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Percolation theory, developed more than 60 years before to describe the behavior of flow phenomena in
porous medium, has undergone an extensive area of applications in recent years, ranging from epidemiology,
financial market, soil science, pharmaceutical technology to composite material structure. Here in this paper,
percolation theory is applied to the triangular lattice and its characterization has been done using Monte-
Carlo simulation. Python language has been used to develop the code. For this, we have used the inbuilt li-
braries of Python like NumPy, SciPy, Matplotlib etc. Hoshen-Kopelman (HK) algorithm is used to identify the
cluster and its numbering procedure. This algorithm is being preferred over the other methods as it consumes
low computer memory and less computation time. The prime point of interest in percolation is known as per-
colation threshold (p.) which is computed for our case is 0.5. We have also characterized the percolation by
finding the other quantities as: normalized mass of cluster (M), percolation probability (Pp), the density of the
infinite cluster (P.) and ordered parameter Q(L). We have extracted critical exponents from our data and
found that they match exactly with their universal values. To the best of our knowledge, we are the first
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group to report percolation in triangular lattice by means of HK algorithm using Python language.
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1. INTRODUCTION

The standard theory of percolation was developed
by Broadbent and Hammersley in 1957 [1], but till date
it has an attractive, open and challenging application
in variety of physical problems like determining the
landscape ecology influenced by habitat fragmentation
[2] or differentiation between benign and malignant
tumors in the breast and colorectal histological images
[3] or analysis of forest fire in a realistic and scientific
way to prevent its propagation in forest [4] or under-
standing interdependent networks from the point of
view of epidemic spreading [5] or giving theoretical
description of a composite material with random geom-
etry [6] or critical phenomena in statistical mechanics.
Also, Golovina et al. have studied ferromagnetic order-
ing in ferroelectric nanoparticle using magnetic perco-
lation theory [7]. The percolation model is appealing to
a wide variety of field because of its simplicity of de-
scription, ease of visualization yet able to explain or to
predict the critical behavior of the system be it regular
or distorted. The realization of percolation cluster in
the system is done by Monte-Carlo simulation. The
probability at which the system first time makes its
connectivity throughout the lattice, is known as the
percolation threshold (pc) of the system and is consid-
ered to be the most important parameter of a percolat-
ing system. In the present work, we have developed a
code using Python programing to represent site perco-
lation in a random system of triangular lattice. Though
FORTRAN language is mostly favored by the Computa-
tional Physics community for coding, but Python, being
an open source programing language with may inbuilt
libraries like Numerical Python (NumPy), Panda, Sci-
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entific Python (SciPy), Math-plot library (matplotlib)
etc. can also be used to perform the identical mathe-
matical approach. The percolation has been analyzed
with the help of HK algorithm. To the best of our
knowledge, we are the first group to report the algo-
rithm for square lattices using Python programing [8].
Here, in this paper, we have studied the percolation in
triangular lattices by means of HK algorithm.

2. THE MODEL

The site percolation in triangular lattice is simulat-
ed and fitted on a square network of size L x L (2-
dimension) with suitable consideration of nearest
neighbors as shown in Fig. 1. The nearest neighbors of
a particular site (bold dot) is shown by bold lines in
Fig. 1a. If the location of any site in the lattice is repre-
sented by (x, y) as shown in Fig. 1b, then the six near-
est neighbors in triangular symmetry are (x=+1,y),
(x,y+1), (x—1,y-1), (x+1,y+1). The percolation
through the triangular lattice has been studied by
Monte-Carlo simulation. A random number generator
is used to label each site with a probability. All the
sites in the lattice must be either open or closed with
probability p or q = (1 — p), respectively. If p is close to
zero, the probability of the open sites to be isolated is
maximum; whereas when p tends to unity, majority of
the open sites will be amalgamated to become a part of
the infinite cluster (or spanning cluster).

It is considered that an open site will be a part of a
cluster if in its nearest neighborhood, there is another
open site. If it is not connected to any of its nearest
neighborhood then, it is considered as a unit sized clus-
ter. An infinite cluster is formed in the lattice if there is
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Fig. 1 —(a) The triangular lattice is fitted onto the square
lattice with the suitable nearest neighbors as shown by the
bold lines. (b) The nearest neighbors of any typical site (x, y)
are labeled as follows: top and bottom by (x+ 1, y), left and
right by (x, y £ 1), 2 diagonals by (x — 1, yel) and (x + 1, y + 1)

