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We study the deterministic dynamics of single-domain ferromagnetic nanoparticles in a viscous liquid
induced by the joint action of the gradient and uniform magnetic fields. It is assumed that the gradient
field depends on time harmonically and the uniform field has two components, perpendicular and parallel
to the gradient one. We also assume that the anisotropy magnetic field is so strong that the nanoparticle
magnetization lies along the anisotropy axis, i.e., the magnetization vector is ‘frozen’ into the particle body.
With these assumptions and neglecting inertial effects we derive the torque and force balance equations
that describe the rotational and translational motions of particles. We reduce these equations to a set of
two coupled equations for the magnetization angle and particle coordinate, solve them numerically in a
wide range of the system parameters and analyze the role of the parallel component of the uniform mag-
netic field. It is shown, in particular, that nanoparticles perform only periodic rotational and translational
motions if the perpendicular component of the uniform magnetic field is absent. In contrast, the nanoparti-
cle dynamics in the presence of this component becomes non-periodic, resulting in the drift motion (di-
rected transport) of nanoparticles. By analyzing the short and long-time dependencies of the magnetization
angle and particle coordinate we show that the increase in the parallel component of the uniform magnetic
field decreases both the particle displacement for a fixed time and its average drift velocity on each period
of the gradient magnetic field.
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1. INTRODUCTION

Ferromagnetic nanoparticles in viscous liquids have
interesting physical properties and numerous potential
and actual applications including magnetic cell separa-
tion [1, 2], magnetic hyperthermia [3, 4], and drug
delivery [5, 6]. These and many other applications uti-
lize the rotational and translational properties of nano-
particles. Some of their rotational properties induced
by linearly and circularly polarized uniform magnetic
fields have already been studied for different models of
nanoparticles. It has been done, e.g., in Refs. [7-10] and
[11-13] for the model with infinitely large and finite
field of magnetic anisotropy, respectively.

One of the most common methods used to generate
the translational motion of nanoparticles is the applica-
tion of a gradient magnetic field [14]. The joint action of
the uniform and gradient magnetic fields induces both
the rotational and translational motions. It has been
shown [15] that nanoparticles subjected to time-
independent uniform and gradient magnetic fields can,
depending on the initial particle positions, perform four
regimes of their translational motion. But if nanoparti-
cles are under the action of the uniform and time-
dependent gradient magnetic fields, then their dynam-
ics becomes much more complex [16]. The most re-
markable feature that occurs in this case is the appear-
ance of the drift motion (directed transport) of nanopar-
ticles. It is realized in such a way that all nanoparticles
with positive initial positions move to the right, and all
nanoparticles with negative initial positions move to
the left with different drift velocities.
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In this paper, we continue the numerical study of
the drift phenomenon in the deterministic approach.
Our main aim is to investigate the influence of the
uniform magnetic field, whose components are directed
parallel and perpendicular to the gradient magnetic
field, on the characteristics of the drift motion.

2. DETERMINISTIC EQUATIONS OF MOTION

The set of deterministic equations describing the ro-
tational and translational motions of nanoparticles in
the case of the uniform magnetic field that has only
perpendicular component was recently derived in [16].
The generalization of these equations to the case when
the uniform magnetic field has two components, parallel
and perpendicular, is rather trivial. Therefore, here we
only shortly describe the procedure of their derivation.

We assume that suspended ferromagnetic nanopar-
ticles of radius a are subjected to the harmonically
oscillating gradient magnetic field

Hy; = gxsin(Qt + ¢) e, (Y]

and the uniform magnetic field
H= H"ex + Hley. (2)
Here, g(= 0), Q and ¢ € [0, 7] are the gradient, frequen-
¢y and initial phase of the gradient magnetic field (1),
respectively, H; and H, (= 0) are the parallel and per-
pendicular components of the uniform magnetic field

(2), and ey, ey, e, are the unit vectors along the corre-
sponding axes of the Cartesian coordinate system xyz.
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The magnetization M = M(t) (M| =M = const) of
nanoparticles is assumed to be ‘frozen’ into their bodies
(this approximation holds when the magnetic anisotro-
py field is rather large). If the initial magnetization
M, = M(0) lies in the xy plane, then dynamics of M will
occur in the same plane for all times, i.e.,

