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The surface characteristics of components fabricated by additive manufacturing techniques are greatly af-
fected by the input parameters. In this work, momentous input factors (layer thickness (LT), temperature (7),
printing speed (S), outer wall speed (OWS), raster angle (RA), orientation (Or.), outer wall line width (OWLW),
infill overlap (Z0), infill line width (ILW) of fused deposition modeling (FDM) printer are modeled and opti-
mized for getting the better surface roughness (SR) of carbon based nylon (PA-CF) composite material fabricat-
ed parts. To develop input experimental matrix, central composite design method has been utilized and on
these input parameters, surface roughness of each run has been measured using Mitutoyo Talysurf surface
roughness measuring instrument. A total number of 61 specimens have been fabricated on different input pa-
rameters and their surface roughnesses are tested. The minimum surface roughness value of test specimens
with experimental design matrix was recorded as 6.331 um. The modeling and optimization of experimental
design matrix has been carried out using evolutionary algorithm i.e. artificial neural network integrated with
genetic algorithm (ANNGA). The minimum value obtained using ANNGA for roughness is 5.01788 um, corre-
sponding to various optimum input factors as L7T=0.1776 mm, 7T=236.0609°C, S=40.7369 mm/s,
OWS =20.0676 mm/s, RA=43.9177°, OWLW =0.3445 mm, Or.=0.0018°, IO =56.6295 %, ILW=0.3488 mm.
At these optimized input factors value one end-use part is also fabricated and the developed hybrid model is
validated. The artificial neural network integrated with genetic algorithm could be anticipated for better
prophecy, factors optimization and outcomes for any engineering application tribulations.

Keywords: Fused deposition modeling, Artificial neural network integrated with genetic algorithm, Surface
roughness, Experimental design matrix, Optimization.
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1. INTRODUCTION

The different product development fight in the global
market is rising enormously and for manufacturing
units to sustain in the market it is important that, how
at the outset they are providing the required product in
the market. FDM is one such additive manufacturing
technique which can fabricates parts directly from any
design software data file or any scanned data file. FDM
introduced by Stratasys Inc. (1990) and based on extru-
sion principle, fabricate parts by depositing thermo-
plastic as a base material in additive way straightly
from a designed data model file [1, 2]. FDM is finding
wide range of application areas in the field of aerospace
industry, automobile, medical inserts, civil engineering
and many more without need of any high cost tooling
and instruments [3-5]. Along with fabrication of proto-
type of any functional model, FDM is also using to fabri-
cate end use application products [6]. However, at the
mass production level the use of FDM is still at limited
level due to the lack of preciseness value of fabricated
parts, surface roughness (SR) and bad mechanical per-
formance [7]. Therefore, to be strong competitor among
various manufacturing units and have a large global
market shares, it is indispensable to fabricate products
firstly and perfectly. For FDM fabricated parts, SR is
the one of most important characteristic that can play
important role in its development and could provide
final fabricated parts with all required finishing stipula-
tions. However, it is difficult to meet the required speci-
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fy specifications due to limited availability of material
in the filament form and numbers of conflicting process
parameters that FDM machines have. Subsequently,
the working conditions that ideally suit a material and
optimum parameters combination must be utilized and
their attributes must be considered.