any connecting path between top and bottom row of the
lattice or left and right side of the lattice. In a lattice,
there will be always co-existence of percolating as well
as non-percolating clusters. Therefore, it is always con-
venient to consider the normalization factor of the mass
of the cluster. We have calculated the percolation prob-
ability (Pp), the density of the infinite cluster (P-) and
the ordered parameter Q(L). In this paper, the lattice
size (L) given as 30, 70, 100 and 150. The same trend
has also been observed by P.Dean [9] and he had
shown that percolation condition for 48 x 48 lattice lie
close to their limiting values for very large lattice sizes.
The random matrix generator which is used as a key
factor to characterize the percolation phenomenon
guarantees the quality output of Monte-Carlo simula-
tions. We have started by generating an empty square
matrix. Then triangular lattice is realized on this
square lattice after proper consideration of nearest
neighborhood. Each empty site is assigned with a ran-
dom number. This typical site then defined as open
(assigned with the value — 1), if its value is less than or
equal to the value of occupation probability p, which
varies from O to 1, else it will be treated as closed site
(assigned value is 0). The process of site identification
and numbering was done with the help of Hoshen-
Kopelman (HK) algorithm [10]. First open site (whose
value is — 1) will start its numbering from 1. After that
each open site will find its open nearest neighbor and
equal numbering will be done for that site (in computer
literature, the process of finding and uniting two sites
is termed as “union-find” method) which implies that
two nearest open sites will be tagged with the same
number. If any open site does not find any nearest open
neighbor, then a new number will be assigned for that
site, which is incremented by 1 from its previous open
site. The code for this algorithm was developed by Py-
thon programing and the major libraries used for this
purpose are Numpy, Scipy and Matplotlib. The compu-
tational experiment was done for NV = 500 times.

3. RESULTS AND DISCUSSION

In this section, we will discuss the variation of the
following parameters for different values of p ranging
from 0 to 1: percolation probability (Pp), normalized
mass of cluster (M(p)), density of the infinite cluster
(Px) and ordered parameter Q(L). The open sites pre-
sent in the matrix with probability p, must belong to
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any one of the following states: (i) it can be part of the
infinite (or percolating) cluster or, (i) it can be part of
non-percolating cluster. To analyze this fact pictorially,
we have 100 and p =0.3 and 0.5 (see Fig. 2). The rest
sites will be closed with probability g = 1-p. Fig. 2a
shows that when p =0.3, then most of the open sites
belong to state (i1) as described above and as p increas-
es to 0.5 (Fig.2b), the probability that open sites
(marked with black) will be amaulgumed and be a part
of percolating cluster increases. The percolation proba-
bility is calculated by taking the ratio of the count for
which the system generates percolating cluster to the
total number (V) of run of computational experiment
(we have taken N = 500).

Fig. 2 — The open and closed sites in the triangular lattice of
size L =20, 70 and 100 are indicated by black and white re-
spectively for (a) p = 0.3, (b) p = 0.5. The encircled region in (a)
indicates that most of the open sites belong to non-percolating
cluster for lower value of probability p

The percolation probability has been studied for dif-
ferent values of p, ranging from of 0 to 1, for different
size lattices (L =30, 70, 100, 150). In our simulation
experiment, we have observed that for L =150 lattice
size, within a very narrow range of p values the system
makes a phase transition. If we focus on the values of p
from 0.47 to 0.52, it is observed that the system be-
comes percolating from its non-percolating phase. A
detail investigation of p values in the range of 0.45 to
0.55 for different lattice sizes, show that at p = 0.5 the
system becomes percolating (Fig. 3). The percolation
threshold for triangular lattice (pc) available in litera-
ture [9, 11] is in close proximity to our estimated value
0.5. This indicates the reliability of our code for perco-
lation in triangular lattice using HK algorithm and
written in Python programing.

We characterize another quantity for percolation,
namely normalized mass of cluster (M(p)) which is a
measure of occupied sites present in the lattice. It is
defined by equation (1):

M(p) — <Noccupied% . (1)
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Fig. 3 — Variation of percolation probability (P,) with occupa-
tion probability (p) is plotted for different values of p, ranging
from O to 1
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Fig. 4 — Normalized mass of cluster (M(p)) is plotted against
occupation probability (p), ranging from 0 to 1 for L = 150

To calculate this for a system of size L, we have
taken the average on the count of open sites present
(Noceupied) in the system for N computational experi-
ments and then normalize it by dividing it by L2.

Fig. 4 shows that M(p) is small for lower value of p,
and it increases with increase in the value of p. For
lower value of p, there are few sites that are open.
When p value increases, more number of sites will be-
come open which in turn will increase M(p).

To explore more about percolation, two other pa-
rameters are discussed in this section. The first one is
the order parameter Qr(p) which is defined as

a,(p) =)/ @

To calculate this parameter for a system of size L,
we have taken the average on the count of number of
sites in the largest cluster (Smax) in the system for N
computational experiments and then divide it by L2 to
make it normalized.

Fig. 5a shows Qr(p) for lattice sizes L =30 and 150.
The other two sizes of lattice (L = 70 and 100) are not
shown here to maintain the clarity in the image. When
p 1s lower, then more number of sites belong to the
smaller lattice size; whereas for larger p, the numbers
of sites belong to the largest cluster will be more for
bigger lattice.