M= M(cos<p e, +sin¢g ey), 3)

where ¢ = ¢(t) is the magnetization angle (angle be-
tween the x axis and M). In the given approximation,
the magnetization dynamics of each nanoparticle is
described by the kinematic equation

%M =w X M. 4)
Here, w = w(t) is the particle angular velocity and the
sign X denotes the vector product. As it follows from (3)
and (4), w = w,e, (the nanoparticle rotates about the z
axis) and w, = d¢/dt.

Neglecting the inertial effects, the rotational and
translational motions of nanoparticles are described by
a set of torque t; + t; = 0 and force f; + fr = 0 balance
equations, where indexes d and f correspond to driving
and frictional values, respectively. In dilute suspen-
sions, when the interparticle interactions are small, for
the driving torque and force in our case we have t; =
VM x (Hg+ H)|x—p, and fy; =V(M,0/0x)Hg|,—g, . Here,
V = (4/3)ma?® is the nanoparticle volume and R, = R, (t)
denotes the x-coordinate of the particle center. Expres-
sions (1) and (2) show that the driving torque is given
by td =tye, with

tqy = MV[H, cos ¢ — Hysingp — gR, sin ¢ sin(Qt + ¢)]. (5)

Similarly, from (1) and M, = M cos ¢ it follows that f; =
fdex with

fa = MVg cos ¢ sin(Qt + ¢). (6)

If the Reynolds rotational and translational num-
bers are small, then the frictional torque and force are
expressed as t; = —6nVw and ff = —6nmaV [17]. Here, n
designates the dynamic viscosity of the liquid and V =
(dR,/dt)e, is the translational particle velocity. Using
the above results and the relation w = (dg/dt)e,, the
torque balance equation t, + t; = 0 reduces to

dp MV . . .

s B [H, cos@ — Hysin@ — gR, sin ¢ sin(Qt + ¢)]. (7)
At the same time, the force balance equation f; + f; =
0 yields

dR, 2Mga®
dt ~  9p

cos @ sin(Qt + ¢). (8)

Introducing the dimensionless time 7 = Qt, particle
coordinate r, = 1,(t) = R,/a and frequencies

_Mga _MH,

_ MH,
VoS VT e T

6nQ’

©)

V)

Egs. (7) and (8) are reduced to a set of dimensionless
equations with respect to ¢ and ry

¢ =v, cos@ —v;sing — Vg1 singsin(z + @),

(10)
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7y = (4/3)vg cos @ sin(z + ¢), an

These equations describe the coupled rotational and
translational motions of particles with the initial condi-
tions @y = ¢(0) € [0,7] and 71y = 1,(0) € (—00,0). It
should be noted that, according to Eqgs. (10) and (11),
the gradient magnetic field Hy influences the transla-
tional motion of nanoparticles directly, while the uni-
form magnetic field H influences indirectly.

Equations (10) and (11) allow us to find the connec-
tion between their solution {¢,7},, for a fixed v, and
their solution {@,#}y, for a fixed ¥ = —v;. We assume
that these solutions satisfy the initial conditions
{®o,7x0}v, and {@, Fxoly,, respectively. Then, choosing
§=m—¢ with @y =m—¢, and 7y = —1r, with 7, =
—Txo, it is not difficult to verify that {@, xo}y,=—v, 1S
indeed the solution of Egs. (10) and (11). Therefore,
without loss of generality, we may restrict our further
analysis to vj = 0.

3. NUMERICAL RESULTS

Taking into account the parameters of ferromagnet-
ic materials [18] and possible parameters of the applied
magnetic fields, we numerically solved Egs. (10) and
(11) for a wide range of the model parameters: v, < 1,
v, € (0,10%), v; € (0,10%) and 7 € (0,10°).

