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Elementary interaction processes of charged particles in an electron beam with a current of about 1 A 

are studied numerically concerning the electron cooling problem. A one-dimensional particle-in-cell code 

is used to consider the following processes: expansion of the free electron gas, temperature equalization in 

the electron gas, natural oscillations in quasi electron-positron and electron-proton gases. In this method, 

the free electron gas expands due to electrostatic repulsion between electrons at a constant total energy. 

The model of a free electron gas represented by computational particles in the form of endless plates is 

also solved analytically. In this case, the velocity deviation as a function of time and the distance between 

the charge centers of the two halves of the electron gas are found analytically. And this is compared with 

the result of the numerical calculation. If the electron gas is represented as two subsystems with different 

temperatures, this leads to temperature equalization in the simulation. The paper considers several cases 

with different initial temperature conditions and finds the relaxation time. The simulation result of elec-

tron-positron and electron-proton gases shows that their oscillations are accompanied by Landau damp-

ing. The spectral frequency distribution of these oscillations shows the maxima that correspond to theo-

retical estimates. 
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1. INTRODUCTION 
 

The method of electron cooling is widely used but it 

also remains a source of theoretical and experimental 

research [1-5]. In particular, at the future facility FAIR 

(Facility for Antiproton and Ion Research) it is planned 

to exploit a storage ring of antiprotons at the HESR 

machine using an electron cooler with relativistic elec-

trons. In 1988, a significant difference was shown ex-

perimentally in the processes of electron cooling of neg-

atively and positively charged particles [1]. However, 

there is not a complete theory of electron cooling for 

negatively charged ions. 

The difficulties of analytical methods are deter-

mined by a rather complicated mathematical formula-

tion. Support by numerical methods allows obtaining 

fairly complete information about the system. 

It is advisable to choose the Particle-In-Cell (PIC) 

method as a numerical solution for the electron cooling 

problem [6-9]. In this method, individual particles in a 

Lagrangian frame are tracked in continuous phase 

space, whereas moments of the distribution such as 

densities and currents are calculated simultaneously 

on Eulerian mesh points. 

The paper presents the results of simulation of the 

processes performed using the PIC code created manu-

ally: expansion of the free electron gas, temperature 

equalization in the electron gas, natural oscillations in 

quasi electron-positron and electron-proton gases. The 

paper analyzes the simulation results and compares 

them with known theoretical formulas. 

 

2. METHOD DETAILS 
 

Electron cooling uses magnetized gas, so the Lar-

mor radius is considerably shorter than the distance 

between particles. On the one hand, this prevents 

transverse expansion due to Coulomb repulsion, and on 

the other hand, it leads to rapid cooling [1]. Under such 

conditions, the one-dimensional motion approximation 

is applicable that implies the suppression of transverse 

motion due to a strong magnetic field. 

The model of a one-dimensional gas is governed by 

the Vlasov and Poisson equations [9]: 
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where fs (t, x, v) is the phase space distribution function 

for a given species s; ms and qs are the charge and mass 

of the species, respectively; E is the electric field; φ is 

the electric potential; ρ is the electric charge density, 

and I is the Boltzmann collision integral. Pair collisions 

in the problems under consideration can be neglected, 

therefore I  0. 

The Vlasov equation is solved by the PIC method in 

which the distribution function fs (t, x, v) is given by the 

superposition of computational particles [8]: 
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where fp is the distribution function for the computa-

tional particles, Np is the number of physical particles 

that are present in the computational particle, b1 is the 

first-order B-spline function, Δp is the size of computa-

tional particles, xp and vp are the position and velocity 

of the computational particles, respectively. 

Equation (1) can be discretized using the three-

point formula: 
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where Δx is the cell size, the densities i are defined as 

average over the cells: 
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The evolution equations are obtained by taking the 

corresponding moments of the Vlasov equation [8]: 
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where Ep is the average electric field acting on the 

computational particle. 

To achieve the goal of solving equation (2), the so-

called leap-frog algorithm is used: 
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where n is the time level. 

 

3. SIMULATION 
 

3.1 Expansion of the Electron Gas 
 

The subsection considers an expansion of the free 

electron gas using the PIC simulation. We find changes 

in velocity variance, density, kinetic and potential en-

ergies of the gas over time and compare the expansion 

dynamics obtained by modeling with theory. 

The electron gas is not in thermodynamic equilibri-

um, so the concept of temperature does not apply to it. 

The quantity Te will be called the initial temperature 

(traditionally for beam physics), which implies velocity 

spread. 

At the initial time, the electron concentration is ne 

and the velocity deviation is 
 

 0 /B e ev k T m , (3) 

 

where kB is the Boltzmann constant, me is the electron 

rest mass. 

In the framework of the PIC method, the gas is rep-

resented by N  1000 computational particles. Each 

computational particle consists of Ne electrons and has 

the shape of an infinite plate with width 
 

 
2
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where e is the electron charge. 

