAXOBYIOThCA 3 I POBOI Tosorpamu. [HTepdeporpamu ta
as3oBl kapTu MOKHA PO3paxyBaTH, BUKOPUCTOBYIOUYN Biq(iabTPOBAHI aMILIITYAH OB JJIS PI3HUX CTAHIB
nocirkyBasoro ob'exra. Arimo st gidicHol a0 ysIBHOI YaCTWHW CHUTHAJY MiHIMAJIbHA BIJICTAHB MIMK CYCIII-
HIMH JIOKQJIFHUMHA MIHIMyMaMu (MaKCHMyMaMU) TOPIBHIOE Al, TO JJIsT 3a/10BIJIBHOI aIPOKCHMATIIl TAKOTO CH-
rHaiy noiaiHomamu Jleskamapa morpibHo 6/Al momizomiB. EdertusHicts dinbrparii mominomamu Jleskannpa
€ BHUIIO, SIKIIO IIIYMOBHUI CUT'HAJI MiCTUTH MAPMOHIYHI CKJIAI0OBI 3 YACTOTOIO OLJIBIIOI0 38 YACTOTY KOPHCHOIO
CUTHAJLY.

Kmiouosi ciosa: [{udposa romorpadisa, Iludposa romorpadiuna inrepdpepomerpis, lym, Oinprpariis cu-
rHauiB, [lomiuomu Jlexanapa, OpToroHaIbHICTD IIOJIHOMIB.
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