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The study explores the problem of forming an acoustic field in the Helmholtz resonator cavity using the
mode-matching method. Acoustic boundary value problems for the description of acoustic fields in resona-
tor cavities under traditional boundary conditions and boundary conditions at the edge (and in its ab-
sence), which is characterized by the known acoustic properties, are set and solved. For certain dimensions
of an air-filled resonator, the basic field characteristics in the resonator are calculated, analyzed and com-
pared with experimental data. The influence on the results of field formation of the involved condition at
the edge with acoustically rigid boundaries-surfaces is estimated. In view of the foregoing, the research
aims to formulate and solve the wave problem of acoustic field formation in the cubic Helmholtz resonator
taking into account classical boundary conditions, conjugation conditions, and conditions at angular points
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of structural elements formed by the mode-matching and applying the eponymous method.
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1. INTRODUCTION

Traditionally, the study of acoustic properties of the
Helmholtz resonator as an oscillatory system with con-
centrated parameters was carried out using the meth-
ods of acousto-mechanical analogies (see, for example,
[1]). However, further advancement and development
of the methodology of numerical and experimental re-
search of acoustic field formation in cavities or outer
space of resonators and systems based on them re-
quired enrichment and refinement of research ap-
proaches to the use of resonator models as distributed
parameter systems (e.g., tube-shaped sets), which is
shown in [2]. Calculations of the acoustic fields of sin-
gle receivers more accurately presented the picture of
acoustic field formation in the resonator.

The next step in the development should be an ap-
proach to involving in the formulation of wave prob-
lems not only the canonical idealized surfaces and for-
mulated for them classical Dirichlet and Neumann
conditions, their combinations, conjugation of force and
kinematic type conditions, but also additional surface
conditions that will include angular points and lines.

The computational situation can be supported by
such a numerical method as the finite domain method,
which involves dividing the oscillatory system into a
certain number of constituent elements, an arbitrary
choice of an approximating function [3] followed by
integration of individual solutions. The disadvantages
of this situation were an arbitrary approach to the
choice of this function, as well as the accuracy of the
solution associated with such a choice. However, this
method in wave acoustics problems was later developed
as the mode-matching method. The method was re-
searched and implemented in acoustic practice by sci-
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entific schools of the Institute of Hydromechanics of the
National Academy of Sciences of Ukraine and the De-
partment of Acoustic and Multimedia Electronic Sys-
tems of the National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”. The main
provisions for its application are introduced in [4-7].

This method gained widespread attention due to its
capability to divide the studied acoustic object into the
canonical in their shape areas and the use of appropri-
ate solutions for the fields’ constituents. The combina-
tion of individual elements of areas into a single whole,
which forms and describes the studied structure, re-
quires not only traditional boundary conditions such as
Dirichlet and Neumann conditions, kinematic and force
conjugation conditions for all selected rectangular (cu-
bic) areas, but also angular conditions for points (edg-
es), which are formed at the intersections of the transi-
tion from one area to another [4].

Thus, the approximation of the computational situ-
ation to the real physical one determines the relevance
of the work — as a new scientific approach to solving
the problems of receiving wave acoustics reception for
resonators of the Helmholtz type.

In connection with the above, this study aims to
formulate and solve the wave problem of acoustic field
formation in the cubic Helmholtz resonator taking into
account classical boundary conditions, conjugation con-
ditions and conditions at angular points of structural
elements formed by the mode-matching method.