3.1 The Case withv, =0andv;, =0

According to [19], there is no drift motion of nano-
particles at v, =0 and v; = 0. In this case, both the
particle coordinate 7, and the magnetization angle ¢
are periodic functions of time 7. For illustration, in
Fig. 1 we show these functions for a given set of the
model parameters.
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Fig. 1 — The time dependencies of the particle coordinate , (a)
and the magnetization angle ¢ (b) for v, =0.2, v, =0, v, =0,
Too = 2 X 102, ¢, = /4 and ¢ = /5

3.2 The Case withv, =0andv; >0

Our numerical analysis shows that in this case the
drift motion of nanoparticles is also absent. However,
the parallel component of the uniform magnetic field
changes qualitatively the nanoparticle dynamics. The
most significant change occurring at vy # 0 is that the
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solution of Egs. (10) and (11) tends with time to the
steady state one {@g,7Tyst}, Where depending on the
model parameters the functions ¢4 and ry are given by

Pt =0, Tyt = (4/3)vglcosp —cos(t+¢)]  (12)

or
Tyst = —(4/3)vg[cos ¢ — cos(z + @p)]. (13)

As seen, in this state all particles perform the same
harmonic oscillations (they do not depend on r,,). The
steady state solutions (12) and (13) are established
during some transition time 7. that strongly depends
on vy. In particular, if the value of v, is very small, then
the steady state solution is established during many
periods of the gradient magnetic field. In contrast, 7 «
1 if v, is rather large. To illustrate this fact, in Fig. 2a
we show the time dependence of the particle coordinate
1, obtained numerically (solid line) and the theoretical
result for 7, from (12) (dotted line). Here, v, = 0.6 and
the other parameters are chosen to be the same as in
Fig. 1. The time dependence of the magnetization angle
¢ is shown in Fig. 2b for vy = 0.6 and v, = 3. From the
results presented in Fig. 2 it follows that 7. ~6m for vy =
0.6 and 7 < 1 for vy = 3.

Pst =T,
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Fig. 2 — The time dependencies of the particle coordinate , (a)
and the magnetization angle ¢ (b) for v; = 0.6. The other pa-
rameters are the same as in Fig. 1. The dotted line corre-
sponds to the theoretical result (12) for 7. The inset in
Fig. 2b: the dependence of ¢ on time t at vy = 3

3.3 The Case withv, >0and v, >0

It is known [16] that at v, > 0 and v; = 0 the drift
motion of nanoparticles appears. This phenomenon
occurs due to the coupling between their rotational and
translational motions. Since as mentioned above the
parallel component of the uniform magnetic field
strongly influences the rotational properties of nano-
particles (if they are not too far from the origin), one
may expect that it affects the drift motion as well.

We start our analysis with studying the dependence
of the nanoparticle displacement r, — o on v, during a
short time 7 = 2nN (N is a small natural number) at
vy = 0. In Fig. 3, this dependence is shown for N =8,
the other parameters are given in the figure caption.
The most striking feature of this dependence is that it
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has the maximum value max[r,(2nN) —1y] at v, =
Vimax (n the considered case max[r,(16m) — 1] = 3.4
and v, . = 1.4). Note also that with increasing v, the
displacement 7,,(167) — 1y initially sharply increases
and then, after reaching the peak value, slowly de-
creases (e.g., 1, (16m) — 1y = 3.4 x 10"t at v, = 50).

Next, we studied the dependencies of the particle
coordinate 1, and the magnetization angle ¢ on time t
(at short time intervals) for nanoparticles near the
origin. To illustrate the obtained results, in Fig. 4 we
show these dependencies for v, = 10 and different val-
ues of the parameter v;. These results demonstrate a
common tendency: an increase in the parallel compo-
nent of the uniform magnetic field (i.e., the increase of
v;) decreases the growth of 7. To characterize this de-
crease quantitatively, we introduce the dimensionless
average drift velocity of nanoparticles o, = [r,(2mn) —
1,(2mn — 2m)]/2m (n = 1,2, ..., N) on the n-th period of the
gradient magnetic field. Since the condition 7, = const
holds if N is rather small (see also below), we can char-
acterize the average drift velocity on the time interval
(0,27N) by the formula ¥ = [r,(2nN) — 1y]/2nN. Thus,
an increase in the parameter v; decreases the drift
velocity of nanoparticles. For data from Fig. 4 we have
7=31x10"2 for vy =0, =24%x 1072 for vy =5 and
v =13x 1072 for v = 10.

