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The article considers the Lorentz attractor in aviation engine control systems (AECS) to obtain the 

necessary characteristics of the starting system and the laws of fuel supply, and to determine the emission 

characteristics. The defined behavior of the control system allows to optimize the control program of ad-

justable elements of the flowing part of the gas generator in transition modes of operation; to get a full pic-

ture of the starting characteristics of the developed engine, including reserves of gas-dynamic stability 

(GDS) in the starting modes; to establish the necessary programs for regulating the guide devices (GD), air 

bypass from the compressor; to select the required starter power, start-up cycle and fuel supply program in 

ground, alpine and flight conditions at the expected temperatures of air, fuel and oil in operation. Euler's 

and Runge-Kutta methods, Lorentz attractor are considered as the main approaches to mathematical mod-

eling of AECS. The script of the interface of the modeling program includes the possibility of two-level 

modeling of the flowing part with the properties of end-to-end automated calculation: input of initial data 

and calculation of thermodynamic parameters of the engine; design of the flowing part of the engine based 

on the node approach; strength design and mass analysis; export data to files for CAD systems for further 

processing and interpretation. 
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1. INTRODUCTION 
 

Modern requirements for the mathematical descrip-

tion of the engine and its properties at the initial stage 

of design allow at the stage of choosing its technical 

form as optimization variables to use indicators such as 

the number of stages of turbomachines, number of 

blades, power scheme, material range and indicators 

characterizing the engine as a real design [1, 2]. 

To determine the geometric accounting and mass 

data of aviation gas turbine engines, software is used 

that is based on generalized dependencies that take 

into account the influence of basic process parameters 

and engine dimensions on its mass, in simple engine 

mass models and on nodal mass models in detailed 

approaches. It is necessary to develop a mathematical 

model of the geometric shape and mass of the engine 

using detailed information about the basic components 

and parts of the engine. 

The basis of the program of detailed modeling of the 

engine is a node program, which includes subroutines 

of thermodynamic calculation, construction of flowing 

parts of the engine nodes on the basis of generalized 

representations. 

To increase the level of detail of the engine, the 

basic program must be supplemented by a block of lead 

calculation of vane machines in the calculation mode. 

Necessary changes with the lead description of the 

vane machines are made in the thermodynamic model 

of the engine. 

The source data for the calculation are the source 

data used in the node model of the engine. In addition, 

the distribution of work and efficiency by stages for 

each blade machine, the values of selections and leaks 

of the cooling turbine air at the lead level are set. Ini-

tial approximations for the new independent variables 

are formed when performing the lead calculation of 

axial turbomachines on the average radius in the calcu-

lation mode before the lead thermodynamic calculation 

of the engine. 

According to the results of the calculation of this 

model, the source data are both traditional data on the 

nodal model and the distribution of thermodynamic 

parameters, works and efficiency in separate stages for 

each of the paddle machines. The calculated data will 

be useful for the next design lead calculation of axial 

turbomachines on the average radius in the calculation 

mode. 

Thermodynamic model of the engine with a lead de-

scription of the vane machines [3, -4] allows more accu-

rate modeling of the system of selection and supply of 

cooling air turbine. 

The engine and its components are represented by 

components of elementary objects, which are simplified 

representations of real engine parts. The level of corre-

spondence of elementary objects to real ones increases 

with the development of versions of the program. 

The geometric dimensions of elementary objects are 

determined by calculating and linking the flow part. 

External software components are used to more accu-

rately determine the shapes of objects, taking into ac-

count a detailed calculation of strength (for example, 

turbomachine disks), thus implementing the concept of 

multilevel multidisciplinary modeling. 

It is advisable to use an object-oriented approach, 

which allows you to determine the number and changes 

in the properties of both the most elementary objects 

and groups of objects with varying degrees of generali-

zation (rotor, stator, compressor, gas generator). 

Great contribution to the development of aviation 

engine control system has been made by the scientists: 

Yu.M. Tereshchenko, V.A. Boguslaev, M.M. Mitrakhovich, 

http://jnep.sumdu.edu.ua/index.php?lang=en
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K.I. Gyadunov, A.N. Kozlov, M.L. Nemchikov, 

I.S. Melnikova, Wirma Yuliana, Anita Maharani, Zainur 

Hidayah, Daqing Liu, Lijun Yuan, Lei Kuang, Iwona 

Komorska, A. Vinogradov, Clovis Kohyep Pilla [1, 3-9] 

and SNECMA, Rolls-Royce, MTU Enterprises within 

the project OBIDICOTE (On Board Identification Di-

agnosis and Control of gas Turbine Engine). 

