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Elementary interaction processes of charged particles in an electron beam with a current of about 1 A
are studied numerically concerning the electron cooling problem. A one-dimensional particle-in-cell code
is used to consider the following processes: expansion of the free electron gas, temperature equalization in
the electron gas, natural oscillations in quasi electron-positron and electron-proton gases. In this method,
the free electron gas expands due to electrostatic repulsion between electrons at a constant total energy.
The model of a free electron gas represented by computational particles in the form of endless plates is
also solved analytically. In this case, the velocity deviation as a function of time and the distance between
the charge centers of the two halves of the electron gas are found analytically. And this is compared with
the result of the numerical calculation. If the electron gas is represented as two subsystems with different
temperatures, this leads to temperature equalization in the simulation. The paper considers several cases
with different initial temperature conditions and finds the relaxation time. The simulation result of elec-
tron-positron and electron-proton gases shows that their oscillations are accompanied by Landau damp-
ing. The spectral frequency distribution of these oscillations shows the maxima that correspond to theo-
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1. INTRODUCTION

The method of electron cooling is widely used but it
also remains a source of theoretical and experimental
research [1-5]. In particular, at the future facility FAIR
(Facility for Antiproton and Ion Research) it is planned
to exploit a storage ring of antiprotons at the HESR
machine using an electron cooler with relativistic elec-
trons. In 1988, a significant difference was shown ex-
perimentally in the processes of electron cooling of neg-
atively and positively charged particles [1]. However,
there is not a complete theory of electron cooling for
negatively charged ions.

The difficulties of analytical methods are deter-
mined by a rather complicated mathematical formula-
tion. Support by numerical methods allows obtaining
fairly complete information about the system.

It is advisable to choose the Particle-In-Cell (PIC)
method as a numerical solution for the electron cooling
problem [6-9]. In this method, individual particles in a
Lagrangian frame are tracked in continuous phase
space, whereas moments of the distribution such as
densities and currents are calculated simultaneously
on Eulerian mesh points.

The paper presents the results of simulation of the
processes performed using the PIC code created manu-
ally: expansion of the free electron gas, temperature
equalization in the electron gas, natural oscillations in
quasi electron-positron and electron-proton gases. The
paper analyzes the simulation results and compares
them with known theoretical formulas.

2. METHOD DETAILS

Electron cooling uses magnetized gas, so the Lar-
mor radius is considerably shorter than the distance
between particles. On the one hand, this prevents
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transverse expansion due to Coulomb repulsion, and on
the other hand, it leads to rapid cooling [1]. Under such
conditions, the one-dimensional motion approximation
is applicable that implies the suppression of transverse
motion due to a strong magnetic field.

The model of a one-dimensional gas is governed by
the Vlasov and Poisson equations [9]:
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where fs (¢, x, v) is the phase space distribution function
for a given species s; ms and gs are the charge and mass
of the species, respectively; E is the electric field; ¢ is
the electric potential; p is the electric charge density,
and [ is the Boltzmann collision integral. Pair collisions
in the problems under consideration can be neglected,
therefore I =0.

The Vlasov equation is solved by the PIC method in
which the distribution function f; (¢, x, v) is given by the
superposition of computational particles [8]:
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where fp 1s the distribution function for the computa-
tional particles, N, is the number of physical particles
that are present in the computational particle, b1 is the
first-order B-spline function, A, is the size of computa-
tional particles, xp and vp are the position and velocity
of the computational particles, respectively.

Equation (1) can be discretized using the three-
point formula:
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where Ax is the cell size, the densities pi are defined as
average over the cells:

P; :Z—quNp )l{xi _x‘pj.

» Ax »

The evolution equations are obtained by taking the
corresponding moments of the Vlasov equation [8]:
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where Ep, is the average electric field acting on the
computational particle.

To achieve the goal of solving equation (2), the so-
called leap-frog algorithm is used:
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where n is the time level.

3. SIMULATION
3.1 Expansion of the Electron Gas

The subsection considers an expansion of the free
electron gas using the PIC simulation. We find changes
in velocity variance, density, kinetic and potential en-
ergies of the gas over time and compare the expansion
dynamics obtained by modeling with theory.

The electron gas is not in thermodynamic equilibri-
um, so the concept of temperature does not apply to it.
The quantity 7. will be called the initial temperature
(traditionally for beam physics), which implies velocity
spread.

At the initial time, the electron concentration is ne
and the velocity deviation is

vy = kg1, I m, 3)

where kg is the Boltzmann constant, me. is the electron
rest mass.

In the framework of the PIC method, the gas is rep-
resented by N=1000 computational particles. Each
computational particle consists of N. electrons and has
the shape of an infinite plate with width

Xy = «fgokBTe le*n,, 4)

where e is the electron charge.