0_ g
| | 1
0 Vimax 5 10 15
Vi

Fig. 3 — The dependence of the nanoparticle displacement r, —
Tyo during time 7 =2rnN on v,. The model parameters are
chosen as follows: N =8, v, =0.1, vy =0, 1,0 =50, @, =m/4
and ¢ = /5
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Fig. 4 — The time dependencies of the particle coordinate ;. (a)
and the magnetization angle ¢ (b) for the following model
parameters: N =5, v, = 0.1, v, =10, 1, =50, ¢, =m/4, ¢ =
/5 and v; = 0 (blue line), v; = 5 (red line), v, = 10 (green line)
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Fig. 5 — The particle coordinate 1,(2mN) after N periods of the
gradient magnetic field (a), the maximal @yn.c (curves 1) and
minimal @ynin (curves 2) values of the magnetization angle on
the N-th period (b) and the average drift velocity vy of the
particle on the N-th period (c). These numerical results are
obtained for v, = 0.1, v, = 10, 1y, = 50, ¢, = /4, ¢ = /5 and
vy = 0 (blue lines), vy = 25 (red lines)

In general, for a given particle its drift velocity de-
pends not only on the model parameters, but also on
time during which the particle moves. This occurs be-
cause the particle shifts to the right or left (the direction
depends on the sign of r,) during each period of the
gradient magnetic field. As a consequence, the gradient
field acting on the particle increases and the rotational
and translational properties of this particle, including
its drift velocity, change with time. However, if 1y or
7(2nN) (the number of periods N can be very large if
the initial particle position is not too far from the origin)
are so large that the gradient magnetic field essentially
exceeds the uniform one, then all such particles move
with the same time independent drift velocity [16]

_ 8vy
U = 5EN(10) 52 (14
(sgn denotes the sign of ), which does not depend on
the uniform magnetic field. In contrast, according to
the above results, this field, including its parallel com-
ponent, strongly affects the particle coordinate r, (2N).

This preliminary analysis is confirmed by the nu-
merical results presented in Fig. 5. The fact that the
parameter v; decreases the coordinate 7,(2mN) of a
given particle is illustrated in Fig. 5a, where the de-
pendencies of 1,(2nN) on N are shown for v; = 0 (blue
line) and vy, =25 (red line). The plots of the maximal
and minimal values of the magnetization angle on the
N-th period of the gradient magnetic field, @ymax and

@nmin, are depicted in Fig. 5b. Here, ¢@ma.x = 2.0,
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@1min = 1.1 for v; =0, and @imax = 4.6 X 107, @1pin =
3.2 x 107! for v, = 25. In the long-time limit (when N —
), @ymax =2 T and @ymin = 0 for any fixed uniform
magnetic field. Finally, in Fig. 5¢c we show the average
drift velocity 7y of a given particle on the N-th period of
the gradient magnetic field. For the used parameters
we have 7, =3.1x 1072 atvy=0and 7, = 1.7 x 1072 at
vy = 25. As seen, if N is not too large, then v, strongly
decreases the drift velocity, but in the long-time limit
the drift velocity does not depend on v; and approaches
7o = 8.5 X 1072, We note, however, that the more vy is,
the slower 7y grows with increasing N.

4. CONCLUSIONS

We have numerically investigated the dynamics of
single-domain ferromagnetic nanoparticles induced by
the harmonically oscillating gradient magnetic field
and uniform magnetic field with two components, per-
pendicular and parallel to the gradient one. The set of
the coupled first-order differential equations, describ-
ing the rotational and translational motions of such
particles, has been generalized to the case, when the
parallel component of the uniform magnetic field is
nonzero. Solving this set of equations numerically, we
have shown that, in contrast to the joint action of the
perpendicular and gradient fields, the joint action of
the parallel and gradient fields does not induce the
drift motion of particles. In the last case, the particle
coordinate and the magnetization angle tend with time
to the steady state ones. We have established that the
transition time, which is necessary to reach these
states, strongly decreases with increasing the parallel
field value. In the long-time limit, all particles perform
the same harmonic oscillations.