The aim of this research is to define the special 

methods and processes of mathematical modeling the 

aviation engine control system taking into account the 

influence of electromagnetic, emission characteristics, 

thermodynamic parameters of the flowing part of the 

engine and other interferences. 

 

2. METHOD FOR TRANSITION PROCESS 

ANALYSIS IN THE AVIATION ENGINE  

CONTROL SYSTEM 
 

2.1 Difference Equations Technique 
 

The ordinary differential equation of the first order 

explicitly for aviation engine diagnostics and control 

system has the form ( , )
dy

F x y
dx

  [3]. The solution of 

this differential equation is the function y(x). Unam-

biguously, the solution of a differential equation can be 

found only under known initial conditions, which to-

gether with the equation itself constitutes the Cauchy 

problem. That is, having solved the Cauchy problem, 

there is no longer a general solution, but a partial one. 

The numerical method for solving the Cauchy prob-

lem is to find the values of the function sequentially at 

the following points, based on the previous ones [5]. For 

sampling, i.e. the method of transition from i to i + 1 

points, use different approaches: single-step methods, 

Runge-Kutta methods, multi-step methods. 

 

2.2 Euler Method for Transition Process  

Analysis  
 

Consider the problem of cooling the engine elements 

(e.g., turbines), according to the law of heat radiation: 

( )
dy

k y Z
dt

   . The cooling rate of an element in air is 

proportional to the difference between body and air 

temperatures, where y is the body temperature, Z is 

the air temperature, and k is the proportionality factor. 

Consider Euler's numerical scheme [6, 7]. Suppose 

we need to solve the equation ( , )
dy

f x y
dx

  on the in-

terval a x b   with the initial condition 0( )y a y . 

The final-difference method is that we divide the inter-

val [ , ]a b  into N segments. To solve the problem it is 

necessary, starting from the starting point, to go with 

the step 
b a

h
N


 , finding all newer values of the func-

tion. In this case, ( )x k a kh  , ( 0,1... )k N , and Eu-

ler's iterative scheme takes the form: 

 

0 0; ( 1) ( ) ( ( ), ( )),y y y k y k hf x k y k    0,1... 1k N  ; 

i.e. the solution ( 1)y k   at the next point is located as 

a segment of the tangent drawn at the point x(k) 

(Fig. 1). Euler's scheme arises from Taylor's decomposi-

tion around the point xk: 1( ) ( ) ( )k k ky x y x hy x
   by 

neglecting terms with derivatives older than the first. 

The geometric content of Euler's method in the ap-

proximation of the solution on the segment 1[ , ]k kx x   by 

the tangent segment drawn to the solution graph at the 

point xk (see Fig. 1). 
 

y

x

y1

yk+1

x1 xk+1  
 

Fig. 1 – The geometric content of Euler's method [5] 
 

This approach must be implemented for the prob-

lem of cooling the turbine to temperature Z. 

 

2.3 Runge-Kutta Methods for Transitions  

Process Analysis 
 

The derivatives are approximated by the values of 

the function f(x, y) at points on the interval 0 0[ , ]x x h , 

which are selected from the condition of maximum 

proximity of the algorithm to the Taylor series. 

Depending on the senior power h, which takes into 

account the members of the series, Runge-Kutta com-

putational schemes of different order are constructed. 

For example, the scheme for the second order of ac-

curacy has the form: 
 

 0 0 0 0 0
0 0

( ( , ) ( , ))
( ) .

2

h f x y f x h y hf
y x h y

  
    (1) 

 

Improving the accuracy of the calculation is 

achieved by using polynomial circuits. The fourth-order 

Runge-Kutta scheme consists in crushing the transi-

tion from x(k) to x(k + 1) into four stages. With, 
 

 

 

 

1 2 3 4

1

2 1

3 2

4 3

( 1) ( ) 2 2 ;
6

( ( ), ( ));

( ) , ( ) ;
2 2

( ) , ( ) ;
2 2

( ) , ( ) .

h
y k y k k k k k

k f x k y k

h h
k f x k y k k

h h
k f x k y k k

k f x k h y k k h

     



 
   

 

 
   

 

  

  

 

2.4 Optimization Method of Engine Transition 

Process 
 

The same Euler method is used to solve the system 

of differential equations in the case to analyze the 

transition process of aviation engine control system 

and create the optimization criteria, when the solutions 

for the functions x(t) and y(t) in the next step t + dt are 

calculated through the values in the previous step t. 
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Fig. 2 – The geometric content of Runge-Kutta scheme [5] 
 

To start the calculations, it is necessary to know the 

initial conditions x(0) and y(0). 

