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A layered crystal is a set of packets consisting of covalently interconnected several monoatomic planes. 

At the same time, neighboring packets interact with much weaker van der Waals forces. This is the reason 

for the sharply anisotropic nature of layered crystals, which allows to largely change their physical proper-

ties by such external factors as ultrasonic treatment or intercalation. Layered crystals can be considered as 

specific porous materials with van der Waals gaps as pores. The Kronig-Penney model was used to describe 

the changes in the properties of the layered crystal caused by these factors. Since it is experimentally es-

tablished that such factors lead to the expansion of the layered crystal exclusively due to changes in the 

van der Waals gap, the proposed modeling was an analysis of the Kronig-Penney model with a change in 

the only geometric parameter of the crystal – the width of its van der Waals gap. The changes in the elec-

tronic spectrum caused by such a change were calculated, and on their basis, the manifestations in the 

quantum capacity of the layered crystal were analyzed. 
 

Keywords: Layered crystals, Porous materials, Ultrasonic treatment, Quantum capacitance. 
 

DOI: 10.21272/jnep.13(1).01019 PACS numbers: 73.21.Ac, 73.21.Fg 

 

 

1. INTRODUCTION 
 

Recently, an interest in porous materials, nanoscale 

compounds and compounds with the presence of 

nanoscale objects in them has been observed. The 

distinctive feature of the nanoscale crystal structures is 

their sizes of ~ 1÷100 nm in at least one crystallo-

graphic direction which gives rise to tangible size 

quantization of the spectrum. As to compounds with 

nanoscale objects, the porous materials [1] can be 

considered as belonging to them, i.e. bulk materials 

with a set of nanoscale pores inside them or 

surrounding them. It is the pores that determine the 

physicochemical properties to a greater extent than the 

bulk of the porous material does. 

Materials with pores of different sizes, shapes, and 

compositions have wide practical application, in 

particular as catalysts, cathode materials for highly 

efficient electric energy storage. 

A wide class of quasi-two-dimensional crystalline 

structures – layered crystals – can be considered as 

special nanoporous materials. Any layered crystal is a 

set of monatomic layers or packets with covalent or ion-

covalent bonds within them and with much weaker van 

der Waals interaction between them. The most wide-

spread layered crystals are graphite, transition metal 

dichalcogenides МХ2 (M = Mo,Ta, Ti, W, Nb, Sn, Zr, Hf, 

V; X = S, Se, Te), compounds А3В6 (А = Ga, In; B = S, 

Se, Te), and others. Fig. 1 shows a typical represen-

tative of layered crystals MoS2. It is a set of periodically 

arranged packets of monoatomic planes S–Mo–S. GaSe 

has a similar structure with Se-Ga-Ga-Se atomic 

planes. Important characteristics of the layered crystals 

are the thickness of the packet and the distance 

between adjacent packets (van der Waals gap). Thus, in 

MoS2 they are 3.241 Å and 2.903 Å, respectively [2]. 

The existence of nanoscale regions with weak inter-

action in layered crystals permits the introduction of 

foreign atoms or organic and inorganic molecules into 

them, as well as the removal of foreign atoms or organic 

and inorganic molecules from them. These phenomena 

are called intercalation and deintercalation, respectively; 

and the foreign objects are called intercalates. Depending 

on the nature of the intercalates, on their surroundings 

in the van der Waals gap, on post-reaction treatment 

the interlayer distances can be varied from 0.1 nm (in 

intercalated Li+ compounds) to more than 5 nm, i.e. the 

degree of segregation of the layered crystal can be 

changed. It is experimentally established that in the case 

of non-interacting packets such a two-dimensionality has 

especially manifested itself in layered crystals. Thus, 

the solitary layer of MoS2 showed ~ 104-fold increase in 

the quantum yield of luminescence. 
 

 
 

Fig. 1 – Layered crystals of MoS2 type 
 

This phenomenon once again emphasizes the extra-

ordinary nature of two-dimensionality unique properties 

priory discovered in the well-known monocrystalline 

graphitic films [3, 4]. 

Although layered crystals are not nanostructures, 

they can be identified with porous materials. In such 

crystals, the role of the pores is played by thе strictly 

spatially ordered van der Waals gaps having the same 

widths. According to the characteristic sizes of the van 

der Waals gaps, with respect to the classification of 

porous crystals [5], layered crystals refer to mesoporous 

materials. Thus, the problems of layered crystals are 

closely intertwined with the problems of porous crystals. 

Ultrasonic treatment is another active factor in the 
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change of the van der Waals gap [1, 6, 7]. Variation in 

the physical characteristics of layered crystals or 

porous structures by means of intercalation or by 

ultrasonic treatment makes it possible to solve such an 

urgent scientific and technological problem as the 

creation of high-capacity electric energy storages, in 

particular, on the basis of sodium and potassium, 

unlike it is in lithium-ion energy storage [8]. 

