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We have considered the problem of the evolution of two-dimensional few-cycle optical pulses inside a
photonic crystal, which has a spatially modeled refractive index, from oriented carbon nanotubes. Based on
Maxwell's equations, using the Coulomb calibration, an effective equation for the vector potential of the
electric field of an extremely short pulse was written. Numerical simulation of the pulse dynamics in a me-
dium with a spatially variable refractive index was carried out using a numerical scheme of the "cross"
type. It was shown that the pulse propagation is stable in the considered medium. The pulse energy re-
mains localized in a limited region of space, but dispersive spreading of the pulse shape takes place. The
dynamics of the pulse was also considered as a function of the parameters of the photonic crystal (modula-
tion depth and period of the refractive index); it showed that it is possible to control the speed of a group
packet of a few-cycle optical pulse. The calculations were carried out at times up to 10 ps, which plays an

important role in theoretical and applied research.
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1. INTRODUCTION

Among the popular phenomena in nonlinear and
coherent optics, the study of the dynamics of pulses
containing a small number of periods of electromagnet-
ic field oscillations or the so-called extremely short op-
tical pulses is currently of great interest. Such pulses
are also called light bullets [1]. The light bullet is gen-
erally viewed as a limited spatial two- or three-
dimensional pulse, the total energy of the electromag-
netic field of which is localized in a small spatial region
of a medium. In other words, light bullets can be un-
derstood as well-known electromagnetic solitons if the
medium is two- or three-dimensional [2]. One of the
main characteristics of extremely short optical pulses is
the impossibility of separating the shape of an electro-
magnetic pulse into an envelope and a bearing part
which may be of interest to researchers in many re-
spects. That is why in this case we cannot use the mul-
tiscale expansion method for solving Maxwell's equa-
tions. There is a need to solve Maxwell's equations
without discarding any derivatives [3]. We have to
point to the fact that if the medium can be character-
ized by spatial dispersion, then nonlinearity must be
taken into account even in the one-dimensional case.

In this paper, we have considered photonic crystals,
by which we mean a medium with a spatially periodic
refractive index and which have a photonic band gap.
Thus, a photonic crystal can be considered as an optical
filter that is capable of transmitting photons with a
certain frequency [4, 5].

Spatial inhomogeneity inside the photonic crystal
provides us an ideal nonlinear medium for the study
and propagation of electromagnetic solitons, extremely
short optical pulses or light bullets [6].

Carbon nanotubes (CNTs) are the most convenient
material for a medium of photonic crystals, in which
extremely short optical pulses or light bullets can prop-
agate. This is not surprising, because CNTs have
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unique nonlinear physical properties in the optical
range, which makes them a very promising material for
the formation of a nonlinear medium with a variable
refractive index, for studying the propagation of three-
dimensional extremely short optical pulses [7, 8].

One of the most interesting applications of photonic
structures with a band gap is the possibility of creating
a new type of optical fibers based on such media, the
main merit of which is the possibility of edgewise
waveguide bending without light leakage [9].

All of the above, in combination with the im-
portance of practical application of two-dimensional
few-cycle optical pulses, served as an incentive for writ-
ing this paper.

2. THE BASIC EQUATIONS

In this paper, we have studied z-electrons of CNTs
using the tight-bond approximation. The law of disper-
sion for semiconductor CNTs of zig-zag type can be
written as [10]:

E(p) = i;«/l + 4 cos(ap) cos(zs/ m) +4cos®(zs/ m) ,(1)

where y=2.7 eV, a = 3b/2h, b = 0.142 nm is the distance
between neighboring carbon atoms, and the quasi-
momentum p is given as (pz, s), s=1, 2,...m.

The electromagnetic field of a two-dimensional few-
cycle optical pulse inside a CNT photonic crystal is de-
scribed using the Maxwell's equations with Coulomb
calibration. The vector-potential has one z-component,
which depends on the spatial coordinate and time

2 2 2 2
A %_n(x,y)%+4ij:0, ©)

ox®  oy? c? ot? c
where n(x, y) is the spatially variable refractive index,

1.e. a photonic crystal with modulation of the refractive
index, j is the electric current that arises due to the
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interaction of electrons located in the CNT conduction
band with the electromagnetic field of extremely short
optical pulses.