Many researchers have considered the impact of an
assortment of input parameters on FDM manufactured
components quality and furthermore a lot more have
made effort to improve the output response value by
optimizing the parameters [8-10]. Wang et al. [11] ex-
amined the effect of input parameters on dimensional
preciseness and surface roughness of FDM manufac-
tured parts. Layer thickness among the examined fac-
tors; found most significant factor that affect the surface
roughness significantly. Vasudevarao et al. [12] studied
the impact of part orientation, layer height, raster
width, temperature, and air gap on the surface quality
of parts manufactured. The design of different sets of
parameters is developed using factorial design (half)
technique. The outcomes of the experimental runs
showed that the better surface quality is achieved at low
value of layer thickness and 0° build orientation. As per
Anitha et al. [13] layer thickness is the most important
parameter other than speed and raster width that affect
the quality of surface significantly. Additionally Thri-
murthulu et al. [14] suggested a low value of layer
height for good surface finishing. Horvath et al. [15]
exercised the full factorial design to know the effect of
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FDM input factors on surface quality. Liu et al. [16]
used Taguchi method for examining the impact of pa-
rameters (layer thickness, raster width, raster orienta-
tion, build orientation and raster gap) on mechanical
characteristics of FDM parts. Sood et al. [17] used de-
sirability function approach for optimization of mechan-
ical characteristics of FDM printed parts, in place of
gray Taguchi technique and found more precise results
than Taguchi method. Also Akande [18] used desirabil-
ity function approach for multi-objective optimization
problem and found optimum parameters combination
set for the desired responses value. Peng et al. [19] exer-
cised response surface methodology (RSM), fuzzy logic,
combined with genetic algorithm (GA) to get optimum
results for considered outcomes (three in numbers).
Nancharaiah et al. [20] considered Taguchi and analysis
of variance (ANOVA) method for modeling and analyz-
ing the nature of different FDM input factors on surface
quality of ABS material parts. Mohamed et al. [6] have
looked on different optimization procedures like Re-
sponse surface methodology, Taguchi, factorial design,
gray relational, artificial neural network, fuzzy logic,
and combined with GA for modeling and to optimize
FDM input factors. Assarzadeh and Ghoreshi [21],
Agarwal et al. [22] applied ANN technique for optimiz-
ing the input factors. In correlation with arithmetical
based model they found an inexorably precise evalua-
tion with ANN-based model.

From the above research works, it is clear that a
large part of studied literature are mainly centered on
optimizing the three, four or maximum six FDM tech-
nique input factors for surface coarseness of thermo-
plastic material parts. PLA & ABS are the generally
used thermoplastic raw materials to make any 3D phys-
ical object using FDM technique [23]. Both these mate-
rials have more tendencies to wrap due to non-uniform
cooling rate during fabrication process [24]. Hence, to
enlarge the utilization of FDM technique and produce
components with various parts attributes, it might be
supportive to think different materials for goodwill of
researchers as well as to manufacture functional parts.
Therefore, in this work the carbon based nylon (PA-CF)
composite material is considered. But involvement of
number of conflicting factors in FDM, there is require-
ment to have better parameters arrangement for attain-
ing minimum SR value. Therefore, in the present study
maximum nine input process parameters are taken into
consideration to study their effect on SR, and to get bet-
ter parameters value for improving the superiority of
FDM technique in terms of SR. An effectual method to
assess the elucidation of this sort of issue is to setup the
correlation between execution measures and manage
parameters  value through  apposite  modeling/
optimization technique. As a result, in this study central
composite design, ANN and genetic algorithm (GA) are
put into practice mutually to establish interaction &
correlation between nine parameters (layer thickness
(LD), temperature (7), print speed (S), outer wall speed
(OWS), raster angle (RA), orientation (Or.), outer wall
line width (OWLW), infill overlap (I0), infill line width
(ILW)). The evolutionary algorithm ANNGA has been
used for optimization. To fabricate test pieces nylon
based carbon fiber composite material filament is used.
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2. EXPERIMENTAL DETAILS

Nylon carbon fiber (PA-CF) filament is used to
make various test pieces using FDM printer. PA-CF is
environment friendly, nylon based, 20 % carbon fiber
having good print quality with high finish printing ef-
fect filament. During fabrication of test pieces, 1.75 mm
diameter (PA-CF) filament is used.

2.1 Machining Performance Evaluation

In this study, the output response value considered
for examination the surface excellence is average sur-
face roughness (R.). The cubical shape fabricated test
pieces are shown in Fig. 1 as per ASTM standard D-
695. By using CAD software 3D model of test piece is
designed and then transformed to STL standard file.
The STL generated file is then imported to slicer soft-
ware and converted in to GCODE file for FDM ma-
chine. Now one part per experiment is fabricated by the
use of FDM 3D printer machine. For measuring the
value of SR, Mitutoyo Talysurf is used as shown in
Fig. 1. At each face (four), the surface roughness is
measured and average of all values is taken as desired
output value. The surface roughness is taken to be the
representative value respectively.

Fig. 1 - FDM fabricated test pieces and surface roughness
measuring Mitutoyo Talysurf instrument

2.2 Data Assortment

In this work, the experiments design matrix is de-
veloped based on the face central composite design hav-
ing value of alpha one (FCCD) procedure. The small
factorial FCCD is designed with 61 different combina-
tion sets of the parameters having cubical points 55,
center points 5, and star point 1.