So, we observe that the curve is steeper for the larg-
er L and there is a cross-over in the value of Qr(p) oc-
curs at pc= 0.5 (percolation threshold obtained earlier
also). The values of QL(p) are extracted at a fixed value
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Fig. 5 — (a) The variation of Qz(p) with occupation probability
p is shown for L = 30 and L = 150. (b) Plot of InQz(p) with InL

at a fixed value of (p- pc)L% gives the value of critical expo-
nent f/v=0.11
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Fig. 6 — The density of infinite cluster (P.) with occupation
probability p is plotted for L = 150. The critical exponent £ is
derived near percolation threshold (p.) and it is found to be
0.14

of (p—pc)L% and these are plotted with InQr(p) vs. InL

(Fig. 5b). The slope of the straight line gives f/v=0.11.

Another parameter discussed here is the density of
infinite cluster which is defined as the probability that
an occupied site belongs to the infinite cluster P».. Fig. 6
shows that for p < pc, no infinite cluster belong to the lat-
tice, so P~ value is zero. Near p, the probability that any
randomly chosen site belong to infinite cluster becomes
non-zero and increases with occupation probability.

This increase may characterized by the critical ex-
ponent S given by the standard relation in percolation as
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P =0
B
=(p-»p.)

The critical exponent derived from our plot is
B=0.14. This value is exactly identical with the univer-
sal value for percolation in two dimensional lattices [12].

for p<p,;
3
for p>p,.

4. CONCLUSIONS

The site percolation in triangular lattice is present-
ed through HK algorithm and the algorithm has been
developed by using open-source software Python. The
code has been developed with the help of Monte-Carlo
simulation. In perspective to the occurrence of reliabil-
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Teopist mepKOJISAIII, SKa 3aIIPOIOHOBAHA MTOHAT 60 POKIB TOMY JIJIs OIACY MTOBEIIHKH SBHII TeUll B ITOPH-
CTOMY CEepeOBHUII, B OCTAHHI POKH HAOYJIa IIMPOKOr0 3aCTOCYBAHHSA, MOYNHAIOYN Bij errigemiosiorii, dinaH-
COBOTO PUHKY, IPYHTO3HABCTBA, (hapMAIlEBTHYHUX TEXHOJIOTIH 1 3aKIHYYIUM CTPYKTYPOH KOMIIO3HUI[IHHIX
MarepiaiiB. Y CTaTTi Teopid IIePKOJIALIL 3aCTOCOBYEThCA 0 TPUKYTHOI IPATKH, a 11 JOCIIIKeHHs 0yJI0 BHKO-
HAHO 3 BUKOpHcTaHHAM MojenoBaHus Monre-Kapio. Jls po3pobku Koy BHKOPHCTOBYBAJIACS MOBA IIPO-
rpamyBauHa Python. [y mporo mu 3acrocyBasm BOymosasi 6i0mmorexn Python, taxi sk NumPy, SciPy,
Matplotlib Tomro. Anropurm Xormerna-KomebMana BUKOPHCTOBYEThCA IJIA imMeHTU(DIKALIT KilacTepa Ta IIpo-
eAypH voro HyMmepariii. [leit agropurm mMae mepeBary HaJi IHITUMU MeTOIaMU, OCKLIBKY BiH ITOTpedye MeH-
mre mam'sTi 1 yacy Ha obuncireHHs. O6'€eKTOM IIABUIIIEHOr0 1HTEpEeCY B Teopii MepKOJISAIII € IOPIr TePKOJISIL
(pe), aAxmit y Hamomy Buagry € piBEuM 0,5. Mu Takok oxapakTepuayBaId MTEPKOJISAINI0, 3HAWIIOBIITN 1HIIN
BEJIMYMHU, TAKl K HOpMOBaHa Maca kJyacrepa (M), fimoBipHicTh mepkossini (Pp), TycTHHA HECKIHUEHHOTO
kaacrepa (P.) 1 mapamerp mopsary Q(L). Mu orpuMasivi KpUTHYHI MOKA3HUKY 3 HAIIUX JaHUX 1 BUSBUJIIH,
110 BOHU TOYHO BIJIMIOBIIAI0OTH CBOIM YHIBepCAJbHUM 3HAYeHHAM. HacKITbKH HaM BIJIOMO, MU € IIE€PIIIO I'PY-
010, SIKA ITOBLIOMMJIA IIPO IIEPKOJISINI B TPUKYTHIHN IpaTIiii 3a JomoMorown aiaroputmy XoureHa-Komenbsmana

3 BuropucranasaM moeu Python.

Kmrouori cosa: Ilopir meprostsirii, MogemoBauus MonTe-Kapiro, Anropurm Xomrena-Komersmana.
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