The initial velocities of the computational particles
are drawn from a Gaussian distribution using an algo-
rithm based on the classical central limit theorem. The
mean of the distribution is

u=0. 5)

J. NANO- ELECTRON. PHYS. 13, 05022 (2021)

051 £(v/v)

-3 -2 -1 0 1 2yl 3

Fig. 1 — Typical velocity distribution function of the electron
gas at the initial time
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Fig. 2 — Absolute charge density of the electron gas at ¢t = 0 (a)
and ¢t = 2.8t (b)
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Fig. 3 — Change in kinetic, potential, total energy of the
electron gas over time

Fig. 1 shows the initial velocity distribution of the
gas (the dots) compared to the standard normal distri-
bution (the solid line) with its deviation o =1 and ex-
pectation u = 0.

The particles are initially distributed randomly in
the space area:

x,_o €[200x,,300x, ]. (6)

Fig. 2a shows the dimensionless average absolute
value of the linear charge density of the grid cells
[Ail /Ao at the initial time. The density is measured in
Ao = Nel|e|/Ax, where Ax = xo is the cell size. During the
simulation, the gas expands symmetrically into the
area Xend € [0, 500x0] in time ¢ = 2.8¢t0 (Fig. 2b), where

ty, = «,gome le*n, . (7

The time level is At = 0.001t0. The dashed line in Fig. 2
denotes the average absolute density of the gas.

As can be seen from Fig. 2, the free electron gas ex-
pands due to electrostatic repulsion between electrons.
A 5-fold expansion along the axis is accompanied by a
2.5-fold decrease in the charge density.

For a more detailed understanding of the expansion
dynamics, we determine the kinetic energy Wi, poten-
tial energy W), and total energy W at each time step in
the simulation. The functions Wi, W,, W, as functions
of time, are shown in Fig. 3. Time is measured in #o (7).
Energy is measured in Wo = Nemevo?/2.

From Fig. 3, over time, the kinetic energy of elec-
trons increases, and the potential energy decreases at a
constant total energy, i.e., expansion of the electron gas
is a thermodynamically non-equilibrium process.
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The gas model represented by computational parti-
cles in the form of endless plates can be described ana-
Iytically. In this case, we find a change in velocity devi-
ation over time and compare it with the result of nu-
merical calculation.

Let rio be the initial position of the plates (computa-
tional particles), where i =1, 2, ..., N. We assume that
half of the plates is on the left side relative to the cen-
ter of the area (6): rio <250x0, =1, 2, ..., N/2. So, the
other half is on the right side: rio > 250x0, i = N/2, and
N/2+1, ..., N. Then the equations of motion for the ith
particle are

(N +1-2i)F =-ma, [i = 1,2,---,%)

(2N+1—2i)F:mai(i:N %Jrl,...,Nj, (8)
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where m, q, S are the mass, charge, and area of the
plate, respectively; a; is the acceleration.

The velocity of the particle is v; = vio + ait, where vio
is the initial velocity. So,

(N +1-2i)q% (. LN
v, =0y —~————F—1=1,...,— |,
P 2¢,Sm 2
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Taking into account the symmetry of the accelera-
tion a; and the fact that the average initial velocity
(vio) = u =0 (5), the average particle velocity (vi) =0.
Based on this and the equality (vio?) = (vo?), the velocity
variance is:

N?2-1( ¢* ’
o’ =vg+ [ tj : )

3 (25,Sm

The dimensionless version of Eq. (9):

2500

ot g =1+==(t It,), (10)

where time is measured in o (7), velocity is measured
in vo (3).

The change in time of the distance between charge
centers of two halves of the electron gas can also be
described analytically.

If R1 is the center of charge of the left half and R2 is
the center of charge of the right half, then

N/2 N
Np -5 Np,- 5, a1
2 i1 2

i=N/2

where r; are the positions of computational particles at
time ¢, which are described by the equations
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(12)

Based on (8), (11) and (12), the distance between the
centers R is represented as:
2
N
R=R,-R =R, + L 42, (13)
4g,Sm

where Ro= R20— R1o0 is the distance between the cen-
ters at the initial time. From (6), Ro = 50xo.
The dimensionless version of Eq. (13) is

£:50+25[t—], (14)

Xo ty

where time is measured in o (7), distance is measured
in xo (4).

The theoretical deviation curve of the gas velocity
(10) and the distance between the centers of charge (14)
coincides with the simulated one. The difference is no
more than 3 %.

3.2 Temperature Equalization in Electron Gas

The electron gas is in the form of two subsystems.
Subsystem A is defined by N, = 500 computational par-
ticles with temperature Tu, subsystem B is defined by
Np =500 computational particles with temperature Tb.
The simulation leads to temperature equalization for
the time 7.

Consider several cases when the initial temperature
ratio (Ta/Th) |t =0 equals 104, 103, 102, 10. The calcula-
tion of the To/T» ratio at each time step for the given
initial conditions is shown in Fig. 4.