2.3 Modeling and Development of ANN Model
Using Experimental Data and Optimization
Using GA

In current years, the use of artificial intelligence is
tremendously increasing for modeling and optimization
of parameters in practically all pasture of engineering
[25, 26]. Precise control of process parameters to achieve
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better quality is a prerequisite condition. For obtained
experimental value sets, using arithmetical techniques
much more work has been conducted to develop fitting
models. It is not easy to get any methodical model using
basic process of physics. Therefore, ANN approach is
used to model such complex problem process parame-
ters. The model can be developed effectively based on
the given information and trained very precisely for
giving the better outcomes. The neural network derives
its horizon from human brain or the human nervous
system which is massively consists of large parallel in-
terconnection of large number of neurons and that
achieves the different perceptual, reorganization tasks
etc. It is able to solve large computational problems effi-
ciently. This technique has been successfully applied in
different fields of engineering to solve linear and non-
linear problems with their modeling and optimization
[27]. Its characteristics like acquiring, learning also
make this technique to be used in future [28, 29].

The ANN model structure is generated for given
multi-parameters mapping problem i.e. 9 input param-
eters and one response. The central composite design
designed input/output data is imported as input and
output data in the network. Tangent sigmoid activation
function has been used for input layers and output lay-
ers. Gradient descent with bias learning and momen-
tum weight has been used as adaptive learning func-
tion. The data for training, testing and validation have
been taken as in the ratio of 0.7:0.15:0.15. Further, the
proposed ANN model is trained and tested for learning
and detaining the information using different algo-
rithms. Finally, the best fitted ANN model is validated
experimentally and then used with GA to optimize the
input parameters.

GA is well known non-traditional optimization tool,
generally applied to solve complex and multi-
parameters problems [30]. To optimize the parameters
with ANNGA, the ANN model code is utilized as fitness
function and integrated in to GA code [31].

3. RESULTS AND DISCUSSION

To optimize surface roughness of pieces manufac-
tured by FDM, 614 =244 measurements have been
made on surface roughness tester in terms of average
surface roughness R,. On each piece, four measure-
ments are taken and then average of all is considered
as desired output value. The minimum surface rough-
ness value obtained from SR Mitutoyo Talysurf testing
machine is 6.331um corresponding to various optimum
process parameters as LT=0.15mm, 7T=230°C,
S =40mm/s, OWS = 20 mm/s, RA =30°
OWLW =0.35 mm, Or. =0° 10 =100 %, ILW =0.30 mm.

The experimental test runs carried out were based
on face central composite design (FCCD) matrix. The

Table 1 — Regression values using different algorithms
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experimental design matrix has been utilized for the
training, prediction and optimization via ANNGA. The
evolutionary algorithm ANNGA, has been utilize to
obtained optimal nine input parameters in specified
range to achieve minimize the surface roughness.

3.1 ANN Function Development & Training

The ANN has been trained with 61 sets of input
process parameters (LT, T, S, OWS, RA, OWLW, Or,
10, ILW) and an output response (SR). The input ma-
trix [9 X 61] and output [1 X 61] data set were feed for
training, validation and testing. Different types train-
ing algorithms with learning functions (trains) like
tainlm, trainbfg, traincgb etc. were used to perform
training in MATLAB to achieve best regression value
as shown in Table 1.

It is observed from table 1 that the higher value of
regression has been achieved by using tainr function i.e.
incremental algorithm with random order. The regres-
sion plot obtained using trainr function for training,
validation, testing and overall have been shown in Fig. 2.

Training: R=0.98737 Validation: R=0.99954
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Fig. 2 — Regression plot for algorithm (trainr) incremental
training with random order

3.2 Surface Roughness Optimization by
Configuring ANNGA Model

The ANN combined with GA procedure has been
developed to offer optimized parameters value to mini-
mize the surface roughness. The GA with double vector

Trainlm | Trainbfg | Traincgb | Traincgf | Traincgp | Trainrp | Traingoss | Trainr