2. FORMULATION OF THE PROBLEM

Let us consider a cubic resonator (Fig. 1) with ele-
ments represented by three areas: two main areas I
and II (area I — neck, area II — resonating cavity) and
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one additional (III), which covers the area around the
top of the rectangular wedge point (Fig. 2). The size of
area III is much smaller than the wavelength of exter-
nal influence: po << A.
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Fig. 1 — Schematic representation and basic dimensions of the
cubic resonator
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Fig. 2 — Area III and the angular point of a rectangular wedge

Suppose that the resonator is presented by a flat
waveguide of the variable cross section with acoustical-
ly rigid surfaces (Fig. 1). The waveguide is filled with
an ideal medium with the density and velocity of sound
and is oriented along the axis of the rectangular coor-
dinate system xQOy. The dimensions of the sections are
hi, I1 for the neck and hg, Iz for the resonating cavity,
where A1 is the vertical cross-sectional neck size, [1 is
the neck length, Az is the vertical section of the cavity,
l2 is the length of the resonator cavity. Areas I and II
are separated by a segment —h1 <y <h: of the intersec-
tion x =0, and the bottom of the resonator acts as a
reflective surface and is represented by a segment
—h2 <y <hg in the intersection x = ls. The condition of a
narrow tube is fulfilled for all resonator sizes and the
size of area III.

The solutions to the problem in areas I and II must
correspond to the known [7, 8] solutions of the Helm-
holtz equations in rectangular coordinates obtained for
regular waveguides and mode-matching components.
Regarding area III, we note that when the environment
bypasses the surfaces areas that include angular
points, the oscillation velocity field is characterized by
the presence of local features i.e., the effect of increas-
ing to infinity of the oscillating velocity values when
approaching the vertex.

It is known that for a small (point) source the
smallness of the area allows us to consider the medium
in it as uncompressed, and the motion of the medium in
area III as described by the Laplace equation for the
wave potential &(p, 6, t) with the appropriate boundary
conditions:
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AD" (p,0,)=0,pe[0,0+p] 6e[0,3n/2],

1 a 111 1 a i

= (o™ (p,0,t))==—(0"(p,06,t))=0, 1
pae( (p )) pae( (p.6 )) 1)

pe[0.0+p] 6,e[0,3n/2].

In the future, one can go from potential terms to
pressure terms without a multiplier e i

Ap"’(p,é’)zo,pe[(),()ip], 0 €[0,3n/2],
l 1 a il 1 1 i

— = 0))=——= 0))=0, (2
i(upmpa@(p (p.0)) iwpmp(p (p.0))=0, ()

pe[0.0+p].60,=3m/2,

where A is the Laplace operator in rectangular coordi-
nates, wis the circular frequency.

We set the conjugation conditions of force and kin-
ematic type, and the boundary conditions in the form of
functional equations:

prxy)=p”(xy), x=0,y €[0,0xh],

Vo= ()= o 2 (0 ).

iwo. OXx iop,, OX
x=0,y€[0,0%h, ],

1 0/,
Vo = o (P E9) =0 x= Ly e[0.02h,

3)
p"(p,0)=plxy), x=0-p, ye[h,h+p],

60,2020, 90:3%;

pm(pﬂ) = pSH(X,y), Xx=0+p, Yy el:hl,hl i,DO:I,

osaseo,ooz%";

where the first two functional equations are the condi-
tions of conjugation of force and kinematic type, respec-
tively. The third equation demonstrates the boundary
conditions on an acoustically rigid surface and, in fact,
is a Neumann problem.

The group of the last two functional equations rep-
resents the conditions on the surface of area III, the
size and boundary of which is determined by the value
po. This last pair of functional equations formally con-
tains the conjugation conditions of the force type of
area IIT and areas I and II when approaching the angu-
lar point from the left and right.

3. SOLUTION OF THE PROBLEM

Let a plane wave propagates from the far field of
the specified system po(x, y, ), penetrating through the
section x = 1 to the neck. The value of the cross section
of the neck is chosen so that the inequality 2h1 < /2 is
fulfilled, where A is the wavelength perturbed by the
resonator. This will meet the condition of the above-
mentioned “narrow tube”, at which there can be only
the lowest mode of the waveguide with rigid bounda-
ries n =0 in the resonator neck. If the condition of the
“narrow tube”’ extends to the intersection x =/l2, ine-
qualities 2h1 < /2, 2h2 < A/2 do not hold, the number of
waveguide modes increases, which further leads to the
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solution of an infinite system of linear algebraic equa-
tions with respect to unknown coefficients of series
expansions.