An investigation of the development of the 

“best individual - current individual” population. 

The population “best individual – current individual” 

can be described by a system of equations: 
 

 
1 2

3 4 ,

dx
k x k xy

dt

dy
k y k xy

dt


 


  


  

 

where 1 2 3 40; 0; 0; 0.k k k k     Initial conditions: 

0 080; 30.x x y y     

The population of current individual x(t) is de-

scribed by the rules: 

1. Appearance rate of current individual xb and its 

disappearance xd is the constants: xb  xd. That is, 

without best individuals, the current individuals would 

grow at a rate of 1( ) .b dx x x k x   

2. The number of cases where a best individual de-

stroys a current individual is proportional to the num-

ber of their encounter, i.e. xy. 

The population of best individuals is described by 

the rules: 

1. The disappearance factor depends on deteoriation 

of characteristics k3y. 

2. Meeting with a current individual with a proba-

bility of xy leads to an increase in the number of best 

individuals. 

Equations of this type are derived in the works of 

Lotka and Voltaire [7]. 

1. Investigate the model by finding the dependences 

of the number of hares x and wolves y over time, as 

well as the dependence of the number of hares on the 

number of wolves (phase trajectory). The calculations 

should be performed with different initial values. 

2. Check that the stationary point will be. 

3. Check how the solution depends on the differen-

tiation step H (especially the phase trajectory). 

Suppose we need to solve a type equation 
2

2
( , , )

d x
F t x x

dt
 . To do this, we describe this equation 

as a system of two first-order differential equations 

with the corresponding initial conditions for x0 and 

0

(0)dx
V

dt
 : 

 

 

( , , )

dx
V

dt

dV
F x t V

dt





 


 (2) 

 

To solve this system based on Euler's scheme, we 

first find a new value of V V Fdt  , and then a new 

value of x x Vdt  . 

One of the more accurate methods for solving such 

equations is the modified Euler method, when the ob-

tained values of the function and its derivative are 

used as initial data for the next time step according to 

the scheme: 

Step 1: Looking for a new speed value: 
 

 
( ( ))

( 1) ( )
F x i

V i V i dt
m

    . (4) 

 

Step 2: Look for a new coordinate value: 
 

 
2

( 1) ( )
( ( 1) ( ))

dt
x i x i

V i V i
  

  
. (5) 

 

It is possible and 3 step of specification of speed: 
 

 

( ( 1))
( ) ( 1)

( 1)
2

F x i
V i V i dt

mV i


  

  , (6) 

 

where the force ( ( 1))F x i   is calculated taking into 

account the change in the coordinate. 

3 (or 4 step): ( 1) ( )t i t i dt    and everything re-

peats again, i.e. the speed V(i) becomes V(i + 1) or 

V(i + 1) (for the case of step 3). Step 3 is introduced to 

increase the accuracy of the calculation when the object 

moves in complex or strongly changing fields. 

 

2.5 The Transition of Chaos in the Aviation  

Engine Control System. Lorenz attractor 
 

As can be seen from the “best individual-current in-

dividual” model, both stationary solutions and closed 

trajectories (boundary cycles) are possible when solving 

systems of differential equations. Such solutions are 

called attractors (attracting sets) on the basis that the 

specific solution of the equation converges to the at-

tractor in the region of attraction of which it falls. It 

turns out that chaotic solutions are also possible, i.e. it 

is impossible to predict in advance in what state the 

system will be after some time. This is due to the large 

distortions of the decision with minor deviations in the 

initial conditions or in the decision itself in the previ-

ous step over time. 

Lorenz proposed one of the first models of chaotic 

behavior of completely deterministic equations. The 

Lorentz system describes the relationship between the 

velocity of object X with the values of Y and Z, which 

characterize the temperature of the system: 
 

 

;

;

dx
y x

dt

dy
xZ rx y

dt

dZ
xy bZ

dt

  

   

 

 (7) 
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Here 
c

R
r

R
 , where R is the Rayleigh number;  is 

the Prandtl number, b is a constant (
8

3
b  ). 