Training 0.97489 0.7237 0.81802 0.67135 0.71537 | 0.93554 0.76275 0.99797
Validation | 0.32322 | 0.58663 | 0.95485 | 0.60644 | 0.61485 | 0.69206 | 0.62018 | 0.99954
Test 0.61003 | 0.81852 | 0.68138 | 0.87842 | 0.95836 | 0.6973 0.878 0.98935
Overall 0.85357 | 0.71031 | 0.89813 | 0.68937 0.7605 | 0.86321 | 0.73882 | 0.99722
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by specifying input parameters range and considering
ANN modeling as fitness function has been iterated
using crossover and mutation function. The population
size has been taken as 200, stopping criteria has been
considered as number of generations (350) and elite
count is used as 1, whereas the crossover fraction is
taken as 0.9 and mutation rate is 0.05. The crossover
heuristic and mutation independent function have been
used for producing off springs. The convergence of the
surface roughness for obtaining input optimal parame-
ters has been shown in Fig. 3. The minimum value of
SR obtained using ANNGA is 5.01788um, as shown in
Fig. 3, corresponding to various optimum input factors
as LT=0.1776 mm, T=236.0609 °C, S=40.7369 mm/s,
OWS =20.0676 mm/s, RA =43.9177°, OWLW = 0.3445 mm,
Or.=0.0018° IO =56.6295 %, ILW = 0.3488 mm.
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Fig. 3 - ANNGA convergence plot for SR optimization

3.3 ANNGA Developed Model Validation

To validate the outcome obtained from GA
integrated ANN model at the optimum input factors
combination set as obtained in section 3.2, two test
pieces are fabricated at optimal parameters using FDM
machine. On each piece at four sides SR value is taken
and average of all is considered as desired output SR
value. Also one end-use part as shown in Fig. 4 is
fabricated on the same optimum factors set as obtained
in section 3.2. and measured the SR value at various
points. The average of SR value measured on incilned
and plain surface is cosidered as output SR value. A
comparison has been made between obtained ANNGA
optimized results and experimental results as shown in
Table 2. It is observed from the Table 2 that the results
retreived from ANNGA and experimental results holds
good in agreement.
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Fig. 4 — End-use part fabricated on FDM

4. CONCLUSIONS

In this work, FCCD, ANN and GA have been uti-
lized to streamline the input factors for surface rough-
ness of carbon based nylon composite material parts
manufactured by FDM technique. The exploratory ex-
amination has been done by creating experimentation
utilizing FCCD strategy. The nine FDM parameters
are efficiently modeled with respect to SR. Surface
quality, especially, surface unpleasantness is a signifi-
cant trait of made items for designing application since
it decides the usefulness of the part in a particular cir-
cumstance. In FDM technique, many input factors con-
nect in a perplexing way impacting material testimony
making it hard to create displaying and examination
approaches for appraisal of resultant properties of fab-
ricated parts. The ANN developed model was integrat-
ed with GA to get the optimum factors settings leading
to the minimum surface roughness value 5.01788 um
corresponding to various optimum input factors as
LT=0.1776 mm, T=236.0609°C, S=40.7369 mm/s,
OWS =20.0676 mm/s, RA = 43.9177°, OWLW = 0.3445 mm,
Or. =0.0018° IO = 56.6295 %, ILW = 0.3488 mm.

Therefore, the proposed ANNGA tool as a computa-
tional gadget utilized to help the planning assessment
through choosing the optimum factors value for mini-
mizing surface roughness of parts. The end-use fabri-
cated part good surface finish shows great sign towards
the ubiquity of FDM technique in each designing appli-
cations.

Table 2 — Comparison between ANNGA evolutionary algorithm results and experimental results

Smo. | LT T S ows | Rra |owiw| or o | mw | ANNGA | Experimental
results results
0.1776 | 236.061 | 40.7369 | 20.067 | 43.9177 | 0.3445 | 0.0018 | 56.6295 | 0.3488 5.01788 5.1032
2 0.1766 | 236.061 | 40.7369 | 20.067 | 43.9177 | 0.3445 | 0.0018 | 56.6295 | 0.3488 5.01788 5.2210
3 0.1766 | 236.061 | 40.7369 | 20.067 | 43.9177 | 0.3445 | 0.0018 | 56.6295 | 0.3488 5.01788 5.0945
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Onrumisania mapamerpis ApyKy [JiA MOJIIIIEHHA AKOCTIi IOBEPXHI Jeraseii,
BUTOTOBJIEHUX 3 HEMJIOHOBUX KOMIO3UIIIMHUX MaTepiasiais Ha ocHOBI Byriemio (PA-CF)
3 BUKOPUCTAHHIM €BOJIIOLiMHOI0 aJIrOPUTMY

Sandeep?, Deepak Chhabral, R.K. Gupta2

L Department of Mechanical Engineering, UIET, Maharshi Dayanand University, Rohtak Haryana India
2 Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan India