If the perpendicular component of the uniform
magnetic field is nonzero, then the drift and periodic
motions of nanoparticles exist simultaneously. In con-
trast to the previous case, the intervals of the particle
oscillations are not localized near their initial positions,
vice versa they are displaced to the right or left of the
origin. This means that even if the initial particle posi-
tions are not too far from the origin, the role of the
gradient magnetic field grows with time (due to the
drift phenomenon) and becomes dominant at long
times. However, the uniform magnetic field, including
its parallel component, strongly influences the time
dependence of the average particle coordinate. In con-
trast, the average drift velocity of a given particle
greatly decreases with increasing the value of the par-
allel component only if the drift time is not too large. In
the long-time limit, when the role of the uniform mag-
netic field is negligible, the drift velocity approaches
the limiting one.

ACKNOWLEDGEMENTS

This work was partially supported by the Ministry
of Education and Science of Ukraine under Grant
No. 0119U100772. The authors also acknowledge the
support of the Ukrainian State Fund for Fundamental
Research under Grant No. F 81/41894.

06027-4



NUMERICAL ANALYSIS OF THE NANOPARTICLE DYNAMICS ...

JJ. NANO- ELECTRON. PHYS. 13, 06027 (2021)

REFERENCES
1. Magnetic Cell Separation (Eds. by M. Zborowski, J.J. Chalmers) 10. T.V. Lyutyy, V.V. Reva, Phys. Rev. E 97, 052611 (2018).
(Amsterdam: Elsevier: 2008). 11. N.A. Usov, B.Ya. Liubimov, J. Appl. Phys. 112, 023901 (2012).
2. B.D. Plouffe, S.K. Murthy, L.H. Lewis, Rep. Prog. Phys. 78, 12. K.D. Usadel, C. Usadel, J. Appl. Phys. 118, 234303 (2015).
016601 (2015). 13. T.V. Lyutyy, O.M. Hryshko, M.Yu. Yakovenko, J. Magn.
3. P.Das, M. Colombo, D. Prosperi, Colloids Surf. B 174, 42 (2019). Magn. Mater. 473, 198 (2019).
4. X. Liu at all, Theranostics 10, 3793 (2020). 14. J. Svoboda, Magnetic Techniques for the Treatment of Materi-
5. Nanoparticles for Biomedical Applications: Fundamental als (Dordrecht: Kluwer: 2004).
Concepts, Biological Interactions and Clinical Applications 15. S.I. Denisov, T.V. Lyutyy, M.O. Pavlyuk, J. Phys. D: Appl.
(Eds. by E.J. Chung, L.Leon, C.Rinaldi) (Amsterdam: Phys. 53 405001 (2020).
Elsevier: 2020). 16. S.I. Denisov, T.V. Lyutyy, A.T. Liutyi, J. Phys. D: Appl.
6. Nanoparticles and their Biomedical Applications (Ed. by Phys. 55 045001 (2022).
A K. Shukla) (Singapore: Springer: 2020). 17. S.I. Rubinow, J.B. Keller, J. Fluid Mech. 11, 447 (1961).
7. G. Bertotti, I.D. Mayergoyz, C. Serpico, Nonlinear Magneti- 18. A.P. Guimaraes, Principles of Nanomagnetism, 2r¢ Edition
zation Dynamics in Nanosystems (London: Elsevier: 2009). (Cham: Springer: 2017).
8. T.V. Lyutyy, S.I. Denisov, V.V. Reva, Yu.S. Bystrik, Phys. 19. S.I. Denisov, T.V. Lyutyy, A.T. Liutyi, J. Nano- Electron.

Rev. E 92, 042312 (2015).

Phys. 12, 06028 (2020).