Fig. 4 shows that temperatures 7T, and T» equalize.
The equalization time for cases with initial conditions
(TalTe) | :=0= 104, 103, 102, 10 is the same. The ratio
To/To=1.06 £ 0.01 is reached at time 7= 0.07to, where
to is the unit of time (7).
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Fig. 4 — Temperature equalization of two subsystems in the
electron gas

3.3 Natural Oscillations of Model Positron-
electron and Proton-electron Gases

The subsection considers neutral electron-positron
and proton-electron gases using the PIC simulation. It
considers changes in kinetic and potential energy, the
spatial distribution of particles over time, compares the
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obtained frequency of natural oscillations with the the-
oretical value.

At the initial time, the gas consists of electrons and
positrons of the same concentration n. with the same
velocity deviation vo (3). The particles are distributed
normally in velocity and randomly in the space area:
x € [200x0, 500x0], where xo is the unit of distance (4).
The number of electron and positron computational
particles is the same: Ne = Ne+ = 500.

During the period ¢t = 10¢0 of the simulation, the gas
does not expand, the average linear charge density of
the grid cells does not change.

Wil

1600 W
1400 Wi
1200
1000
200
600
400 e
200

tim

0 1 2 3 4 3 6 7 8 9

Fig. 5 — Change in kinetic, potential, total energy of the elec-
tron-positron gas over time

Fig. 6 — Frequency spectra of oscillations of electron-positron
and electron-proton gases

At each time step of the simulation, we calculate
the kinetic energy Wr, potential energy Wy, total energy
W. The functions Wi, W,, W as functions of time are
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MogenoBanusa npouecie B eJieKTpoHHOMY ra3i merogom Particle-in-cell
I.I. Hiximking, P.I. Xomonos

Inemumym npurnaonoi gpisuxu HAH Yipainu, syn. [lemponasniscora, 58, 40000 Cymu, Yipaina

EnemenTapHi mporecu B3aeMOZil 3aps/KeHUX YACTHHOK B €JIEKTPOHHOMY IIyYKY CTPYyMOM OJIH3bko 1 A
BUBYAIOTHCA YUCEJIBHO IIMOJ0 MPOOJIEMHU eJIeKTPOHHOTO OXOJIOJKeHHs. [IpuBeeHi pe3yIbTaTh YUCeILHOrO
MOJIeJTIIOBaHHS ofHOBUMIpHUM MetomoM Particle-In-Cell Takux mporieciB K po3IIMpeHHsT €JIEKTPOHHOrO r'a-
3y, BUPIBHIOBAHHS TeMIIEPATyp IBOX IIJICUCTEM eJIEKTPOHHOIO a3y, BJIACHI KOJMBAHHS MOJEJIBHOTO eJIeKT-
POH-TIO3UTPOHHOIO T4 €JIEKTPOH-IIPOTOHHOTO ra3iB. Y paMKaxX MeTO/y BLIbHUM €JIEKTPOHHUI ra3 PO3IINpPIO-
€THCS 32 PAXYHOK €JIEKTPOCTATUYHOTO BIIIITOBXYBAHHS MK €JIEKTPOHAMU IIPY IIOCTIMHUIA IIOBHIN €Hepril.
Mopesnb BULIBHOIO €JIEKTPOHHOTO rady, sika IIPeJCTaBJIeHA MOJEJIbHUMY YaCTUHKAMY Y BUIJISIIl HECKIHUEH-
HUX [JIACTUH, TAKOK BUPINIYETHCS AHAJIITUYHO. Y IIHOMY BUIIAJIKY AHAJITHYHO 3HAMIEH] BIAXUJIEHHS IIIBU-
JIKOCTI AK (PYHKIIIS 4acy Ta BIACTAHBb MM IIEHTPAMH 3apAAy JBOX IIOJIOBUH €JIEKTPOHHOTO rady. I me mopis-
HIOETBCS 3 Pe3yJIBTATOM YKCEeJIBHOT0 00YMCIIeHHS. SIKINO eJIeKTPOHHUN ra3 IPeICTABUTH SK JB1 IiJICUCTEeMHI
3 PI3HOI0 TEeMIIEPATYPOIO, Iie IIPU3BOAUTE JI0 BUPIBHIOBAHHS TEMIIEPATYPH IIPX MOJEJIIOBAHHI. Y CTATTI PO3r-
JISHYTO K1JIbKA BUIAJKIB 3 PISHUMHU ITOYATKOBUMHK YMOBAMHU Ta 3HANIEHO uac pesakcarti. PesympraTr mose-
JIIOBAHHSA €JIEKTPOH-IIO3UTPOHHOTO Ta €JIeKTPOH-IIPOTOHHOIO Ta3iB IOKAa3ye, 10 iX KOJUBAHHSA CYIIPOBOIKY-
oTbesa 3aryxanaam Jlanmay. CekTpaabHUi pO3IOIiJl YacTOT IUX KOJMBAHD IIOKA3ye MAKCUMYMU, SKi Bij-
TOBIJIAI0TH TEOPETUYHUM 3SHAYEHHSIM.

Knrwouogi ciosa: Particle-in-cell, Kinerura, ITimasma, Biacui komusanss, MogemoBasss.
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