The initial velocities of the computational particles 

are drawn from a Gaussian distribution using an algo-

rithm based on the classical central limit theorem. The 

mean of the distribution is 
 

 0  . (5) 
 

 
 

Fig. 1 – Typical velocity distribution function of the electron 

gas at the initial time 
 

 
 

Fig. 2 – Absolute charge density of the electron gas at t = 0 (a) 

and t = 2.8t0 (b) 
 

 
 

Fig. 3 – Change in kinetic, potential, total energy of the 

electron gas over time 
 

Fig. 1 shows the initial velocity distribution of the 

gas (the dots) compared to the standard normal distri-

bution (the solid line) with its deviation σ  1 and ex-

pectation µ  0. 

The particles are initially distributed randomly in 

the space area: 
 

    0 0 0200 ,300tx x x . (6) 

 

Fig. 2a shows the dimensionless average absolute 

value of the linear charge density of the grid cells 

|λi|/λ0 at the initial time. The density is measured in 

λ0  Ne|e|/Δx, where Δx  x0 is the cell size. During the 

simulation, the gas expands symmetrically into the 

area xend ∈ [0, 500x0] in time t  2.8t0 (Fig. 2b), where 
 

  2
0 0 /e et m e n . (7) 

 

The time level is Δt  0.001t0. The dashed line in Fig. 2 

denotes the average absolute density of the gas. 

As can be seen from Fig. 2, the free electron gas ex-

pands due to electrostatic repulsion between electrons. 

A 5-fold expansion along the axis is accompanied by a 

2.5-fold decrease in the charge density. 

For a more detailed understanding of the expansion 

dynamics, we determine the kinetic energy Wk, poten-

tial energy Wp, and total energy W at each time step in 

the simulation. The functions Wk, Wp, W, as functions 

of time, are shown in Fig. 3. Time is measured in t0 (7). 

Energy is measured in W0  Nemev0
2/2. 

From Fig. 3, over time, the kinetic energy of elec-

trons increases, and the potential energy decreases at a 

constant total energy, i.e., expansion of the electron gas 

is a thermodynamically non-equilibrium process. 
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The gas model represented by computational parti-

cles in the form of endless plates can be described ana-

lytically. In this case, we find a change in velocity devi-

ation over time and compare it with the result of nu-

merical calculation. 

Let ri0 be the initial position of the plates (computa-

tional particles), where i  1, 2, ..., N. We assume that 

half of the plates is on the left side relative to the cen-

ter of the area (6): ri0 < 250x0, i  1, 2, …, N/2. So, the 

other half is on the right side: ri0 > 250x0, i  N/2, and 

N/2 + 1, …, N. Then the equations of motion for the i th 

particle are 
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where m, q, S are the mass, charge, and area of the 

plate, respectively; ai is the acceleration. 

The velocity of the particle is vi  vi0 + ait, where vi0 

is the initial velocity. So, 
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Taking into account the symmetry of the accelera-

tion ai and the fact that the average initial velocity 

⟨vi0⟩ ≡ µ ≈ 0 (5), the average particle velocity ⟨vi⟩  0. 

Based on this and the equality ⟨vi0
2⟩  ⟨v0

2⟩, the velocity 

variance is: 
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The dimensionless version of Eq. (9): 
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where time is measured in t0 (7), velocity is measured 

in v0 (3). 

The change in time of the distance between charge 

centers of two halves of the electron gas can also be 

described analytically. 

If R1 is the center of charge of the left half and R2 is 

the center of charge of the right half, then 
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where ri are the positions of computational particles at 

time t, which are described by the equations 
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Based on (8), (11) and (12), the distance between the 

centers R is represented as: 
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where R0  R20 – R10 is the distance between the cen-

ters at the initial time. From (6), R0  50x0. 

The dimensionless version of Eq. (13) is 
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where time is measured in t0 (7), distance is measured 

in x0 (4). 

The theoretical deviation curve of the gas velocity 

(10) and the distance between the centers of charge (14) 

coincides with the simulated one. The difference is no 

more than 3 %. 

 

3.2 Temperature Equalization in Electron Gas 
 

The electron gas is in the form of two subsystems. 

Subsystem A is defined by Na  500 computational par-

ticles with temperature Ta, subsystem B is defined by 

Nb  500 computational particles with temperature Tb. 

The simulation leads to temperature equalization for 

the time τ. 

Consider several cases when the initial temperature 

ratio (Ta/Tb)|t  0 equals 104, 103, 102, 10. The calcula-

tion of the Ta/Tb ratio at each time step for the given 

initial conditions is shown in Fig. 4. 

Fig. 4 shows that temperatures Ta and Tb equalize. 

The equalization time for cases with initial conditions 

(Ta/Tb)|t  0  104, 103, 102, 10 is the same. The ratio 

Ta/Tb  1.06 ± 0.01 is reached at time τ  0.07t0, where 

t0 is the unit of time (7). 
 