Below we consider the manifestations of the change 

in the van der Waals gap of a layered crystal caused by 

ultrasonic treatment on the example of a quantum 

capacitance. 

 

2. ULTRASONIC TREATMENT OF LAYERED 

CRYSTALS 
 

The mechanism of ultrasonic treatment is not com-

pletely understood. However, the aforesaid increase in 

the thickness of the layered crystal along the normal to 

the layers due to the increase in van der Waals gaps 

caused by ultrasonic treatment (as well as by intercala-

tion) is undoubtedly an important factor in the change 

of physical characteristics of the layered crystal. 

Let us consider layered crystals as superstructures. 

In the general case, the electronic states in such a two-

component structure A, B with the lattice period 

d  LA + LB (LA, LB are thicknesses of the components 

A, B, respectively) are determined according to the 

transcendental equation [9] 
 

coskd  f(E),   (1) 
 

where k is the quasi-momentum and f(E) is a function 

that essentially depends on the shape of the potential 

inside the primitive cell. 

We choose the widely used Kronig-Penney potential 

[10] for describing a layered crystal as a superstructure 

(see Fig. 1), in which LA  a is the interbarrier distance, 

LB  b is the thickness of the barrier. Note that, besides 

in the work [9], a similar model was used to investigate 

MQW structures [11], and the almost rectangular po-

tential was satisfactory for the description of the 

change in the electric field of a double layer caused by 

ultrasonic treatment. 

It is established that changes in the lattice period 

under the action of ultrasound or intercalation are due 

to the expansion of the van der Waals gap, since the 

thickness of the packet practically does not change [12]. 
 

 
 

Fig. 2 – The Kronig-Penney potential 
 

To ensure the effective action of ultrasonic waves in 

a solid, it is placed in a liquid medium. Therefore, the 

transmission of pressure created by ultrasound, accord-

ing to Pascal's law, will be the same for any van der 

Waals gap; therefore, the changes in width of each of 

them will be the same. This is unlike the intercalation, 

where under certain conditions such changes can affect 

only certain van der Waals gaps [13]. 

It is known that the solution of the stationary 

Schrödinger equation for an ordered crystal system, 

namely of the equation 
 

 
       0

2

=xψxVE+
dx

xψd
2

 , (2) 

 

is the Bloch function 
 

      ikxxu=xψ exp , (3) 

 

where u(x) is the Bloch multiplier. 

Substituting (3) into (2), we obtain a homogeneous 

differential equation with constant coefficients for the 

Bloch multiplier: 
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Its solutions are the following: 
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The unknowns A1, B1, A2, B2 in expressions (4), (5) 

can be determined from the condition of continuity and 

the condition of smoothness of the envelope at the „bar-

rier-well” boundary and from its periodicity with the 

period d  a + b. In this case, the non-trivial solution of 

the obtained system of linear equations in A1, B1, A2, B2 

is possible if the determinant whose entries are the co-

efficients of unknowns A1, B1, A2, B2 is equal to zero. The 

expansion of such a determinant leads to the equation 
 

  βbαa+βbαa
αβ

β+α
=b+ak

2

coscossinsin
2

cos
2

 ,(6) 

 

i.e. the latter coincides with equation (1) in which f(E) 

has a specific expression. 

The transcendental equation (6) has been solved by 

us using Maple, Mathematica, and Fortran software 

packages to search for graphical intersections of the 

left and right sides of such an equation [10]. The set of 

allowed zones, separated by gaps at the points kx  0 

and kx   /d, has been finally obtained [10]: 
 

         dkΔ
+kE=kE x

jj
xjminxj cos11

2
 , (7) 

 

where j is the number of the zone, Ejmin(kx) is its bot-

tom, j  Ejmax – Ejmin is the width of the j-th allowed 

zone with the cosine dispersion law (here kx  n/Lx; 

Lx  Nxd is the main region of the crystal, 

n  0, 1, 2 …(Nx – 1). 

 

3. CALCULATION OF THE QUANTUM  

CAPACITANCE OF LAYERED CRYSTALS 
 

In general case, the electrical capacitance of the 

conductor C is determined from the equality 
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Fig. 3 – Parabolic dispersion (dashed curve) splitted up by the 

Kronig-Penney potential 
 

qel C
+

C
=

C

111
, 

 

where Cel and Cq are the capacitances of the classical 

and quantum capacitors connected in serials, respec-

tively. Classical capacitance is electrostatic in its na-

ture, whereas quantum capacitance is due to the filling 

of electronic states [15]. As a rule, Cq ≫ Cel, therefore 

C ≈ Cel, i.e. Cq is ineffective. However, the situation in 

nano-objects can be opposite. 