Consider two consecutive situations:

— solution of the problem of the field formation in
the resonator without taking into account the condi-
tions at the edge with the angular point Os;

— solution of the problem of the field formation in
the resonator taking into account the conditions at the
edge with the angular point Os.

3.1 Problem 1. Solution of the Problem of the
Field Formation in a Cubic Resonator
without Taking into Account the Conditions
at the Edge with the Angular Point O:

Let the following waves propagate in the neck of the
resonator:
e harmonic direct plane wave

p°(x, y,t) = -ia)pmaoe-i((ut-kx) - PGy = Aoeilor’ (4)

where k= wlc is the wave number, Ao = iwpmao, Ao is
the amplitude of the incident wave (hereinafter we be-
lieve that Ao =1, and the amplitudes of the direct and
reflected waves in the respective areas An, Bn, Cn, Dn
will be written down hiding the multiplier iwom;

e reflected wave pl(x, y), which is formed as a result
of falling to the limit x = 0 of the flat wave (4);

e wave pll(x, y), which has passed into the volume of
the cavity (to the right of the boundary x = 0, area II).

Let us consider these waves.

In area I, the acoustic field is formed as a superpo-
sition of normal waves with unknown amplitudes and
incident waves. It can be written as a series:

p'(xY)= 3 (Bocos(a,pe™ ), n=0,1,23.., (5)

n=0

where «

_ T _ [2 2 .
n_nF’ By =k -(0,)", k2, contain wave
1

numbers, B, is an unknown coefficient.
Thus, the full field pX(x, ¥) in area I can be written as:

psI(X! y) = pO(X, y) + pI(X’ y) — Aoeikx I

© . (6)
+ X (Bicos(ape ™), n=0,1,2.3,..
n=0

Let us turn to area II, which is a closed volume with
acoustically rigid walls (boundary condition for the sys-
tem of functional equations (3)). We will assume that
the sound field in area II is formed only due to fluctua-
tions in the original cross section of the neck x =0 and
repeated reflection of sound waves mainly from the
bottom of the cavity x = l2. Conditions at the edge are
disregarded.

We present the field p'l(x, y) as a superposition of
normal waves of a plane waveguide limited in cross
section x = [2 by the acoustically rigid bottom, i.e.,

D= 5 G ) £ (D)

n=0

n=0,123,..

(7)
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where ¢& = nhl; 7, = «sz -(&,)%, k>¢&, contain wave

b
numbers, Cr, Dr are unknown coefficients.

Due to the determination of unknown coefficients
Bn, Cy, it is possible to fulfill the conjugation conditions
(the first and second equations of system (1)) taking
into account equations (5)-(7) and the properties of or-

thogonality of functions cos(n;lr1 yj ,COS [n hl y] .
)

Substituting the equations for fields (6) and (7) into
the functional equations (1), after a series of transfor-
mations, we obtain a system of the form:

> C, cos(nhly) +> D, COS(VlhEJ/) =

n=0 o n=0 /]

. ®)
=1+ ) B,cos(n z y),
n=0 hl
3. 7aCocosin )+ 3. y,Dycos(n=y) =
n=0 h2 n=0 h2 (9)

=k+Y B,B,cos(n—y),
n=0 h

1

where equation (8) is written for the force conjugation
conditions, and (9) is for kinematic ones.