As the main approximations and assumptions, we
have used:

1) the electric field of the surface, on which the
CNTs are located, is not taken into account;

2)  band-to-band transitions are not taken into ac-
count, because this reduces the boundaries of the pulse
frequency, which is in the near IR range;

3) we have used the approximation of a continu-
ous medium, thus, it is assumed that the emerging cur-
rent is dispersed throughout the volume.

The third assumption is suitable because the spatial
region, in which extremely short optical pulses are lo-
calized, is much larger than the size of CNTs and the
distance between them.

The distance at which there are strong changes in
the value of the refractive index for a photonic crystal
is even greater, therefore this fact does not have a sig-
nificant effect.

We have described the evolution of extremely short
optical pulses at times of about 10 fs using the collision-
less kinetic Boltzmann equation [11]

T 929 o, 3)

where f=f(ps, s, t) is the distribution function, which
depends on the vector-potential A, and as a conse-
quence on coordinate. At the initial time, this function
coincides with the equilibrium Fermi distribution func-
tion Fo

1
Fo= 1+exp{E(p)/ka}

where T is the temperature and ks is the Boltzmann
constant.
The current density j = (0, 0, jz) can be written as

j.=Ls(dpurf, (4)
7h’s

where v, =0E(p)/dp, is the group velocity of electrons.

Solving equation (3) by using the methods of char-
acteristics, we can come to

=257 dpo, [p—%Az (t)}Fo (), ®

ﬂ-h § —q,

The integration in equation (5) is carried out over
the first Brillouin zone, go = 277/3b.

Considering the dispersion law, the group velocity
can be transformed into a Fourier series

v, (s,x) =X a,, sin(mx),
m

17z . ..
where a,,, =— [ v,(s,x)sin(mx)dx are the coefficients
Tz
of expansion which decrease with increasing m.
Finally, an effective equation can be represented as
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Since, as a result of the numerical solution, the val-
ues of the coefficients cn decrease, we can restrict our-
selves to the first few terms of expansion (for our calcu-
lations, we have used the first 10 terms).

3. RESULTS AND DISCUSSION

Equation (6) has been solved using numerical meth-
ods, namely, the difference approximation method. The
difference scheme “cross” has been used. To determine
the time and coordinate grid we have used the
Courant-Friedrichs-Lewy condition. The accuracy of
the solution is about 99.99 %. The initial condition of
the potential-vector can be written as:
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where y. is the initial position of the pulse with respect
to the ordinate axis, f and y are the parameters of the
pulse width along the y and z axes respectively, v is the
initial velocity of the pulse.

The medium refraction index can be written as

n(x)=n0(1+acos(27x/ z))

where a is the modulation depth of the medium refraction
index and y is the lattice constant of the photonic crystal.

The results of numerical modeling have shown that
(Fig. 1) the solution of the equation for two-dimensional
extremely short optical pulses in a photonic crystal of
CNTs over time stays limited in a small spatial region,
which means that the balance between the dispersion
and nonlinearity of the CNT medium allows such a
pulse to propagate stably.

Fig. 1 has shown that a lot of peaks form in the
transverse structure of the pulse. It has happened due
to the synchronizing action of the dispersion effects of
spreading and nonlinearity of the medium, but through
it all, this pulse remains localized in such a medium.

As can be seen from Fig. 2, the index of the modula-
tion depth does not affect the shape of the pulse much.
The amplitude of the pulse almost retains its value.
Extremely short optical pulses stay concentrated in a
limited area of space. Only in the transverse structure,
you can see small changes.