 
 

Fig. 4 – Temperature equalization of two subsystems in the 

electron gas 

 

3.3 Natural Oscillations of Model Positron-

electron and Proton-electron Gases 
 

The subsection considers neutral electron-positron 

and proton-electron gases using the PIC simulation. It 

considers changes in kinetic and potential energy, the 

spatial distribution of particles over time, compares the 
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obtained frequency of natural oscillations with the the-

oretical value. 

At the initial time, the gas consists of electrons and 

positrons of the same concentration ne with the same 

velocity deviation v0 (3). The particles are distributed 

normally in velocity and randomly in the space area: 

x ∈ [200x0, 500x0], where x0 is the unit of distance (4). 

The number of electron and positron computational 

particles is the same: Ne  Ne+  500. 

During the period t  10t0 of the simulation, the gas 

does not expand, the average linear charge density of 

the grid cells does not change. 
 

 
 

Fig. 5 – Change in kinetic, potential, total energy of the elec-

tron-positron gas over time 
 

 
 

Fig. 6 – Frequency spectra of oscillations of electron-positron 

and electron-proton gases 
 

At each time step of the simulation, we calculate 

the kinetic energy Wk, potential energy Wp, total energy 

W. The functions Wk, Wp, W as functions of time are 

shown in Fig. 5. Energy is measured in W0  Nemev0
2/2. 

Fig. 5 shows that the total energy is conserved, but 

the potential and kinetic energies are oscillatory, ac-

companied by Landau damping. The spectrum of kinet-

ic oscillations is shown in Fig. 6 as a solid line. 

The theoretical frequency of natural oscillations of 

the electron-positron gas is   10/ 2 /th t . The fre-

quency obtained as a result of the computer experiment 

is νmod  0.4439 ± 0.04, which coincides with the theo-

retical value with an error of 2 %. 

If, in the model of the electron-positron gas, posi-

trons are replaced by protons, that is, the electron-

proton gas is considered, then the frequency of natural 

oscillations decreases. The frequency spectrum of the 

electron-proton gas is shown in Fig. 6 as a dotted line. 

The theoretical frequency of natural oscillations of 

the electron-proton gas is νth/t0
 – 1  1/. The frequency 

νmod/t0
 – 1  0.3186 ± 0.03 obtained as a result of the 

computer experiment coincides with the theoretical 

value with an error of 0.2 %. 

 

4. CONCLUSIONS 
 

The simulation shows that the free electron gas ex-

pands due to electrostatic repulsion between electrons. 

A 5-fold expansion along the axis is accompanied by a 

2.5-fold decrease in the charge density. In this case, the 

kinetic energy of electrons increases, and the potential 

energy decreases at a constant total energy, i.e., the 

expansion of the electron gas is a thermodynamically 

non-equilibrium process. 

If the electron gas is represented as two subsystems 

with temperatures Ta and Tb with the initial conditions 

(Ta/Tb)|t  0  104, 103, 102, 10, then the temperature 

ratio Ta/Tb  1.06 ± 0.01 is reached in time τ  0.07t0, 

where t0 is the unit of time (7). 

The simulation result of electron-positron and elec-

tron-proton gases shows that the gases have their oscil-

lations accompanied by Landau damping. The obtained 

frequencies of these oscillations are in satisfactory 

agreement with analytical estimates. 
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Моделювання процесів в електронному газі методом Particle-in-cell 
 

І.І. Нікішкін, Р.І. Холодов 
 

Інститут прикладної фізики НАН України, вул. Петропавлівська, 58, 40000 Суми, Україна 
 

Елементарні процеси взаємодії заряджених частинок в електронному пучку струмом близько 1 А 

вивчаються чисельно щодо проблеми електронного охолодження. Приведені результати чисельного 

моделювання одновимірним методом Particle-In-Cell таких процесів як розширення електронного га-

зу, вирівнювання температур двох підсистем електронного газу, власні коливання модельного елект-

рон-позитронного та електрон-протонного газів. У рамках методу вільний електронний газ розширю-

ється за рахунок електростатичного відштовхування між електронами при постійний повній енергії. 

Модель вільного електронного газу, яка представлена модельними частинками у вигляді нескінчен-

них пластин, також вирішується аналітично. У цьому випадку аналітично знайдені відхилення шви-

дкості як функція часу та відстань між центрами заряду двох половин електронного газу. І це порів-

нюється з результатом чисельного обчислення. Якщо електронний газ представити як дві підсистеми 

з різною температурою, це призводить до вирівнювання температури при моделюванні. У статті розг-

лянуто кілька випадків з різними початковими умовами та знайдено час релаксації. Результат моде-

лювання електрон-позитронного та електрон-протонного газів показує, що їх коливання супроводжу-

ються затуханням Ландау. Спектральний розподіл частот цих коливань показує максимуми, які від-

повідають теоретичним значенням. 
 

Ключові слова: Particle-in-cell, Кінетика, Плазма, Власні коливання, Моделювання. 