9. K.D. Usadel, Phys. Rev. B 95, 104430 (2017).

YucenbHuil aHAII3 JUHAMIKN HAHOYACTUHOK y B'A3KIN piauHi:
JHerepMminicTuuHmMi migxis

C.I. lenuncos, M.M. Mockanenxo, T.B. JIroruit, M.IO. Bapuba

Cymcoruli Oepacasruil ynisepcumem, 8ysi. Pumcoroeo-Kopcakosa, 2, 40007 Cymu, Yipaina

YuicesbHO BHBYAETHCS MEXaHIUHA IUHAMIKA OJHOJIOMEHHHUX (PEepPOMATHITHUX HAHOYACTHUHOK Y B'SI3KIi
piomHI, AKa IHIYKYETHCSA CYMICHOO Ii€l0 TPAJi€HTHOr0 MATHITHOTO IIOJIA, IO 3MIHIOEThCS Y Yaci 3a TapMOHI-
YHUM 3aKOHOM, T4 OJHOPIIHOr0 MATHITHOTO II0JId, 1[0 Mae NePIeHuKYJISPHY Ta IIapaJiesibHy 10 HAIPSIMKY
TPAJIEHTHOTO II0JIsT KOMIIOHEHTH. BHKOpHCTOByOUNM HAOIMKEHHS HEB3AEMOIIOUNX JKOPCTKHUX IUIIOJNIB, Y
BIJITIOBITHOCT] 3 SKMM BEKTOpP HAMATHIYEHOCTI YACTUHKYU BBAMKAETHCSA ‘BMOPOSKEHMM B I TLJIO, TA HEXTYIOUH
1HepIiHUMY epeKTaMu, y3araJbHeHO CUCTEMY JBOX AU(EPEHIIHHNX PIBHAHD /IS KyTa HaMarHi9eHOCTl Ta
KOOpAMHATH HAHOYACTHHKM, IO OMHUCYIOTH Ii 00epTaIbHUI Ta TPAHCIAIIMHUN PyXd y IIBOMY BHIIAIKY.
OTpumaHy cucTeMy PIBHSAHB PO3B'SI3aHO UMCEJIBHO JJIs IIMPOKOTO KOJIA ITapaMeTpiB 3aaadi Ta IIPOBEIEeHO
TOPIBHSIJIBHUM aHAJ3 JUHAMIKA HAHOYACTUHOK B 3aJIEJKHOCT] B1J] BEJIMYMHU IaPaJIeIbHOI KOMIIOHEHTH OJ1-
HOPITHOTO MarHiTHOrO moJisi. BeranossiewHo, 30kpema, 1m0 00epTaaIbHIN Ta TPAHCIAIINHNN PyXyU HAHOYACTHU-
HOK € CyTO IIepPIOJJUYHUMH, SKIIO MEePIEeHIUKYISIPHA KOMIOHEHTA OJHOPITHOTO MATHITHOTO IOJIS BIJCYTHSI.
AKIIo K 119 KOMIIOHEHTA MPUCYTHS, TOAl JUHAMIKA HAHOYACTUHOK CTA€ HEIEPIOAMYHOI0 1 3'ABiseTbcs X
npeiidoBuii pyx (cupamoBaHuil TpaHcmoprt). HIaaxom aHaIi3y YacOBHX 3aJI€dKHOCTEH KyTa HAMATHIYEHOCTI
Ta KOOPJAUHATH HAHOYACTMHOK HA KOPOTKO Ta JIOBIOCTPOKOBUX YACOBUX 1HTEPBAJIAX BCTAHOBJIEHO, IO 3POC-
TaHHS BeJIMYUHU [AapajeSIbHOT KOMIIOHEHTH CYyTTEBO 3MEHIINYE SK IIePeMIIeHHs YaCTUHOK 3a (piKcoBaHMIA
4Jac, Tak 1 iX cepeIHi0 MBUAKICTh HA KOMKHOMY IIepioi IpaJieHTHOTO MATHITHOTO II0JIA.

Kmouosi cnosa: OnHomomenHl HaHOYacTUHKHN, B'saka pimmua, OnHopigHe Ta rpagieHTHE MATHITHI MOJIS,
Tpaucisiiine Ta obeprajibHe PIBHAHHA Pyxy, Jpeiid HaHOYACTUHOK.
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