The transition from a system of functional equa-
tions to algebraic ones must take place in the tradi-
tional way. To do this, we multiply equation (8) by

cos[n;: yJ and integrate the left and right parts of (8)
h

along the segment [0, h1]. After integration we obtain

> (Cy+D,)Sa(m) = 3 Bu(1+5,)+2h0, , (10)
n=0

n=0

1, n=0 .
0 ={ is the

N Kronecker
0, n=0

where symbol,

. [ nzh,
sin . b2
sa(n) =| 2(-1)" nﬂ,'hl th
2 hoo
hy ( 2 hzj

Next, we multiply equation (9) by cos[n: y} and
2

integrate the left and right parts of (9) along the seg-
ment [0, hz2]. After integration we have:

3 70 (Co = Dy (140, ) = ko, + 5. B, Safn). (11)
n=0 n=0

Thus, we obtain two algebraic equations (10) and
(11) with three unknown coefficients Bn, Cr, Dn. To find
the third coefficient (for example, D,), we apply the
condition of oscillating velocity vn(x, y) on an acoustical-
ly rigid boundary x =1[2 from the system of functional
equations (1):

1 0,
VoY), =E&(p’(x, y)) =0
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and the equation for the field in the cavity (7).

In narrow tubes with acoustically rigid boundaries,
only the lower mode is present in areas I and II. The
same, after substituting equation (10) into (11) and
performing a series of transformations, we obtain for
the required coefficients:

kh,o, + B, f,Sa(n)

n— ’ (12)
y(cos(2yl, ) - Dhy(1+6, )
C, =D, cos(2y.1, ), (13)
B,=Da -—2Mh _pp Koy
h2(l+(5n) ﬁnsa(n)
where
_ Yn(cos(2y L, )+ 1)Sa(n) _ Ya((cos(2y.l, ) - 1)hy(1+6,)
h,(1+46,) on B.Sa(n) '
And finally,
2h,o, ) khyo,
D, = h,(1+4,) bﬂnSa(n) _ (15)
a, -n,

At the same time, we understand that in further
transformations and calculations the index n = 0.

Thus, expressions (12)-(15) allow us to calculate the
unknown coefficients of expansions (6) and (7) with
their subsequent use to determine the field in the reso-
nator.

3.2 Problem 2. Solution of the Problem of the
Field Formation in a Cubic Resonator
Taking into Account the Conditions at the
Edge with the Angular Point O:

In accordance with [5] for area III in polar coordi-
nates (p, 6), the Laplace equation, written with respect
to the potential, has a partial solution of the form:

D, (p,0)=p" (M cos(v)+ N sin(v6)), (16)

where vis a positive real number.

In the case of acoustically rigid boundaries (bounds)
of the edge (see condition (2)), the coefficients of de-
composition for the potential @(p, 6) from expression
(16) can be defined as follows. From the condition on
the bounds 8= 0 it follows that N = 0, and for the bound
6= 6 we obtain:

D, (p.0)=p"M,cos(v,0);

» a7
D(p.0)= Y p"Mcos(v,0), v, =nx/ 6,
n=0

Thus [6], on the boundary p= po, series (17) is a
complete Fourier series and the conjugation conditions
with areas I and II (i.e., for points belonging to space
P> po) should be performed for area III when approach-
ing the angular point from the left (neck) and right
(resonator) side.

Similar ideas lead to the situation of the acoustic
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field representation in terms of pressure.
Next, based on equation (17), we determine the
components of the oscillating velocity for area III:

oD (p,0 ©
)= _92(p.9) == p" v, M sin(v,0);
p@@ n=0
(18)
__(3(1)(p50)__00 Vn’lv M. c 0
.= T_ ng()p . M cos(v,0).

Therefore, when bending the angular point of the
wedge edge, the velocity field must have local features
of the type 1/p for p — 0. The wedge acoustic properties
and the wedge angle determine the encroaching veloci-
ty of the components of the oscillating velocity to the
infinity and their angular distribution.