The program to solve this problem is written in the 

programming language in the training compiler: 

 

begin 

Series1.Clear; Series2.Clear; Series3.Clear; 

y: 0; z: 0; bb: true; dt: 0.001; 

t: 0; sigma: 5; r: 15; 

x: strtofloat(Form1.Edit2.Text); 

while bb do 

begin 

x: x + (sigmay – sigmax)dt; 

 y: y + (–xz + rx – y)dt; 

z: z + (xy – bz)dt; 

Series1.AddXY(t, x); 

Series2.AddXY(t, y); 

Series3.AddXY(y, z); 

t: t + dt; 

Application.ProcessMessages; 

end; 

end; 

procedure TForm1.BitBtn2Click(Sender: TObject); 

begin 

bb: false; 

end; 

end. 
 

 
 

Fig. 3 – Engine transition process with the number of iterations is 10 (from the left side) and 100 (from the right side) 
 

 
 

Fig. 4 – Engine transition process with the number of iterations is 1000 

 

3. CONCLUSIONS 
 

In recent years, for mathematical modeling of the 

aviation engine control system and its elements, the 

input factors have been used that directly determine the 

mass of nodes (geometric dimensions, external loads 

and operating conditions), the possibility of constructing 

more objective communication equations, which in-

creases the accuracy of such models (about 10 %) and 

the possibility of their use to predict the properties of 

new engines and their control systems. 

The coefficients in the coupling equations, as in the 

previous level models, are determined on the basis of 

statistics with the mass of the engine components. The 

need for more detailed input complicates the process of 

determining the mass of the designed engine with the 

specified parameters and determines the preliminary 

connection of nodes in the engine system. As a result, 

the geometric dimensions, the number of steps, circum-

ferential velocities, and other indicators that meet the 

specified constraints are determined. 

As a result of calculation of parameters and weight of 

elements of the engine from conditions of maintenance of 

the set efficiency and durability of the design, the basic 

indicators characterizing aviation engine control system 

nodes (the number of blades in stages of the compressor 

and the turbine, contour loading of disks, geometrical 

sizes of blades of the stator and the rotor) are defined. 

Based on this information, the strength of the struc-
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tural elements of the engine, the volume and mass of the 

elements that are part of the node, and then the nodes 

and the engine as a whole [8, 10] were calculated: 
 

 
iKN

1 j 1
дв ij

і

m m
 

   ,  

 

where mij is the mass of the j-th element of the i-th 

engine unit; Ki is the number of elements in the i-th 

node of the engine control system; N is the number of 

engine components. 

Methods of this type require the preliminary design 

of the components at the element level and their sub-

sequent connection in the engine system. They deter-

mine the accuracy of about 5 % and allow to solve prob-

lems of rational design of the engine with minimization 

of its mass in CAD. 

The experimental results for the Lorenz attractor 

with template and iterate procedures in the form of 

programming language and graph solution have been 

presented. 
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Поведінка системи керування авіаційним двигуном  

під час переходу на атрактор Лоренца 
 

С.С. Товкач 
 

Національний авіаційний університет, пр. Любомира Гузара, 1, 03058 Київ, Україна 
 

У статті розглядається атрактор Лоренца в системах керування авіаційних двигунів (СКАД) для 

отримання необхідних характеристик пускової системи та законів подачі палива; визначення емісій-

них характеристик. Визначена поведінка системи керування дозволяє оптимізувати програму керу-

вання регульованими елементами проточної частини газогенератора на перехідних режимах роботи; 

отримати повне уявлення про пускові характеристики розроблюваного двигуна, включаючи запаси 

газодинамічної стійкості (ГДС) на режимах запуску, та встановити необхідні програми для регулю-

вання напрямних апаратів (НА), перепуску повітря із компресора; вибрати необхідну потужність ста-

ртера, циклограму запуску та програму подачі палива в наземних, високогірних та польотних умовах 

при очікуваних температурах повітря, палива та мастила в експлуатації. Метод Ейлера, Рунге-Кутта, 

атрактор Лоренца визначаються основними підходами до математичного моделювання СКАД. Сце-

нарій інтерфейсу програми моделювання включає можливість дворівневого моделювання проточної 

частини із властивостями наскрізного автоматизованого розрахунку: введення вихідних даних та об-

числення термодинамічних параметрів двигуна; проектування проточної частини двигуна на основі 

вузлового підходу; міцнісне проектування та аналіз маси; експорт даних у файли для CAD-систем для 

подальшої обробки та інтерпретації. 
 

Ключові слова: Атрактор Лоренца, Авіаційний двигун, Електронна система керування, Перехідний 

процес, Розподілена система, Диференціальні рівняння, Математичне моделювання. 
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