Ha moBepxHeBi XxapaKTepHUCTUKN KOMIIOHEHTIB, BUTOTOBJIEHUX METOJAMHU aJIUTHBHOI0 BUPOOHUIITBA, CH-
JIbHO BIIMBAIOTH BXITHI mapamerpu. ¥ po0oTi BaskauBi BXimHI kKoediientn (Topiuaa mapy (L7), Temmepa-
typa (7), mBuakicts npykry (S), mBuakicTs 30BHINHBOI cTiaku (OWS), kyr pacrpy (RA), opierraris (Or.),
mmpuHa JiHil 30BHImHBOI cTinku (OWLW), sanosuenus nepexkpurta (10), mmpuHa minii 3anosaenda (ILW)
mpuHTEpa ISt MoJIesoBanHs MetonoM HamnasiaeHHsa (FDM) amozenboBaHl Ta ONITUMI30BaHI [IJIsT OTPUMAH-
Hs KpaIoi mopcTrocTi moBepxHi (SR) merasieil, BUTOTOBJIEHAX 3 HEMJIOHOBHX KOMIIOSHUIIIMHUX MaTepiaJiB
Ha ocHosi Byrireiio (PA-CF). s po3pobku BXIIHOI €KCIIEpUMEHTAIBHOI MATPHIl OYB BUKOPUCTAHUNA METOL
I[EHTPAJIFHOI0 KOMIIO3UTHOTO IIPOEKTYBAHHS, 1 Ha OCHOBI ITUX BXITHUX IIapaMeTPIB BUMIPIOBAJIN IIOPCTKICTH
TOBEPXHI KOJKHOTO IIPOTOHY 3a JOIOMOrOI0 IMPWJIAAY JJIs BHMIPIOBAHHS IMOPCTKOCTI moBepxHi Mitutoyo
Talysurf. Bysio BUroToBsieHo 3arajbHy KiJIbKICT 3paskiB (61) 3 pisHUMY BXIIHUMHY IIapaMEeTPAMHU TA BUIIPO-
OyBamHO ix mropcrrocti moBepxHi. MiHIMaspHE 3HAYEHHS IIOPCTKOCTI IIOBEPXHI JOCJIIKYBAHUX 3pa3KiB 3
eKCIIePUMEHTAIHLHOI0 IIPOEKTHOI MaTPHUIleo ckiIanaio 6,331 mxm. MozeoBaHHS Ta ONTHMI3aIlis eKCIIePH-
MEHTAaJIbHOI IIPOEKTHOI MAaTPHUILi 0yJI0 IPOBEIEHO 3 BUKOPUCTAHHIM €BOJIOI[IIAHOTO aJTOPUTMY, TOOTO IITYY-
HOI HEeMPOHHOI Mepeski, iHTerpoBanol 3 reHeruynuM aiaroputmMom (ANNGA). MinimanbHe 3HaYeHHs, OTpU-
mase 3 BuxkopucradaaM ANNGA mis moperkocti, craHoBuTh 5,01788 MEM, 10 BiAIoBigae pisHUM oITHMA-

JBHUM BXITHMM KoedillieHTaM, TaKuM

ax LT=0,1776 MM,

T=236,0609 °C, S =40,7369 mm/c,

OWS = 20,0676 mm/c, RA = 43,9177°, OWLW = 0,3445 mwm, Or. = 0,0018°, 10 = 56,6295 %, ILW = 0,3488 mm.
TTpu 1px ONTUMI30BAHUX 3HAYEHHSX BXITHUX KOE(II[IEHTIB TAKOK BUTOTOBJISIETHCS OJTHA YACTHUHA KIHIIEBOIO
BHUKOPHUCTAHHS Ta IIepeBipsieTbesi po3pobseHa riopumaa momens. ANNGA moskHA BUKOPHCTOBYBATH JJIS IIe-
peabayeHHs, OIITUMI3Allii (PaKTOPIiB Ta Pe3yJIbTATIB Y OyIb-AKUX IHKEHEPHUX 3aCTOCYBAHHSIX.

Kmiouosi ciiosa: MogemoBanas MeTofoM HamasiaeHH; llITyuna HelipoHHA Mepeska, IHTerpoBaHA 3 TeHe-
tuuauM agropurmoM; [loperkicTs moBepxHi; Excnepumentansua npoektHa Mmatpuiist; Onrumisariis.
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