Thus, taking into account the conditions of growth
to infinity of the oscillating velocity when approaching
01, it is necessary to adjust the value of the oscillating
velocity, which is obtained without taking into account
the boundaries of the wedge and area III (Problem 1). If
the angle & varies in the interval 0 < & < z, then all
terms of series (18) are finite, and for small values of
the additional variable n=1 a situation arises

W= L I T 1 & > m, then for small values of the
0 lp=1
additional variable n=1, v, = O Thus, the
0 In=1

power v, — 1 of the multiplier p™" is negative, which
corresponds to the tendency of the oscillatory velocity

e 3 . . .
to infinity. So, for 6, = Eﬂ , an increase in the velocity

is determined by the multiplier p~ 3. For a narrow
tube (n =0), the regularity connected with the consid-
ered case 1/pis also preserved for p — Ov.
Understanding that pis the distance from the top of
the right angle to a point in the field and that we can
have p < o, we need to find not only the change in the
amplitude of the velocity, but also its angular distribu-
tion, using the relationship of polar and rectangular
coordinates. In this case, the change in velocity at the
boundaries of mode-matching areas should be deter-
mined by two directions of angular point approach i.e.,
from area I and from area II. This situation, according
to [6], when n = 1 determines the velocity at the bound-
aries with areas I and II, the amplitude of which is
obtained after taking the derivatives (18) and substi-

tuting the resulting value of the angle 6, = gﬂ .

Then for the edge: v,(0,z)= %Vop'lla, z—>h-0,
when moving from the cavity to the angular point (ap-
proaching from the right), and:

vx(0,2)=-§vop'”3, zh+0, 19)

(approaching from the left).

As can be seen, when approaching from the cavity
to the angular point, the velocity is twice less than that
when approaching from the left along the acoustically
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rigid boundary to the angular point. This result is con-
firmed by [6]. That is, at the intersection x =0, the ve-
locity around the corner point can be given by some
addition to the regular function vrg and written as

v, (0,2)= vy +%vo(h22 -22)_1/3, z<h,,

when moving from the cavity to the angular point (ap-
proaching from the right), and

Vv, (0,2) =V, -%vo (-hz2 + zz)-m, h,<z<h (20)

(approaching from the left).

In case of a narrow tube and selected boundary
conditions, equations (18)-(20) are simplified, because
n = 0. So, let us take this into account:

v, =0,=v,=0,
vV, =p v, M, @1)
p =P VoM

1
or VX(O,Z):Vreg+v0(h22-22) , z<h, when moving

from the cavity to the angular point (approaching from
the right), and
4
vV, (0,2) =V, -V, (-hz2 + zz) , h<z<h (22
(approaching from the left).

As can be seen, due to the choice of a narrow tube,
the oscillating velocity circumference O: is character-
ized by a symmetric angular velocity distribution, con-
tains only a radial component, and when approaching
the angular point decreases more slowly than in case of
soft boundaries and excitation in the waveguide of only
the first mode.

The final step of the solution is the choice of a regu-
lar function vy and unspecified value vo. Function vreg
does not contradict the problem statement, it is an un-
ambiguous solution at angular point circumference and
can have derivatives in other points of the neck and
resonator fields. Therefore, as a regular function we
choose the value of the oscillation velocity calculated at
the boundaries of areas I and II, in the absence of con-
ditions at the edge. We assume that the unspecified
value vo is conditionally equal to one.

Thus, the content of Problem 2 (taking into ac-
count the conditions at the edge) is formally reduced to
determining the additive vx(0, z) to the calculated veloc-
ities obtained for the kinematic conditions of Prob-
lem 1.

Therefore, only the decomposition coefficients My
for the field in area III remain unknown. They are
found by using expressions (12)-(15), conditions (17)-
(20) and fulfilling the conditions of conjugation of kin-
ematic type at the boundaries of area III when ap-
proaching the point O1:

Ak + B, cos(a, )+v0p'an =-(C, - D, )ycos(,y)-
'Vop_an

s

where
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Ak + B B,cos(a,y)+ vop'an =-(C, - D, )y,cos(¢,y)-
Vop M, (23)
_ Ak + B B, cos(a,y)+(C, - D, )y,cos(&,»)

M 1
(-2)Vop

n

or, after the transition to rectangular coordinates and
intersections x = 0, from (23) we have:
M. = A+ B B, cos(a,y)+(C, - D, )y,cos(,») 24)
n 1 .
(2 (17 -¥*)

Thus, we have all the necessary expressions for the
expansion coefficients (12)-(15) to find the field in the
cubic Helmholtz resonator represented by narrow
tubes, taking into account the condition at the edge.