Therefore, interest in the phenomenon of quantum 

capacitance has increased sharply lately. Recently [16], 

the first successful experimental measurement of 

quantum capacitance in a currently popular object such 

as graphene has been reported. The authors believe 

that quantum capacitance is as important characteris-

tic as the most popular today characteristic, namely 

electron mobility , is. 

In the general case, quantum capacitance Cq of a 

system is defined as 
 

  
n

nq Ef
dμ

d
e

dμ

dQ
=C , (8) 

 

i.e. as the change in charge Q caused by the change in 

the chemical potential . 

Here 
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is the Fermi-Dirac distribution. The summation in (8) 

is over all quantum states En of the system. 

In our case, taking into account the quantum states 

(7), we have 
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where e is the absolute value of the electron charge. 

 

4. ANALYSIS OF RESULTS. CONCLUSIONS 
 

Consider Cq() calculated for fixed values of the 

packet width b (b  0.8 nm) and the barrier height V0 

(V0  1.2 eV) at temperatures T  100 and 200 K for the 

well widths a  0.2, 0.4, 0.6, 0.8 nm caused by ultrason-

ic treatment. 

Substituting the values (obtained from the graph-

ical solution of the transcendental equation (6)) of the 

energy states (7) into (9), we obtain the dependences 

Cq() shown in Fig. 4. Here the shaded areas are al-

lowed zones. 

It can be seen that energy states Ej(kx) are a set of 

non-overlapping zones. At energies E < V0, such zones 

are the result of tunneling, and therefore, with the in-

crease in energy the widths of such zones increase, 

while the widths of the forbidden ones decrease. At 

energies above the barrier height, i.e. for E > V0, gaps 

that disappear with increasing energy still occur. Such 

zones are the result of interference effects. Fig. 4 shows 

the following: 

the curve Cq() is a manifestation of dimensional 

quantization; 
correlation of Cq() dependence with the location of 

the allowed zones; 

the value of the Cq() peaks decreases with increas-

ing . Since Cq is closely related with the density of 

states, a qualitative explanation concerning the de-

crease can be obtained from the fact that the density of 

states in one-dimensional crystals with a parabolic dis-

persion law has a similar dependence (~ 1/E1/2). It can 

be explained by the fact that the maximum peak values 

are greater for electrons with smaller well widths. A 

qualitative picture of the increase in the capacitance of 

carbon electrodes with the decrease in their pores was 

also observed in work [17]. The curve of Cq() differs 

sharply from the curve, which we have in the case of a 

similar one-dimensional problem with an infinitely 

deep potential well [17], i.e. in the Kronig-Penney mod-

el under the absence of tunneling. In the latter case, 

the electron spectrum is a set of discrete levels and, as 

a consequence, the curve of Cq() has the structure of 

strongly expressed peaks. In our case, the complex 

structure of the peaks is a consequence of the blurring 

of levels by the tunneling effect. 

From the analysis of Fig. 4, it follows that the peaks 

of Cq() become higher and more blurry as they move to 

higher temperatures. 
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T = 100 K T = 200 K 

  

  

  

  
 

Fig. 4 – Dependence of quantum capacitance Cq() at temperatures of 100 K and 200 K at the well widths a  0.2, 0.4, 0.6, 0.8 nm 
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Шаруваті кристали як пористі матеріали: вплив ультразвукової обробки 
 

Б.А. Лукіянець, Д.В. Матулка 
 

Національний університет «Львівська політехніка», вул. С. Бандери, 12, Львів 79013, Україна 

 
Шаруватий кристал є набором пакетів, що складаються з ковалентно зв’язаних між собою декіль-

кох моноатомних площин. Сусідні пакети взаємодіють між собою надто слабими ван дер ваальсовими 

силами, що і є причиною різкої анізотропії шаруватих кристалів. Така анізотропія породжує можли-

вості в широких межах міняти фізичні властивості шаруватих кристалів такими зовнішніми факто-

рами як УЗ-обробка чи інтеркаляція. Шаруваті кристали можна розглядати як специфічні поруваті 

матеріали з ван дер ваальсовими щілинами в якості пор. Для опису змін властивостей шаруватого 

кристалу, спричиненого дією зазначених факторів, була використана модель Кроніга-Пенні. Оскільки 

експериментально встановлено, що такі фактори призводять до розширення шаруватого кристалу ви-

ключно за рахунок змін ван дер ваальсових щілин, то пропоноване в роботі моделювання – це аналіз 

моделі Кроніга-Пенні зі зміною в ній єдиного геометричного параметра кристалу – ширини його ван 

дер ваальсової щілини. Були розраховані зміни електронного спектру, спричинені такою зміною, а на 

їх основі проаналізовані прояви в квантовій ємності шаруватого кристалу. 
 

Ключові слова: Шаруваті кристали, Пористі матеріали, Ультразвукова обробка, Квантова ємність. 