The next result is about the dependence of the
shape and velocity of extremely short optical pulses on
the lattice constant of a photonic crystal x. As we might
expect, extremely short optical pulses propagate faster
with an increase in the lattice constant. Obviously, if
the lattice constant is infinite, then the pulse will prop-
agate with maximum velocity due to the absence of
interference processes. This fact has been confirmed by
numerical calculations. Also we have noted the distor-
tion of the pulses shape.
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Fig. 1 — The evolution of the two-dimensional extremely short optical pulses inside the photonic crystal made of CNTs with a
period of 2.5 um at different moments of time (7'= 2 ps): a) T, b) 27, ¢) 3T, d) 4T. The x and y values are relative values of coordi-
nates and electrical field (108 V/m)

| L=

Fig. 2 — The evolution of the two-dimensional extremely short optical pulses inside the photonic crystal made of CNTs with a
period of 2.5 pym with the different index of the modulation depth @ at the moment of time 7'=8 ps: a) a=0.3, b) a=0.45,
¢) a=0.6, d) a=0.75. Values of the x- and the y-axis are relative values of coordinates and electrical field (108 V/m)

4. CONCLUSIONS modulation depth have been also determined. When these
parameters change, the propagation velocity and the
shape of the pulse also change. Thus, changing the pa-
rameters of the medium, we can control the properties of
the pulse, which is important for practical applications.

As said above, these results can be used to construct
waveguides based on photonic crystals without energy
loss on the bends of the material.

So, based on the results of this paper, we can make the
conclusion: in a photonic crystal with a spatially variable
refractive index of CNTs, a stable propagation of two-
dimensional extremely short optical pulses is possible.
The dependences of the propagation of two-dimensional
extremely short optical pulses on the lattice constant and
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JBoBuMipHi HAA3BMYANHO KOPOTKI ONTHYHI iMIIy/1bCH B )OTOHHOMY KPHCTAJII
3 ByIVI€LIEeBUX HAHOTPYOOK

10.B. Osy:xuiosa, U.C. Iyxuios, M.B. Besonerko

Bosnizoepadcvruti Oepoicasruil yrisepcumem, np-m Yrisepcumemcevkuti, 100, 400062 Bonzoepad, Pocis

Byna posrasayra mpobiema eBoIioLil JBOBHMIPHUX KOPOTKHX ONTUYHUX IMITyJIBCIB BeepenwHl (POTOH-
HOTO KPHUCTAJIA, SKUHM Ma€e IMPOCTOPOBO MOJIYJILOBAHUIM MOKASHUK 3aJI0MJIEHHS, 3 OPI€HTOBAHUX BYTJICIIEBUX
"aHorpybok. Ha mincrasi piBasubp MakcBesuta, 3 BUKOPUCTAHHAM KamiOpyBanus Kysona, Hanucaso edex-
THBHE PIBHAHHS JJIs BEKTOP-IIOTEHIAIY eJIEKTPUYHOTO II0JIsI HAJKOPOTKOIo iMIyJibcy. Byso mpoBenero un-
ceJIbHE MOJIeJIIOBAHHS JIMHAMIKH IMITyJIbCY B CEPEJIOBHII 3 IIPOCTOPOBO 3MIHHUM IIOKA3HUKOM 3aJIOMJIEHHS,
3 BUKOPUCTAHHAM YHUCEJIBHOI cXeMu THUITy «xpecr». IlokasaHo, 10 MONIMPEHHS IMIyJIbCy cTablJbHEe B PO3T-
JIAHYTOMY CepeIOBHUINi. EHepria iMIIyJIbCy 3aJIMINAEThCS JIOKATI30BAHOK B OOMEKEHIM 00JIaCTi IIpOCTOPY,
OHAK Ma€ MICIle JUCIepCiiiHe PO3IIMBAHHA QopMH IMIysbey. Tarox Oysia posTyIAHyTa OMHAMIKA 1MITYJIb-
Cy B 3aJIEXKHOCTI BiJ mapaMeTpiB hOTOHHOTO KpucTaia (MInOrMHA MOAYJIALII 1 mepio MOKAa3HUKA 3aJI0MJIEH-
HsI); BOHA [IOKA3aJ1a, 10 ICHY€ MOKJIMBICTH KOHTPOJIIOBATH IIIBUJIKICTH IPYIIOBOrO IIAKETY IPAHUYHO KOPOTKO-
ro imiysscy. PospaxyHku mpoBoguiucs it yacy Ao 10 1c, 1Mo rpae BasKJIUBY POJIb B TEOPETUYHUX 1 IIPHK-

JIQJTHUX JIOCJTIKEHHSAX.

Knrouoei ciosa: ['panmyrno xoporki onrruysi immyascu, Gororumit kKpucrast, Byrieresi HanoTpyORn.
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