4. CALCULATION RESULTS

An air-filled cubic (reduced to a flat rectangular)
Helmholtz resonator with the following dimensions was
chosen for the calculations (Fig. 1, Fig. 2): neck length
[1 =0.01 m, height of the neck section A1 =0.01 m, res-
onator cavity length e =0.04 m, height of the cross
section of the resonator cavity hz = 0.03 m, studied fre-
quency range Af=200-5000 Hz, wedge-shaped edge
with angle & = 347/2.

The following were calculated:

e frequency characteristic coefficients of series ex-
pansions recorded for potential or pressure (Fig. 3);

e distribution of pressure along the acoustic axis of
the neck (Fig. 4a) and the resonator within its longitu-
dinal size x € [0; 0.04];

e coordinate dependences of the resonator gain in
the section Az in a given frequency range Af (Fig. 5);

e the amplitude of the oscillating velocity without
taking into account the conditions at the edge (intersec-
tion x = 0);

The calculated data show that the moduli of the
frequency characteristics of the field expansion coeffi-
cients B, = BBn, C, = CCn, Dy = DDn (or Cn = (CCn(ff)),
Dn = (DDn(ff) (Fig. 3a), Bn = (BBn(ff) (Fig. 3b)) for the
mode n =0 illustrate the resonant frequency depend-
ence in the neck and cavity of the resonator. The result
of the interference of the forward and reverse waves
gives us an extreme region, which, according to the
selected initial data, is determined by the frequency
value of 4270 Hz (Fig. 2b).

The coordinate dependence of the field in the neck
and cavity for the frequencies of 1000, 2000 and
4270 Hz is shown in Fig. 4. The complication of the
wave pattern with increasing frequency is obvious, at
which the pressure is practically constant in the initial
section of the neck (x —0) and variable in the cavity.
This seems correct, given the invariance of acoustic
pressure and the low frequency dependence in the se-
lected computational situation of the resulting field in
the neck of a narrow tube. Therefore, the behavior dy-
namics of a medium, which the resonator is filled with,
corresponds to injection-rarefaction cycles, taking into
account differences in local pressure and its elastic and
inertial properties. In this case (Fig. 5), the field in the
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Fig. 3 — Frequency characteristic coefficients of series expan-
sions: (a) Cn = (CCn(ff)), Dn = (DDn(ff)), (b) Bn = (BBn(ff))
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Fig. 4 — Pressure distribution along (a) the acoustic axis of the
neck and (b) the longitudinal resonator size x € [0; 0.04]
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Fig. 5 — Coordinate dependences of the coefficient in the reso-
nator
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Fig. 6 — Velocity at the boundary of the cavity and the neck
(angular point Oy): (a) taking into account conditions at the
edge, (b) without taking into account the boundary conditions
at the edge

resonator also has local extreme regions, the number
and magnitude of which increase with increasing fre-
quency. So, along the Ox-axis, the pressure can drop to
3-6 dB. These results coincide with the calculated data
on the pressure field levels in the Helmholtz resonator
cavity, which are presented in [8].

5. CONCLUSIONS

The determination of the resonator gain (Fig. 5),
which was found in [1] for a system with concentrated
parameters, should be clarified. This is connected with
the essence of the applied mode-matching method,
which helps to accurately characterize the formation of
acoustic fields not only at the bottom, but also in any
part of the mode area, considering the resonator as a
system with the distributed parameters. Thus, the cal-
culation results presented in Fig. 5 show the depend-
ence of the gain on the coordinates. They show that in
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the computational case, there are cavity areas where
reinforcement is completely impossible (for instance, the
coordinate region near the circumference point x = 0.02 m
and at a frequency of about 2000 Hz. That is, the coor-
dinate and the corresponding frequency dependences of
the gain (Fig. 5) show the variability of pressure values
not only at the bottom of the cavity, but also in the en-
tire resonator. The results also show that taking into
account the condition at the edge leads to a certain ad-
justment of the amplitude values of the oscillating ve-
locity in the zero intersection of the cavity. This is due
to the choice of boundary conditions. In the above case,
the general nature of the oscillating velocity is deter-
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MeTon yacTKOoBuX 00JIacTei B 3agadi npuiioMy 3ByKy pe3oHaTopom ['e1bMroibisd

C.A. Haiinal, O.B. Kopaxuk!, 1.0. JIacrieka2, O.B. ITasnenxro?!, T.M. HKemnacrkosal, M.O. Kopxux!?,
A.C. Haitnal, M.C. Haiigal, O.C. Yaiika!

1 Hauyionanvruti mexniuhuil yrigepcumem Yrpainu “Kuiscokuil nonimexnivnuil incmumym
iment leopsa Cikopcorozo, np-m Ilepemoau, 37, 03056 Kuis, Yrpaina
2 Hauionanvruil asiayitinull ynieepcumem, np-m Jlrobomupa Iyzapa, 1, 03058 Kuis, Ykpaina

¥V poGoTi po3ryisiHyTO 3a7a4y (POPMYBAHHS AKYCTUYHOTO IOJIS B IMOPOKHUHAX Pe3oHaTopa ['eIbMrosbIis
i3 3acTocyBaHHAM MeTo/a dacTkoBuX obiyacreit. [locraBiieHo 1 po3B'sI3aHO KpaeBl 3a7adi aAKYCTUKU IIOJ0
OIMCAHHS aKyCTUYHHX MOJIIB B IOPOKHUHAX PE30HATOPA 13 3aJIyUeHHAM TPAIUIINHAX IPAHUYHUX YMOB Ta
TPaHUYHUX YMOB Ha pebpi (i 3a MOro BIICYTHICTIO), AKe XapaKTePU3yeThCAd BIIOMUMU AKyCTUYHUMU BJIACTH-
BocTsiMu. JIJ1s IeBHUX PO3MIpIB pe3oHaTOpa B YMOBAX HOBITPSHOIO HAIOBHIOBAYA OOUMCIIEHO, IIPOAHAIII30-
BAHO TA MOPIBHIHO 3 eKCIIEPUMEHTAIbHUMH JAHUMH OCHOBHI XapaKTePUCTUKY T0JIst B pe3oHaropi. OiineHo
BILUIMB Ha pe3yJbTaTé (GOPMYBAHHS IOJIA 3aJIyU4eHOI yMOBHM Ha peOpl 3 aKyCTHUYO KOPCTKUMHU T'PAHSIMU-
TIOBEPXHSAMH. ¥ 3B'SI3KY 3 BHUINEHABEIEHNM, METOI0 POOOTH € ITOCTAHOBKA Ta PO3B'S30K XBUJIBOBOI 3aadi ¢o-
PMyBaHHS aKyCTHYHOIO IOJIsSI B KyOl4HOMY pe3oHATopi ['eIbMrosibiist 3 BpaxyBaHHSM KJIACUIHUX T'DAHUY-
HUX YMOB, YMOB CIIPSI’KEHHSI T YMOB Ha KYTOBHX TOYKAX eJIEMEHTIB KOHCTPYKII], siKl yTBOpeH] IIpu o0paHHi
YaCTKOBHX 00JIaCTEH BIAIIOBIIHO IO OJTHOMMEHHOTO METO/Y.

Knrouosi ciosa: Pesonarop, Axycruune mosie, Meron yacTroBux obsacreir, JacroTHa XapakTEepPUCTUKA,

IaTepdepentris.
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